
Ending The Age of Misery

Andy Hunt

The Pragmatic Programmer

12 tech and fiction books

Agile Manifesto author (1/17)

Co-founder, The GROWS Method® Institute



What Are The Most Important Skills For A Software
Developer?



Learning

Communication



Learning from the...

Business domain

Emergent properties of the system under construction

Dynamics of the team

New tech, updates, deprecations



Communicating with...

Programming language/environment

Subject matter/domain experts

Users

Team members

Stakeholders, business owners

Vendors/third parties



How Does Your Method Support
Learning & Communication?

Are these ideas a first-class part of your method?

Does your method support these ideas at all?

Ticket-driven development does not



"Scatter-Gather" / Ticket Driven Method

Scatter Phase:

1. Divide the project into pieces

2. Assign pieces of the project to "teams"

3. In the "teams", a lead divides the pieces up and creates tickets

4. Tickets are assigned to individuals who work for the lead
Adapted From Tim Ottinger, http://agileotter.blogspot.com/2018/07/the-scatter-gather-method-of-software.html



"Scatter-Gather" Method

1. Individuals complete their tickets

2. The small jobs are integrated/combined/summed by the lead

3. When small jobs are done, the lead delivers the finished work of the "team"

4. The integrated, completed project is delivered as soon as pigs take flight
Adapted From Tim Ottinger, http://agileotter.blogspot.com/2018/07/the-scatter-gather-method-of-software.html



Problems with Ticket-Driven Development:

Small tasks disconnected with context

There's no actual team

Learning is siloed, happens individually, doesn't spread

Communication gets harder



Communication And Learning Pathways

[n * (n-1)]/2

Team size of 5 == 10 pathways

Team size of 12 == 66 pathways

Team size of 100 == 4,950 pathways

(Dr. Fred Brooks, The Mythical Man Month)



Communication And Learning Pathways

[n * (n-1)]/2

How does learning get shared in these environments?

What would be different if the team learned together?

What would be different if the team developed code together? Like an actual team?

What would be different if you didn't need tickets?



Why do we develop this way
when we
know better?



Agrarian Age → Industrial Age

"Safety regulations are written in blood"

1900's London Smog, lethal Great Smog of 1952

Triangle Shirtwaist Factory fire, 1911

Child "spraggers" in mining...
Hardie, D. W. F., A History of the Chemical Industry in Widnes, Imperial Chemical Industries Limited, 1950.



Kids had worked alongside parents at home and farm.

Didn't translate well to factory work.

We had to learn how to live with the new technology.



Industrial Age → Information Age

Bogus "snake oil" tools & methods

Endless ticketing systems

Ponderous practices

Disconnected leadership, stakeholders, product owners, etc.

Angry users



Industrial Age → Information Age

Destructive Social Media platforms

Disinformation and manipulation

Safety issues with self-driving cars, drones, appliances, etc

Privacy issues with cameras, sensors, facial recognition, etc.

Naive adoption of Large Language Models (chatGPT, et al. It ain't AI.)



Our Roles

Via Esther Derby



What Do we Want?

Steering: Speed, value. Ability to

turn on a dime.

Enabling: Manage uncertainty,

seek reliability and predictability.

Making: Autonomy. "Get out of
my way and let me work."



Discovering Better Ways of Working

Flow-based, always releasable

Not auto mechanic or building construction

Not greenfield development, but stuck-in-the-middle

More like a surgeon: keep the body going

Dynamic, not static



Eating Soup With A Fork

Companies embrace industrial age optimizations and
slavery-era accounting practices

Knowledge Work != Factory Work

But it "kinda" works well enough...



Theory X

Dislike their work

Avoid responsibility

Individual-goal oriented only

Have to be micro-managed, threatened, to deliver

Need to be told what to do

Have no intrinsic incentive to work, need $$ rewards

Viewed as resources
Douglas McGregor, MIT Sloan School of Management



Theory Y

Work from their own initiative

Involved in decision making

Self-motivated to complete their tasks and deliver

Seek and accept responsibility

Work to better themselves

Solve problems creatively and imaginatively

Viewed as critical assets
Douglas McGregor, MIT Sloan School of Management



Which do you think is most appropriate
for knowledge workers?

Are you a resource or an asset?



What Do We Need?

Flow-based, CI/CD, Technical Excellence, Ensemble Programming →

FINE Experiments, Fast Feedback Loops, Systems Thinking →

Fast Feedback, Inexpensive, No permissions required, Easy

Psychological Safety & Support, Self-Contained Teams →



What Do We Need?

Engaged Leadership/Steering →
Dynamic/Adaptive Accounting ("Beyond Budgeting")

Move away from batch-oriented funding

Reward systems aligned to Theory Y behavior, not Theory X



What Do We Need?

Escape the short-term Shareholder Trap

Unrestrained growth is cancer



"Once a firm embraced maximizing shareholder value and the current stock price as its

goal, and lavishly compensated top management to that end, the C-suite would have little
choice but to deploy command-and-control management (aka Theory X), because

making money for shareholders and the C-suite is inherently uninspiring to employees. The
C-suite would have to compel employees to obey, even if this meant that employees would

become dispirited. The authors didn't worry that dispirited employees might become a
critical constraint in an economy that would depend on innovation from engaged

knowledge workers. How firms were managed was not a matter of much interest to
academic economists."

—Notes on Theory of the Firm by Michael Jensen and William Meckling, via Stephen Denning



I am of the generation of the microprocessor revolution.

We thought we could change the world.



agilemanifesto.org

eXtreme Programming was revolutionary

Ultimately co-opted and mangled to
conform to status quo

"agile" now == Half-assed Scrum plus Jira
tickets



The Age Of Misery

Resignations are up; Return-to-office mandates and burnout

Of the 57,000 workers across 1,600 companies employee sentiment dropped 10x

faster since January 2023 than in the previous three years. (BambooHR)

Tech industry happiness down -145% (BambooHR)

Half of young women will leave their tech job by age 35 (Accenture/Girls Who Code)

(Largely due to unsafe environments/culture)



Enshittification of Business Models

"Here is how platforms die: first, they are good to their users; then they abuse their users to
make things better for their business customers; finally, they abuse those business

customers to claw back all the value for themselves. Then, they die. I call this
enshittification."—Cory Doctorow



Complex

Not easily observable

No Identifiable Cause and Effect

Can't Change "culture" Directly

No Single, Simple Solutions



The GROWS Model:



The GROWS Model:



Three Track Attack:
1. Deliver

2. Discover
3. Refine

Thin Vertical Slices
(End-to-end,

100% done in hours,
Always Deployable)

Continuous
Flow

Pipeline
(CI/CD)

Real-Time Feedback
from Working,Tested

Features
(WTF)

Skill
Development

Shared
Learning/
Discovery

(User dialog)

Psychological
Safety &
Support

Interruption
Protocols
Shield &

Faciliatate

Systems
Thinking

Reward
Structures,

Motivation &
Incentives

Realtime Funding

Self-sufficient,
Self-directing,

Development Team

Contextual Tools:
Cynefin Domains, 
Wardley Mapping

Continuous
Learning

Continuous
Value

Dreyfus Model of
Skill Acquisition

Free
Information Flow

Experiments,
Fast Feedback Loops

Shared VisionThe GROWS Model:



Confused

Complicated

Clear

Complex

Chaos

Build it

Known Unknowns

Expert Leadership
Sense-Analyze-Respond

Governing Constraints
Tightly Coupled

Good Practice
CI/CD system

Experts Give the Same Answer

Grow it

Unknown Unknowns

Networked Leadership
Probe-Sense-Respond

Enabling Constraints
Loosely Coupled

Emergent Practice
Large scale integration

Experts Give Different Answers

Buy it

Known Knowns

Feudal Leadership
Sense-Categorize-Respond

Tightly Constrainted
No degrees of Freedom

Best Practice
Code editor

Experts not Needed

Change it

Unknowable Unknowns

Charismatic Leadership
Act-Sense-Respond

Lacking Constraint
De-coupled

Novel Practice
Defects in production

Experts do not Exist

Practices are for
Beginners

Cynefin sense-making framework

No "Best Practice"



Dynamic Practices, not Static

"Practices can never be completely objectified or formalized because they must
ever be worked out anew in particular relationships and in real time."

—Dr Patricia Benner, From Novice to Expert



Rules, Intuition and
Expertise

Beginners need rules

Experts rely on intuition from
experience

"Work to rule" limits you to a
beginner's performance



Intuition from Experience

But what if you don't have enough (good) experience?

Many projects not "successful"

Many work environments unsafe



How can you get experience?

At psychological safety?

At making good development/team decisions?

At working with a team?



Simulated experience

Experience: benefit of a

simulation

Psych safety: free to invent and
evaluate options



Habits from Experience

Habits are often "subterranean," emergent from repeated behavior

Continuous battle for cortical real estate



Can't Break an Existing Habit

But you can make new ones...



trigger

behavior

reward

Habit Cycle:

Can replace the "behavior" part



Key habits for "Theory Y" software development
teams



What to fix first?

Psychological Safety

Reward Systems

Small, frequent steps overall

Direct User Involvement (no proxies)

Short success horizon, End-to-end code (Tracer Bullet Development)



Psychological Safety

Freedom to share thoughts

Freedom to express concerns

A sense of ease and support

Ok to take calculated risks

All options considered



Does not Mean:

Saying anything you want

Letting emotions fly

Hands-off leadership

Taking blind risks

Tolerating everything, including bad behavior
"You get what you tolerate"



Activities that HARM Psychological safety

Collecting metrics at the individual level

Inappropriate comparisons between team-level metrics

Unaligned reward structures (raises, bonuses, etc)



Always Look for Feedback

Get itchy, uncomfortable if there's no immediate
feedback

TDD, Pair/ensemble programming, CI/CD, ...

Meetings

Technical decisions



Confused

Complicated

Clear

Complex

Chaos

Build it

Known Unknowns

Expert Leadership
Sense-Analyze-Respond

Governing Constraints
Tightly Coupled

Good Practice
CI/CD system

Experts Give the Same Answer

Grow it

Unknown Unknowns

Networked Leadership
Probe-Sense-Respond

Enabling Constraints
Loosely Coupled

Emergent Practice
Large scale integration

Experts Give Different Answers

Buy it

Known Knowns

Feudal Leadership
Sense-Categorize-Respond

Tightly Constrainted
No degrees of Freedom

Best Practice
Code editor

Experts not Needed

Change it

Unknowable Unknowns

Charismatic Leadership
Act-Sense-Respond

Lacking Constraint
De-coupled

Novel Practice
Defects in production

Experts do not Exist

Experiment to Find
Answers

Probe-Sense-Respond

(Cynefin "Complex" Domain)

User's options/issues

Project's Technical questions

Team's Process/Practices/Habits



Take Small Bites Always

However small a step, make it smaller

Small achievable likely to succeed

Faster feedback

Small mistakes easier and faster to correct

Not bound by large, long-term liabilities/commitments

Reduces risk



Look for Loops, not
Lines

The world is a circle

Systems Thinking; not naive
linear, predictive thinking

No simple Cause→Effect; multiple

influences and outcomes

Never "one and done;" every

project has a before and an after



Look for Actuals, not Proxies

You want the real stuff

Actual capability, not a piece of paper

Actual shipping software that generates value, not numbers on a spreadsheet

Actual users in their native habitat, not a watered-down version in a memo or on a
story card



Keep it Safe

Make sure your own behavior contributes to the psychological support and safety of

the team

Free information flow is critical to success

Westrum Continuum



Westrum Continuum

Pathological (Power) Bureaucratic (Rules) Generative (Performance)

Low cooperation Modest cooperation High cooperation

Messengers “shot” Messengers neglected Messengers trained

Responsibilities shirked Narrow responsibilities Risks are shared

Failure leads to scapegoating Failure leads to justice Failure leads to inquiry

Novelty crushed Novelty leads to problems Novelty implemented



What are you going to do tomorrow?What are you going to do tomorrow?



The GROWS Method®
Habits, Workshops

growsmethod.com



Andy Hunt

andy@growsmethod.com

@PragmaticAndy@mastodon.social

weatherlyhall.com - Psychological Thriller

conglommora.com - Science Fiction

mailto:andy@growsmethod.com

