

| 7 October 2023 - New York City

0

Craig
Larman Vodde

Bjarte Jutta
Adzic Bogsnes Eckstein

- #LeSS2023
http://less2023.works

“d Event: Maximizing Dependenc. X -+

less.works

» 0

.

<e S S More with LeSS LeSS Courses & Events Coaching Case Studies Resources

LeSS Courses Summary i=Upload Contacts GEdit Admin Actions

LeSS Supporting Courses
LeSS Events ~ Maximizing Dependencies with Interdependent
LeSS-Friendly Scrum Course Teams, With Bas VOdde

LeSS Conferences

Becoming a LeSS Trainer

Becoming a LeSS-Friendly Scrum Q@ (Online) New York @ Link Type: Meet-up Date: August 11, 2023 (1) Time: 12:00 ~ 13:00
Trainer
By: Gene Gendel Language: English

Eishare W Tweet

Description:
Synopsis:
To get Agile to work, we need to reduce dependencies to create independent teams. That is common
sense! And it is wrong.
When multiple teams work on one product, the teams need to work closely together to ensure it truly
becomes one product. Teams need to learn from each other, help each other, and together build one
product. They need to have dependencies with each other, a lot of them! However, many people and
teams have bad experiences with dependencies. In their experience, the dependencies blocked them
from making progress. It doesn't have to be that way!
50, how can teams work together and what enables this?

Speaker's Bio:

Bas Vodde is a coach, programmer, trainer, and author related to modern agile and lean product
development. He is the creator of the LeS5 (Large-Scale Scrum) framework for scaling agile
development. He coaches organizations on three levels: organizational, team, individual/technical

mraeHene o hac traimoad thoocande of connla in coftinmra dovalanmrmant Coviimn and cnndocn Aaoila

Maximizing Dependencies
with
Interdependent Teams

Team Lake

Halloween
o POL ICE -

~

Team
7!

-
—
-

-
—~
-

A

Features

Top of Product Backlog

Viewing courses with direct link

Course registration

Basic integration with External Scheduler
Migrate main page to New Tech

Course registration with invoice

External Scheduler support for timezones
Migrate menus to New Tech

Course registration through payment provider
Cancelling registration without payment

M)

I ———

- - = ’ - :@
7 & == R, -2 o

N = <>,
7 i b
7
/
¥ -
—
) | i ¥ o
/ ~
[
d 4
te
-
.4
e
-
-
LR \
“*
—

Two Journeys

oA AR s >

et g 1~ 2

%:, it bk e \E
N

Programmer Produc

(s

Developer

95

LARGE-SCALE TRANSPARENCY
SCRUM IS SCRUM A “ ﬁ
> 4
QUEUEING THEORY & — | . ——" </
R 7 MORE
@78 S WITHLESS
EMPIRICAL _ N
PROCESS CONTROL < AN
\ WHOLE *
PRODUCT
\ FOCUS C360° =
SYSTEMS & — \ 260)
THINKING
” - I \ \
i v
~ CONTINUOUS IMPROVEMENT CUSTOMER

TOWARDS PERFECTION CENTRIC

Whole Product Focus

Customer Centric

THE RITZ-CARLTON

COMPONENT TEAMS

50

\ 3/

Po

PROPUCT
OWNER

ITEM 1
ITEM 2
ITEM 3
ITEM 4

SYSTEM

COMPONENT

A

(Sl ——]
o —

COMPONENT

b

o=
[e |

COMPONENT

Io%e

\ 3/

PO

PROPUCT

OWNER

ITEM 1 -]

ITEM 2 §
ITEM 3
ITEM 4

FEATURE TEAMS

TEAM WEI

SYSTEM

COMPONENT

A

[N ——]
o —

COMPONENT

b

o=
o

COMPONENT

C

o=
o3

20

Types of Dependencies

Synchronous Dependencies
Collaborate

Ic

o 0y

By Bundesarchiv, Bild 183-1990-0414-009 / Wolfried Pitzold / CC-BY-SA 3.0, CC BY-SA 3.0

Asynchronous Dependencies
Interrupt

Interdependent Teams

Cross-Team Shared Learning

o e
<y W

o — ~

Independent
Isolated
Teams

Maximizing Dependencies

Feature Teams together
chose which team works on
which feature
rather than
all work for a specific
component always goes to
a specific team

Accidental Specialization

Example

Team HUB likes:

> Features that are complex
and touch many
components

> Features that are used by
lecturers and students

» Features that have a
graphical Ul

Large-Scale Scrum is Scrum

One piece flow

Just-In-Time

For Today and Tomorrow

Avoiding Tragedy of the
Commons

e Fducate and exhaust.

Thinking in Systems
Help people to see the consequences of

Donella H. Meadows unrestrained use of the commons. Appeal to
their morality

e Privatize the commons.

Divide it up, so that each person reaps the
consequences of his or her own actions.

® Regulate the commons.

Mutual coercion, mutually agreed upon.

0dd-e

Incremental Design

growing building

This seems trivial but dramatically impacts
how developers do their work.

25

Continuous Integration

Continuous Integration is a developer practice

with the goal to always keep a working system

by making small changes, slowly growing the system
and integrating them at least daily

on the mainline

typically supported by a Cl system

with lots of automated tests

- Increases transparency
- Increases cooperation and communication
- Enables people to work on same code

Scenario

B8

[

Hey! I'm changing the method that
conflicts with your changes! N

Py [Roger!)

[done and commi’r’red!) K ~
Ok! I'll update and check

the merged changes!
... Looks good!

.

Great!

31

. Gitlab Student Commits Tuesday 3:26 PM
/S

link / -student-mobile

Tessa pushed to branch release/master

in link / mobile

«’ Reply

. Gitlab Student Commits Tuesday 5:04 PM
S

link / -student-mobile

Hanna pushed to branch release/master

lent-mobile

70c1d25f: OB-12193 Formulier: opslaan en voorlopig opslaan van formulier OB-15473... - Hanna
«' Reply
April 28, 2022
. Gitlab Student Commits Thursday 10:08 AM
7S

link / -student-mobile

Bas Vodde pushed to branch release/master

in lin t-mobile

: nojira: Upgraded chrome driver since a new chrome was released and older version didn't work - Bas Vodde

«/ Reply

. Gitlab Student Commits Thursday 10:50 AM
/

link / -student-mobile

Hanna pushed to branch release/master

in

: OB-6896 Een zaak starten - de wizard - Hanna

« Reply

. Gitlab Student Commits Thursday 2:32 PM
S

link / -student-mobile

Bas Vodde pushed to branch rel

in link nt-mobile

e/master

89P0) Ul 81edIUNWWON

ae01c367: nojira: When logged in and you hit the login button then you are redirected to... - Bas Vodde

«' Reply

Avoid branching!

Odd-e

Mono Repository

DOI:10.1145/2854146

Google’s monolithic repository provides
a common source of truth for tens of
thousands of developers around the world.

Why Google
Stores Billions
of Lines

of Code

In a Single
Repository

contributed articles

This article o
codebase and dd
built monolithid
the reasons thd
Google uses a ho
trol system to h
visible to, and us
ware developers|
centralized systd]
many of Google’
Here, we provid
systems and wo
sible managing
tively with such
explain Google'
opment” strateg]
tems that struct
Google's codeb]
software for stat
up, and streamli

Google-Scale
Google's mono
tory, which is u
ware developel
the definition o
system, providi}
gle-source repol
scaled successf
The Google
proximately ond
a history of app)
commits spann
year existence. T}
B6TB® of data, in

a Total size of uneo
release branches.

34

Maximizing Dependencies
with
Interdependent Teams

| 7 October 2023 - New York City

Google

O'REILLY"
Software
Engineering at

Google A

Lessons Learned
from Programming
Over Time

Rehabﬂlty
Engineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

Curated by Titus Winters, Edited by Betsy Beyer, Chris Jones,
Tom Manshreck & Hyrum Wright Jennifer Petoff & Niall Richard Murphy

Limbo: Scaling Software
Collaboration

@
_/

00006

CHUBBY CHECKER

B -
!,;T,P

NOW... ' ,,

Micro-services ?

¢ An architectural style that decomposes the system in services that are
independently deployable.

e When using micro-services (and LeSS), avoid:
- Teams own services (also known as component teams)
- Repository per services (also known as multi-repo)

e But be aware:
- Service communication creates additional overhead

- Additional network communication creates significant additional
complexity

Example Incremental
Upgrade (1)

e Refactor all usage of an API that is changing to one place

e Move all usage of changing APl again into one component/class. For
example this could be called “UpgradeService” and it only exists during
the upgrade

e Use a bash script that does the upgrade. It does:

Simple renames of changes in the API. Using find and sed.

Renames files that are called <file>.upgrade to <file> so that it is
possible to have two versions of a file without branching in repository.
This is mostly used for configuration but also for e.g. “upgrade
service”

Deletes all lines that are marked for deletion with a comment. For
example “// ION3”

Runs an open source upgrade script that does more renames and
changes

40

Example Incremental
Upgrade (2)

For all incompatabilities, first ask whether we can find a way that works
in both versions, if so, refactor it to a different implementation that works
for both implementations

For things that do not exist in the new version, write a dummy wrapper
so that we can compile it, it just doesn’t do anything

For things that do not exist in the old version, write an implementation
that doesn’t do anything in the old version, but does something in the
new version

An example of the above is best visible in the CSS where the changes
are dramatic. We add CSS for the new version (which doesn’t do
anything in the old version, it is just dead code) and then for the old
styles, we mark them as “// ION3” so that they will be deleted by the
upgrade script

41

Example Incremental
Upgrade (3)

e People work with 2 checked out versions (same code branch). One
version that has run the script and one that hasn’t. Try the change in the
upgraded version, then manually copy it to the old version to see if it
works there also, then we always only commit on the old version
checkout (so we never commit the results of the upgrade script)

42

