

Large-Scale Scrum

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Large-Scale Scrum

More with LeSS

Craig Larman
Bas Vodde

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
 Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

https://less.works For Gene Gendel only, id:gene-gendel

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016941974

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-98571-2

ISBN-10: 0-321-98571-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.

First printing, August 2016

https://less.works For Gene Gendel only, id:gene-gendel

http://www.pearsoned.com/permissions/
http://www.corpsales@pearsoned.com
http://www.governmentsales@pearsoned.com
http://www.intlcs@pearson.com
http://www.informit.com/aw

v

1 More with LeSS 1

2 LeSS 5

LeSS Structure
3 Adoption 53

4 Organize by
Customer Value 77

5 Management 113

6 Scrum Masters 135

LeSS Product
7 Product 155

8 Product Owner 171

9 Product Backlog 197

10 Definition of Done 229

LeSS Sprint
11 Product Backlog

Refinement 247

12 Sprint Planning 275

13 Coordination &
Integration 285

14 Review & Retrospective 313

More or LeSS
15 What’s Next? 329

Recommended Readings 331

Appendix A: Rules 333

Appendix B: Guides 337

Index 339

CONTENTS

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

vii

FOREWORD
by Stephen Denning

Large-Scale Scrum or LeSS continues the major discoveries that are
transforming the world of management by showing how to implement
Agile and Scrum at scale.

In the 20th Century, hierarchical bureaucracy enabled large groups to
work together to achieve extraordinary improvements in productivity.
Then the world changed. Deregulation, globalization, the emergence of
knowledge work and new technology, particularly the Internet, trans-
formed everything. Competition increased. The pace of change acceler-
ated. Computer software enabled huge gains in productivity but in turn
generated immense complexity. As power in the marketplace shifted
from seller to buyer, the customer, not the firm, became the center of
the commercial universe. These shifts required fundamentally different
management that could mobilize the talents of everyone in the organi-
zation—and beyond—to meet the new and more difficult challenge of
delighting customers. The changes went far beyond fixes to existing
management practices. Agile and Scrum offer explicit alternatives to
seemingly long-held, obvious, self-evident management assumptions.

LeSS shows how to handle large and complex development. Self-man-
aged teams are not just tiny curiosities. They can manage vast interna-
tional operations of great technical complexity. The practices are not
only scalable, unlike bureaucracy, they are scalable without sclerosis.

LeSS continues the process of fundamentally reinventing management
by incorporating the hard-won lessons of experience over more than a
decade in scaling the management methods of Agile and Scrum. It
shows how to cope with immense complexity by creating simplicity.

LeSS is deliberately incomplete. It leaves space for vast situational
learning. It doesn’t offer definitive answers. Nor does it try to satisfy
20th Century longings for formulaic answers or for apparently safe and

https://less.works For Gene Gendel only, id:gene-gendel

viii

disciplined approaches that offer a comforting illusion of predictable
control. LeSS focuses on the minimal essence required when scaling,
including continuous attention to technical excellence, and a mindset of
continuous experimentation. It involves forever trying new experiments
in an effort to improve. Like Scrum itself, LeSS strives for a balance
between abstract principles and concrete practices.

And like Scrum, LeSS is not a process or a technique for building prod-
ucts. Rather, it is a framework within which processes and techniques
can be adapted to meet the needs of the particular situation. It aims to
make clear how product management and development practices can
enable continuous improvement that adds value to customers.

Rather than providing fixed answers, LeSS provides the starting point
for understanding and adopting its deeper principles. Instead of asking,
“How can we do Agile at scale in our complex hierarchical bureaucracy?”
it asks a different and deeper question is, “How can we simplify the
organization, and be Agile?”

LeSS strives to achieve this balance for larger product groups. It adds
more concrete structure to Scrum, while maintaining radical transpar-
ency and emphasizing the inspect-and-adapt cycle so that groups can
continuously improve their own ways of working. It addresses the basic
question: How do we take what works really well at the individual team
level and make that happen at a much wider level in the organization?

Much remains to be learned and done in terms of scaling Agile and
Scrum. This book is both a progress report and a guide to the future. At
present, many organizations are not doing a good job having multiple
teams working in sync on various aspects of products and platforms.
Surveys show that most Agile and Scrum teams today report tension
between the way their team operates and the way the rest of the orga-
nization is run. This book provides a practical, step-by-step guide to
resolving this tension.

Stephen Denning
Author of The Leader’s Guide to Radical Management

April 27, 2016

https://less.works For Gene Gendel only, id:gene-gendel

ix

PREFACE
All great truths begin as blasphemies.

—George Bernard Shaw

Welcome to this portal into the world of LeSS, where simpler structures
replace organizational complexity by focusing on people and their
learning. To some people, LeSS might seem romantic and hopelessly ide-
alistic. Not so, it is the reality for many product groups today!

Why This Book?

While reflecting on the feedback that our previous two books on LeSS
presented too many ideas with too few starting points, Craig asked Bas
if he wanted to write another book. Bas declined as he was eagerly
awaiting the arrival of his second son. A relentless Craig convinced Bas
this book was going to be an easy one. Craig was wrong.

Our initial intent was to write a primer for the previous LeSS books. We
ended up with a very different book as our exploration in concrete
starting points led to a pursuit for the minimum essentials for scaling.
The result? The LeSS rules, the LeSS guides, and this book.

The LeSS rules and guides are important, but they are not the only con-
siderations when scaling. Before diving into LeSS, we want to explicitly
highlight two other important points: continuous attention to technical
excellence and the experimentation mindset.

Audience

This book is for everyone in product development. The only prerequi-
site to this book is basic Scrum knowledge. If you don’t have that, we
recommend you start with reading through the Scrum Guide
(scrumguides.org) and the Scrum Primer (scrumprimer.org). We start
every chapter with a quick Scrum refresher related to that topic.

https://less.works For Gene Gendel only, id:gene-gendel

http://www.scrumprimer.org
http://www.scrumprimer.org

x

Chapter Structure

Each major chapter has the following structure:

> One-team Scrum
Summarize one-team Scrum, to set the stage for learning LeSS.

> LeSS
Covers the basic LeSS framework. This section is structured as:

> Introduction and related LeSS principles.

> LeSS rules.

> LeSS guides.

> LeSS Huge
Structured the same way as the LeSS section.

Style

We decided on the following style choices:

> LeSS and Scrum terms are capitalized, such as: Sprint, Product
Backlog, Team. Note: Team is the role in LeSS whereas team is the
general concept of a team.

> Throughout the book we use you to refer to you, the reader. We
assume you are involved in a LeSS adoption and we pretend your
role relates to the topic of the chapter. For example, in the Product
Owner chapter, you are a Product Owner.

> We use italic, bold, and boxes to emphasize important points.

> The book is intentionally shallow in bibliographic references. For
more thorough references, please refer to our previous books
which have extensive bibliographies.

Organizational Terms

Most terms are defined when first used. However, we’ve struggled with
organizational terms as different companies use different terms. There-
fore, here we introduce the terms we use throughout the book, which
will be obvious for some readers, yet obscure for others.

https://less.works For Gene Gendel only, id:gene-gendel

xi

> Product group
All people involved in the product. Companies often use project to
refer to all people involved in the development, but this book
avoids the term project as it strives to emphasize product develop-
ment. Hence, product group.

> Line organization
The formal organization usually depicted in an org-chart. Line
organization is typically involved in evaluation, hiring, firing, and
competence development. Companies might also have a matrixed
project organization (this should not exist in LeSS) and staff or
support organization.

> Line manager and first-level manager
A manager you report to in the line organization. The first-level
manager is the direct line manager you report to.

> Senior manager or executive
Managers who work near the top of the organization. In a large
organization, they tend to be outside the product group.

> Product management or product marketing
The function in product organizations that explore the market and
decide on the content of the product. This is normally not in a line
relationship with the teams.

> Head of the product group
The manager who heads the product group to which all people in
the product group report in a line relationship.

> Project/program manager
Role traditionally responsible for the schedule of a release. This is
normally not a line relationship with the team as it has a short-
term temporary focus. These roles should not exist in a LeSS orga-
nization.

> Functional organization
Line organization for a functional skill such as development, test,
or analysis. Should cease to exist in a LeSS organization.

Acknowledgments

We’ve had a huge number of reviewers for this book. Those who com-
mented on more than one chapter are listed below.

https://less.works For Gene Gendel only, id:gene-gendel

KEY. All LeSS Prod Group reports to. All Teams and their members.

xii

Janne Kohvakka, Hans Neumaier, Rafael Sabbagh, Ran Nyman, Ahmad
Fahmy, Mike Cohn, Gojko Adzic, Jutta Eckstein, Rowan Bunning, Jean-
marc Gerber, Yi Lv, Steve Spearman, Karen Greaves, Marco Seelmann,
Cesario Ramos, Markus Gärtner, Viktor Grgic, Chris Chan, Nils Bernert,
Viacheslav Rozet, Edward Dahllöf, Lisa Crispin, Mike Dwyer, Francesco
Sferlazza, Nathan Slippen, Mika Sjöman, Tim Born, Charles Bradley,
Timothy Korson, Erin Perry, Greg Hutchings, Jez Humble, Alexey Kriv-
itsky, Alexander Gerber, Peter Braun, Jurgen De Smet, Evelyn Tian,
Sami Lilja, Steven Mak, Alexandre Cotting, Bob Schatz, Bob Sarni, Milind
Kulkarni, Janet Gregory, Jerry Rajamoney, Karl Kollischan, Shiv Kumar
Mn, David Nunn, Rene Hamannt, Ilan Goldstein, Juan Gabardini, Meh-
met Yitmen, Kai-Uwe Rupp, Christian Engblom, James Grenning, Ven-
katesh Krishnamurthy, Peter Hundermark, Arne Ahlander, Darren Lai,
Markus Seitz, Geir Amsjø, Ram Srinivasan, Mark Bregenzer, Aaron
Sanders, Michael Ballé, Stuart Turner, Ealden Escañan, Steven Koh, Ken
Yaguchi, michael james, Manoj Vadakkan, Peter Zurkirchen, Laszlo
Csereklei, Gordon Weir, Laurent Carbonnaux, Elad Sofer.

And then a special thanks to Bernie Quah for the art and Terry Yin for
support on nearly anything requested. And to Chris Guzikowski from
Addison-Wesley for his patience during this longer than intended book
project.

https://less.works For Gene Gendel only, id:gene-gendel

1

1
MORE WITH LESS
The cheapest, fastest, and most reliable components are those that aren’t there.

—Gordon Bell

• Why LeSS? •
Why did Scrum adoption explode during the last decade? This is the
question we toyed with at a hawker center in Singapore, over a beer.

Some say it was due to the simplistic certification model. Perhaps. But
another agile method, DSDM, provided certification before Scrum yet
never became as widespread.

Others say the availability of Scrum Master courses made the differ-
ence. Ken Schwaber’s original Scrum Master course has indeed had a
strong influence. Yet, Extreme Programming had the XP Immersion
course first and isn’t as common.

Perhaps it’s the simplicity of Scrum that made the difference? Com-
pared to XP, Scrum provides a simpler framework. Yet, even simpler
agile methods such as Crystal never really took off.

After some more discussion and thought, Craig suggested:

That concluded the discussion and we had another beer.

These concrete practices emphasize empirical process control—a core
Scrum principle. Empirical process control distinguishes Scrum from
other agile frameworks. The Scrum Guide puts it well:

Scrum hits an ideal balance between
abstract principles and concrete practices.

https://less.works For Gene Gendel only, id:gene-gendel

2

1. More with LeSS

Scrum is not a process or a technique for building products; rather, it is a
framework within which you can employ various processes and tech-
niques. Scrum makes clear the relative efficacy of your product manage-
ment and development practices so that you can improve.

Meaning? With empirical process control we neither fix the scope of the
product nor the process of how to build it. Instead, in short cycles we cre-
ate a small shippable slice of the product. We inspect what we have and
how we created it, and adapt the product and the way we create it. This
clear inspection is enabled by the built-in mechanisms for transparency.

Principles sound good but are not obviously actionable. It is the small
simple set of concrete practices that make it easy to start with Scrum:
the clear roles, artifacts, and events.

These practices get you started, but are intentionally “incomplete” so
that groups have the space to continuously learn and improve within the
Scrum framework, recognizing that you are working in domains of high
complexity where defined process recipes are too simplistic.

Large-Scale Scrum (LeSS) achieves the same balance for larger product
groups. It adds a bit more concrete structure to Scrum, whose purpose
is to maintain transparency and emphasize the inspect-adapt cycle so
that groups can continuously improve their own ways of working.

Like Scrum, LeSS is deliberately incomplete; it leaves space for vast situ-
ational learning. It doesn’t offer many definitive answers. It won’t satisfy
those looking for formulaic answers or for apparently safe and disci-
plined approaches that offer a comforting illusion of predictable control
via defined processes. These approaches destroy the principle of empir-
ical process control, and feeling ownership of processes and practices.

A less defined process leads to more learning. More with less.

The concrete practices of Scrum provide the starting
point for adopting its deeper principles. A perfect balance.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS 6
• Background • 6
• Experiments, Guides, Rules, Principles • 8
• LeSS Principles • 10
• Two Frameworks: LeSS & LeSS Huge • 12

LeSS Framework 13
• LeSS Framework Summary • 13
• LeSS Stories • 14
• LeSS Story: Flow of Teams • 15
• LeSS Story: Flow of Items • 29

LeSS Huge Framework 33
• Requirement Areas • 33
• Area Product Owners • 35
• Area Feature Teams • 35
• LeSS Huge Framework Summary • 37
• LeSS Huge Stories • 38
• LeSS Huge Story: A New Requirement Area • 39
• Multi-Site Teams: Terms & Tips • 46
• LeSS Huge Story: Multi-Site Teams • 47

a large story map in initial PBR in LeSS

Contents

https://less.works For Gene Gendel only, id:gene-gendel

5

2
LeSS

There are two ways of constructing a [design]:
One way is to make it so simple that there are obviously no deficiencies,

and the other way is to make it so complicated that there are no obvious deficiencies.
—C.A.R. Hoare

ONE-TEAM SCRUM
Scrum is an empirical-process-control development framework in
which a cross-functional self-managing Team develops a product in an
iterative incremental manner.1 Each timeboxed Sprint, a potentially ship-
pable product increment is delivered and, ideally, shipped. A single Prod-
uct Owner is responsible for maximizing product value, prioritizing items
in the Product Backlog, and adaptively deciding the goal of each Sprint
based on constant feedback and learning. A small Team is responsible
for delivering the Sprint goal; there are no limiting single-specialized
roles. A Scrum Master teaches why Scrum and how to derive value with
it, coaches the Product Owner, Team, and organization to apply it, and
acts as a mirror. There is no project manager or team lead.

Empirical process control requires transparency, which comes from
short-cycle development and review of shippable product increments.
It emphasizes continuous learning, inspection, and adaptation about the
product and how it’s created. It’s based on understanding that in devel-
opment things are too complex and dynamic for detailed and formulaic
process recipes, which inhibit questioning, engagement, improvement.

In the Scrum Guide and Scrum Primer, the emphasis is for one Team; the
focus is not many Teams working together. And that naturally leads to
thinking about large-scale Scrum.

1. Please read the Preface for why chapters start with this section, the repeating major
structure in each chapter, definition of some key terms, and style points.

https://less.works For Gene Gendel only, id:gene-gendel

6

2. LeSS

LESS

see Adoption LeSS is Scrum—Large-Scale Scrum (LeSS1) isn’t new and improved
Scrum. And it’s not Scrum at the bottom for each team, and something dif-
ferent layered on top. Rather, it’s about figuring out how to apply the prin-
ciples, purpose, elements, and elegance of Scrum in a large-scale
context, as simply as possible. Like Scrum and other truly agile frame-
works, LeSS is “barely sufficient methodology” for high-impact reasons.

Scaled Scrum is not a special scaling framework that happens to
include Scrum only at the team level. Truly scaled Scrum is
Scrum scaled.

see Organize by Cus-
tomer Value

…applied to many teams—Cross-functional, cross-component, full-
stack feature teams of 3–9 learning-focused people that do it all—from
UX to code to videos—to create done items and a shippable product.

see Coordination &
Integration

…working together—The teams are working together because they
have a common goal to deliver one common shippable product at the
end of a common Sprint, and each team cares about this because they
are a feature team responsible for the whole, not a part.

see Product …on one product—What product? A broad complete end-to-end cus-
tomer-centric solution that real customers use. It’s not a component,
platform, layer, or library.

• Background •
In 2002, when Craig wrote Agile & Iterative Development, many believed
that agile development was only for small groups. However, we both
(Craig and Bas) became interested in—and got increasing requests—to

LeSS is Scrum applied to many
teams working together on one product.

1. LeSS suggests both Large-Scale Scrum and simplifying when scaling—less.

https://less.works For Gene Gendel only, id:gene-gendel

7

LeSS

apply Scrum to large, multi-site, and offshore development. So, since
2005 we have teamed up to work with clients to scale up Scrum. Today,
the two LeSS frameworks (smaller LeSS and LeSS Huge) have been
adopted in big groups worldwide in disparate domains:

> telecom equipment — Ericsson & Nokia Networks1

> investment and retail banks — UBS

> trading systems — ION Trading

> marketing platforms and brand analytics — Vendasta

> video conferencing — Cisco

> online gaming (betting) — bwin.party

> offshore outsourcing — Valtech India2

In terms of large, what’s a typical LeSS adoption case? Perhaps five
teams in one or two sites. We’ve been involved in adoptions of that size,
of a few hundred people, and up to a LeSS Huge case of well over a thou-
sand people, far too many development sites, tens of millions of lines of
C++, with custom hardware.

More LeSS Learning
To help people learn and based on our experiences with clients, in 2008
and 2010 we published two books on scaling agile development with
the LeSS frameworks:

1. Scaling Lean & Agile Development: Thinking and Organizational Tools
for Large-Scale Scrum — explains the thinking, leadership, and orga-
nizational design changes.

2. Practices for Scaling Lean & Agile Development: Large, Multi-site &
Offshore Product Development with Large-Scale Scrum — shares hun-
dreds of concrete experiments for LeSS, based on our experience
with clients; experiments in product management, architecture,
planning, multi-site, offshore, contracts, and more.

1. Nokia Networks is not the mobile phone firm acquired by Microsoft.
2. See the case studies at less.works for more examples.

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works
LeSS books:
2008 -
2010 -

LeSS books in 2008 and 2010 - have experiments

8

2. LeSS

This book—Large-Scale Scrum: More with LeSS—is the third in the LeSS
series, a prequel and primer. This book synthesizes, clarifies, and high-
lights what’s most important.

Besides these books, see less.works for online learning resources
(including book chapters, articles, and videos), courses, and coaching.

• Experiments, Guides, Rules, Principles •
The first two LeSS books emphasized: There are no such things as best
practices in product development. There are only practices that are adequate
within a certain context.

Practices are situational; blithely claiming they are “best” disconnects
them from motivation and context. They become rituals. And pushing
so-called best practices kills a culture of learning, questioning, engage-
ment, and continuous improvement. Why would people challenge best?

Therefore, the earlier LeSS books shared experiments we and our clients
have tried, and we encouraged—and encourage—this mindset. But over
time we noticed two problems with the only-experiments mindset:

> Novice groups made unskillful decisions to their detriment, adopt-
ing LeSS in ways not intended, with obvious problems; e.g. groups
created Requirement Areas with one team each. Ouch!

> Novice groups asked, “Where do we start? What’s most
important?” They understandably couldn’t see the key basics.

Based on this feedback we reflected and returned to the Shu-Ha-Ri
model of learning: Shu—follow rules to learn basics. Ha—break rules and
discover context. Ri—mastery and find your own way. In a Shu-level
LeSS adoption, there are a few rules for a barely sufficient framework to
kick-start empirical process control and whole-product focus.1 These
rules define the two LeSS frameworks that are introduced soon.

To summarize and build on these points, LeSS includes:

1. Scrum also has a few rules for its framework, for the same reasons as LeSS.

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works

9

LeSS

> Rules—A few rules to get started and form the foundation. They
define the key elements of the LeSS frameworks that should be in
place to support empirical process control and whole-product
focus. e.g. Hold an Overall Retrospective each Sprint.

> Guides—A moderate set of guides to effectively adopt the rules
and for a subset of experiments; worth trying based on years of
experience with LeSS. Guides contain tips. Usually helpful and are
an area for continuous improvement; e.g. Three Adoption Principles.

> Experiments—Many experiments that are very situational and
may not even be worth trying; e.g. Try… Translator on Team.

> Principles—At the heart, a set of principles—extracted from expe-
rience with LeSS adoptions—that inform the rules, guides, and
experiments; e.g. whole-product focus.

A good way to look at LeSS is visualized in the LeSS complete picture:

The LeSS guides and experiments are optional. Guides will
probably be helpful and are recommended trying. But bypass
or drop those that limit further improvement or just don’t fit.

https://less.works For Gene Gendel only, id:gene-gendel

Large-Scale Scrum: More with LeSS (2015)

https://less.works/img/principles/principles.pdf

-Deep and Narrow
-Bottom Up and Top Down
-Volunteering only

Rules = Frameworks (LeSS & LeSS Huge)

https://less.works/resources/LeSS-complete-picture.pdf

https://less.works/resources/LeSS-complete-picture.pdf

10

2. LeSS

The LeSS complete picture will order the way we introduce LeSS:

1. LeSS principles, up next

2. LeSS frameworks (defined by the rules), in the rest of this chapter

3. LeSS guides, in the following chapters of this book

4. LeSS experiments, already available in the first two LeSS book

• LeSS Principles •
The LeSS rules define the LeSS framework. But the rules are minimalis-
tic and don’t answer how to apply LeSS in your specific context. The
LeSS principles provide the basis for making those decisions.

Large-Scale Scrum is Scrum—It isn’t new and improved Scrum. Rather,
LeSS is about figuring out how to apply the principles, rules, elements,
and purpose of Scrum in a large-scale context, as simply as possible.

https://less.works For Gene Gendel only, id:gene-gendel

11

LeSS

Transparency—Based on tangible “done” items, short cycles, working
together, common definitions, and driving out fear in the workplace.

More with less—We don’t want more roles because more roles leads
to less responsibility to Teams. We don’t want more artifacts because
more artifacts leads to a greater distance between Teams and custom-
ers. We don’t want more process because that leads to less learning
and team ownership of process. Instead we want more responsible
Teams by having less (fewer) roles, we want more customer-focused
Teams building useful products by having less artifacts, we want more
Team ownership of process and more meaningful work by having less
defined processes. We want more with less.

Whole-product focus—One Product Backlog, one Product Owner, one
shippable product, one Sprint—regardless if 3 or 33 teams. Customers
want valuable functionality in a cohesive product, not technical compo-
nents in separate parts.

Customer-centric—Focus on learning the customers real problems
and solving those. Identify value and waste in the eyes of the paying cus-
tomers. Reduce wait time from their perspective. Increase and
strengthen feedback loops with real customers. Everyone understands
how their work today directly relates to and benefits paying customers.

Continuous improvement towards perfection—Here’s a perfection
goal: Create and deliver a product almost all the time, at almost no cost,
with no defects, that delights customers, improves the environment,
and makes lives better. Do endless humble and radical improvement
experiments toward that goal.

Lean thinking—Create an organizational system whose foundation is
managers-as-teachers who apply and teach lean thinking, manage to
improve, promote stop-and-fix, and who practice Go See. Add the two
pillars of respect for people and continuous challenge-the-status-quo
improvement mindset. All towards the goal of perfection.

Systems thinking—See, understand, and optimize the whole system1

(not parts), and use systems modeling to explore system dynamics.
Avoid the local sub-optimizations of focusing on the efficiency or pro-

https://less.works For Gene Gendel only, id:gene-gendel

12

2. LeSS

ductivity of individuals and individual teams. Customers care about the
overall concept-to-cash cycle time and flow, not individual steps, and
locally optimizing a part almost always sub-optimizes the whole.

Empirical process control—Continually inspect and adapt the product,
processes, behaviors, organizational design, and practices to evolve in
situationally-appropriate ways. Do that, rather than follow a prescribed
set of so-called best practices that ignore context, create ritualistic fol-
lowing, impede learning and change, and squash people’s sense of
engagement and ownership.

Queuing theory—Understand how systems with queues behave in the
R&D domain, and apply those insights to managing queue sizes, work-
in-progress limits, multitasking, work packages, and variability.

• Two Frameworks: LeSS & LeSS Huge •
Large-Scale Scrum has two frameworks:

> LeSS. 2–8 Teams

> LeSS Huge. 8+ Teams

The word LeSS is overloaded to mean both Large-Scale Scrum in general
and the smaller LeSS framework.

The Magic Number Eight
Actually, eight isn’t a magic number, and if your group can successfully
apply the smaller LeSS framework with more than eight teams, great!
But we haven’t seen that… yet. It’s just an upper-limit empirical observa-
tion. And in some cases, such as varied complex goals with multi-site
inexperienced foreign-language-only teams, it could be less than eight.

In any event, at some point, (1) the single Product Owner can no longer
grasp an overview of the entire product, (2) the Product Owner can’t
balance an external and internal focus, and (3) the Product Backlog is so
large that it becomes difficult for one person to work with.

1. The system is everyone and everything from concept to cash, and all its dynamics in
time and space, primarily from the customer and user perspective.

https://less.works For Gene Gendel only, id:gene-gendel

Beyond 8: for PO: hard to grasp
-Product,
-Product backlog,
-balance b/w internal and external focus

13

LeSS Framework

When the group hits that tipping point, it may be time to change from
the smaller LeSS framework to LeSS Huge. On the other hand, we sug-
gest first trying to get better, smaller, and simpler, before getting huger.

Common Across the Frameworks
The LeSS and LeSS Huge frameworks share common elements:

> one Product Owner and one Product Backlog

> one common Sprint across all teams

> one shippable product increment

The following two sections of this chapter explain the frameworks; the
smaller LeSS framework is next, and LeSS Huge starts on p. 33.

LESS FRAMEWORK

• LeSS Framework Summary •

The smaller LeSS framework is for one (and only one) Product Owner
who owns the product, and who manages one Product Backlog worked

https://less.works For Gene Gendel only, id:gene-gendel

14

2. LeSS

on by teams in one common Sprint, optimizing for the whole product.
The LeSS framework elements are about the same as one-team Scrum:

Roles—One Product Owner, two to eight Teams, a Scrum Master for one
to three Teams. Crucially, these Teams are feature teams—true cross-
functional and cross-component full-stack teams that work together in
a shared code environment, each doing everything to create done items.

Artifacts—One potentially shippable product increment, one Product
Backlog, and a separate Sprint Backlog for each Team.

Events—One common Sprint for the whole product; it includes all
teams and ends in one potentially shippable product increment. Details
are explained in the upcoming stories, and in separate chapters.

Rules & Guides—Rules for a barely sufficient scaling framework for
empirical process control and whole-product focus. Guides may help.

• LeSS Stories •
Learning LeSS—One way to learn is by reading in-depth exposition, and
readers preferring that can comfortably skip ahead to the introduction
to LeSS Huge (p. 33), and then on to following chapters. Others who like
stories, keep on reading.

Simple stories—These stories don’t explore the complexities of large-
scale development—from politics to prioritization—that we experience
when consulting. Later chapters unpack those boxes. Here are inten-
tionally plain and simple stories just to introduce the basics of a LeSS
Sprint. If you want thrilling dialog and drama, read a Lean book.

Rules & guides—In the stories you will notice that the margins refer to
related LeSS rules and guides, to clarify and make connections.

Two perspectives—Following are two related stories focusing sepa-
rately on two key perspectives, to introduce some flows more simply:

1. The flow of teams through a LeSS Sprint.

2. The flow of customer-centric items (features).

https://less.works For Gene Gendel only, id:gene-gendel

15

LeSS Framework

• LeSS Story: Flow of Teams •

This story focuses on the flow of teams through a Sprint, rather
than the flow of items. In reality the majority of time in the
Sprint is working on development tasks, not meetings. However,
this story emphasizes meetings and interactions, as the goal is
an understanding of how multiple teams work together during
LeSS events, and how they coordinate day by day.

Tip: Rotate repre-
sentatives each
Sprint

Mark walks into the room where his team (Trade) works and sees Mira1,
who says, “Good morning! Just a reminder, we’re the team representa-
tives for this Sprint, and Sprint Planning One starts in 10 minutes.”
“Right,” says Mark, “Meet you in the big room.”

Sprint Planning One
(Guide: Sprint Planning One, p. 276)

RULE: There is one
product-level Sprint,
not a different
Sprint for each
Team.

RULE: Sprint Plan-
ning consists of two
parts: Sprint Plan-
ning One is common
for all teams while
Sprint Planning Two
is usually done sepa-
rately for each team.
Do multi-team
Sprint Planning Two
in a shared space for
closely related
items.

It’s time for a common Sprint Planning One. Around the big room are 10
team representatives from the five teams in this product group. They all
work on their flagship product for trading bonds and derivatives. Sam,
the Scrum Master of teams Trade and Margin, is also there. He’s plan-
ning to observe and coach as needed.

Many Sprints earlier, everyone from all the teams attended Sprint Plan-
ning One. That was more useful when the group was not very good at
getting items clear and ready, nor at creating broad knowledge across
the teams. Back then, Sprint Planning One was used to answer a lot of
major questions that everyone needed to hear. But lately that’s been
much improved, and so now the group is experimenting with using
rotating representatives, in what has become a simple and quick meet-
ing with only a few minor questions that tend to pop up. If the new
approach doesn’t work well, it will probably be raised in an Overall Ret-
rospective, and another experiment for Sprint Planning will be created.

1. To help remember characters and roles, names use an alliteration; e.g. Mira a team
Member, Sam a Scrum Master, Paolo a Product Owner.

https://less.works For Gene Gendel only, id:gene-gendel

16

2. LeSS

RULE: Sprint Plan-
ning One is attended
by the Product
Owner and Teams or
Team representa-
tives. They together
tentatively select
the items that each
team will work on
for the next Sprint

Paolo walks in and says
“Hi!” He’s the Product
Owner and also the lead
product manager.1 Paolo
lays out 22 cards on a
table and says, “Here’s
the big themes: German
market, order manage-
ment, and some regula-
tory reports. I’ve laid
them out in my priority
order. I think everyone here understands why these are the priorities,
since we’ve been discussing this a lot in Product Backlog refinement.
But please ask again, if it’s not clear.”

Tip: Teams choose
their items

Mira and Mark walk over to the table (along with the other representa-
tives) and pick two cards for items related to German-market bonds.
Over the last two Sprints their team clarified these items in detail, in sin-
gle-team Product Backlog refinement (PBR) workshops.

Guide: Multi-Team
PBR, p. 252

And they pick two more items related to order management that both
Team Trade and Team Margin understand quite well. Both teams
worked together in multi-team PBR workshops on these items. Why?
The teams wanted to decide as late as possible the choice of team-to-
item, during some future Sprint Planning. This increases the group’s
agility—easily responding to change—and their broader whole-product
knowledge fosters self-organized coordination.

Tip: Don’t pre-
decide division of
items to teams

A minute later, Mary from Team Margin, on scanning another team’s
cards, asks their representatives, “Do you mind if we do that report? We
did something very similar last Sprint and I bet we can get it done
quickly. Could you swap for this German-market item?” They agree.

1. In product companies, the product management or product marketing roles—in collab-
oration with teams—focus on vision and direction, encourage innovation, analyze
competitors, and discover customer and market needs and trends. In internal devel-
opment groups, this role might be filled by a lead user in an operational business
group. The Product Owner—the owner of the product—in Scrum and LeSS typically
comes from these roles, such as Paolo the lead product manager serving as Product
Owner. See the Product Owner chapter for more.

https://less.works For Gene Gendel only, id:gene-gendel

17

LeSS Framework

After a few minutes, the teams finish choosing and swapping based on
their interests, strengths, and desire to group related items for focus.

Guide: Five Scrum
Master Tools, p. 141

Tip: Spread high-
order items

Sam (the Scrum Master) says, “I notice that Team Margin has the top
four priority items. Could that become a problem?” A quick discussion
ensues in which the group realizes there’s a chance that one of the high-
est-priority items for the product could get dropped if things don’t go
smoothly for Team Margin. They decide to distribute a few of the high-
est-priority items across more teams (constrained by which teams
know which items), making it more likely that top items will get done.

The representatives have chosen a total of 18 cards, leaving four lowest
priority items on the table. Paolo looks over the unchosen item cards,
picks up two of them, and says, “These two are pretty important to me
this Sprint. Maybe I should have given them a higher priority to begin
with, but I didn’t, and now I’d like to change my mind. Let’s find a way to
swap them with some items you’ve already chosen. And of course, if a
team gets lucky and finishes early, please pick up the unchosen items.”

https://less.works For Gene Gendel only, id:gene-gendel

18

2. LeSS

RULE: Teams iden-
tify opportunities to
work together and
final questions are
clarified

After that’s resolved, Paolo says, “Okay, let’s spend some time wrapping
up lingering questions. As you know, I’ve been focusing more on figuring
out prioritization, and most of you know these item details a lot better
than me, but let’s see what we can do together to clear up minor stuff.”

Tip: Diverge to clar-
ify

In parallel, Mira, Mark, and the others think hard about final minor
points to clear up for their items, and write some questions on flip-chart
papers on the walls around the room. Paolo roams around to different
areas, discussing. Everyone mingles and contributes. After about 30
minutes, all the minor questions that could be answered have been.

The group forms a standing circle to wrap up. No one raises any coordi-
nation topics, so eventually Sam says, “I notice that Teams Trade and
Margin and NotDerivative have picked up strongly related order-man-
agement items.” Mira says, “Hey, let’s get Trade, Margin, and NotDeriva-
tive together for a multi-team Sprint Planning Two. We’ve got
opportunities to work together.” That’s agreed. The meeting ends.

Team and Multi-Team Sprint Planning Two
(Guide: Multi-Team Sprint Planning Two, p. 280)

RULE: Each Team
has its own Sprint
Backlog

After a break, two of the five teams hold their own single-team Sprint
Planning Two meetings to create their own Sprint Backlogs, designing
and planning their work for the Sprint.

RULE: Do multi-
team SP2 in a shared
space for closely
related items.

In contrast, Teams Trade, Margin, and NotDerivative hold a multi-team
Sprint Planning Two together in a big room, since they are implementing
strongly related items—which were also previously clarified together in
multi-team PBR—and they foresee value in working closely.

Tip: Whole-group
design & shared
work session

They talk together in a 10-minute session to set the stage, identifying
shared work (common tasks) and design issues. Then they start the
clock for a timeboxed 30-minute design session, agreeing to visualize:
more sketching on the whiteboard, less talking without drawing. During
this time, more shared work is also discovered and written on the board.

Guide: No Software
Tools for Sprint
Backlog, p. 281

Ding! After 30 minutes lots of unexplored details remain, but the teams
move on anyway. Each team heads to a different corner of the big room
where each starts its own focused Sprint Planning Two, talking more
about detailed design issues and creating their own Sprint Backlog with

https://less.works For Gene Gendel only, id:gene-gendel

19

LeSS Framework

cards. Further coordination is handled by an advanced variation of the
just talk technique in LeSS: just scream.

Guide: Just Talk,
p. 287

During the talking, the teams realize the need for an in-depth multi-
team Design Workshop. They agree to hold one later that day.

Multi-Team Design Workshop

(Guide: Multi-Team Design Workshop, p. 301)

After Sprint Planning and another break, Mira and Mark from Team
Trade, and a few people from Team Margin and Team NotDerivative
hold a timeboxed one-hour multi-team Design Workshop for a deeper
dive into a common and consistent design for their work. Around a large
whiteboard they sketch and talk together towards some clarity and
agreement on a design approach and common technical tasks. Fortu-
nately, the conclusions don’t seriously impact their existing Sprint plans,
but they feel uncomfortable with their process, recognizing they could
have predicted the need to resolve these big design questions earlier.

Development Activities Supporting
Coordination and Continuous Delivery

Guide: Communi-
cate in Code, p. 292

Guide: Integrate
Continuously, p. 293

After Sprint Planning, the teams dive into developing items, with an
emphasis on communicating in code. All the teams are integrating continu-
ously. The continuous integration of all code across all teams creates the
opportunity to cooperate by checking who else made changes in the
component being worked on. That’s useful, because the group uses inte-
gration as a way to inform and support their coordination.

RULE: Prefer decen-
tralized and informal
coordination over
centralized coordi-
nation.

Guide: Just Talk,
p. 287

For example, early during the second day of the Sprint, Mark, a devel-
oper on Team Trade, pulls the latest version locally and quickly checks
the latest changes related to the component they are working on now.
He discovers changes related to code added by Maximilian from Team
Margin. He knows that team is working on a strongly related item, so he
is not especially surprised. Since the code has communicated that now
there’s a need to coordinate and who he needs to talk with, he immedi-
ately visits Team Margin down the hall. They just talk about how to work
together to benefit from one another’s work.

https://less.works For Gene Gendel only, id:gene-gendel

20

2. LeSS

For the item that Team Trade is developing, and in fact for every item in
every team, they have written the automated acceptance tests before
starting to develop the solution code. Thus, in addition to integrating
the code continuously, they’re also integrating the automated tests.
These acceptance tests are run frequently by team members, and so
when any of them fails, the teams are immediately signaled to coordi-
nate. The code is telling them, “Hey! There’s a problem! You need to talk
and work it out.”

RULE: The perfec-
tion goal is to
improve the Defini-
tion of Done so that
it results in a shippa-
ble product each
Sprint (or even more
frequently).

Naturally, another major benefit of the group’s practice of integrating
continuously, automated testing, and stopping-and-fixing whenever the
build breaks, is that their product is more or less continuously ready to
deliver into production. There’s no separate integration team or testing
team that would add delay, handoff, and complexity.

Overall Retrospective
(Guide: Overall Retrospective, p. 317)

RULE: An Overall
Retrospective is
held after the Team
Retrospectives to
discuss cross-team
and system-wide
issues, and to create
improvement exper-
iments. This is
attended by Prod-
uct Owner, Scrum
Masters, Team Rep-
resentatives, and
managers (if any).

On the second day of the Sprint, Sam and the other Scrum Masters, the
Product Owner Paolo, a site manager, and a representative from most
of the teams, all get together for a maximum 90-minutes Overall Retro-
spective related to the last Sprint.

Why didn’t they hold this Overall Retrospective before this new Sprint
started? They could have, but they normally end a Sprint on a Friday and
start a new one on Monday (in contrast to Sam’s suggestion that they
try a Wednesday–Thursday boundary). And on the last Friday, they held
both the Sprint Review and the team-level Retrospectives. After that
they didn’t have the energy to hold an engaged Overall Retrospective at
the end of the day. So they’ve opted for an early next Sprint. Sam pri-
vately thinks this delay is not a great idea—he’d rather they started
Sprint Planning a little later after this meeting—but he wants the group
to discover that for themselves.

Guide: Improve the
System, p. 320

They focus on a system-wide issue and improvement: how to coordi-
nate, share information, and solve problems across the entire group
during the Sprint? Previously they have tried Scrum-of-Scrum meetings
and didn’t find them very effective. Sam explains the technique of Open
Space, and they agree to try it this Sprint.

https://less.works For Gene Gendel only, id:gene-gendel

21

LeSS Framework

RULE: Cross-team
coordination is
decided by the
teams.

Activities for Coordination
(Coordination & Integration, p. 285)

The fourth day demonstrates a variety of coordination ideas in LeSS:

Guide: Scouts,
p. 307

In LeSS, each Team holds a Daily Scrum as usual. To support coordina-
tion between Teams Trade and Margin, Mira goes as a scout to observe
Team Margin’s Daily Scrum and then returns and updates her team on
what she learned. And someone from Team Margin does the opposite.

Guide: Open Space,
p. 305

As agreed in the Overall Retrospective, the group holds a 45-minute
Open Space meeting for coordination and learning, preceded by drinks
and snacks. Sam acts as facilitator to teach the group how to hold an
Open Space meeting. Everyone is welcome, but most teams decide to
send only a few representatives. Mira and Mark from Team Trade join
in. The group plans to try an Open Space once a week.

Guide: Communi-
ties, p. 295

The Test community, with volunteers from most teams, gets together for
a half-hour to hear Mary’s proposal to try a new automated acceptance-
testing tool. They enthusiastically agree, and Mary volunteers her Team
Margin to do the actual experimental work next Sprint, since they are
really interested in learning this.

Tip: Have an archi-
tecture community

Mira is a member of the Design/Architecture community. There’s no
design workshop needed this Sprint related to overall architecture, but
she wants to hold a half-day spike in the next Sprint for a new technol-
ogy. She posts her idea on the community collaboration tool, and sug-
gests the community do the spike together with mob programming to
increase their shared learning.

Tip: Stop and fix
when problems

Tip: Experts teach
others

The build system seems to have a weird bug. Time to stop and fix! This
Sprint, Team Trade is responsible for it, and it’s one of Mark’s secondary
specialties, so he volunteers to fix it and asks another team member to
pair up with him to help his colleague learn more about it.

RULE: Clarification
ideally between
Teams and users and
other stakeholders

Tip: Early feedback

Later, Mira and a few other team members visit the customer support
and training group, who work closely with hands-on users. Her team has
finished their first item and they want to get early feedback from people
closer to customers. One of the trainers is free and he plays with the
new feature. Team Trade leaves with a few ideas to make it better.

https://less.works For Gene Gendel only, id:gene-gendel

22

2. LeSS

Guide: Communi-
cate in Code, p. 292

Guide: Integrate
Continuously, p. 293

Later in the day Mark and the rest of Team Trade are doing tasks for
their second item. Mark has just completed a 10-minute TDD cycle and
has clean stable code after a micro-change. Once again—about every 10
minutes—he pushes the tiny change to the central shared repository (to
“head of trunk”), to integrate continuously with his team and all others.
He glances over to their big visible red-green screen on the wall and
sees that the build system is passing all the tests for the entire group.

Overall Product Backlog Refinement

(Guide: Product Backlog Refinement Types, p. 249)

RULE: Do multi-team and/or overall PBR to increase shared
understanding and exploiting coordination opportunities when

having closely related items or a need for broader input/learning.

Tip: Rotate repre-
sentatives each
Sprint

Guide: Prioritiza-
tion over Clarifica-
tion, p. 178

On the fifth day, Mark and Mira join an overall PBR workshop, with rep-
resentatives from each team, and Paolo, the Product Owner. Paolo
starts by sharing his current thinking on product direction and where to
go next in the short term and, most importantly, why. To help them
understand his reasoning, he reviews his prioritization model with the
group, that factors in profit impact, customer impact, business risk,
technical risk, cost of delay, and more.

Guide: Five Rela-
tionships, p. 180

Tip: PO engages the
teams in owning the
product

Paolo asks for feedback and ideas from the group for upcoming direc-
tion, and the group discusses what items to refine next. Although he
knows that he’ll make the final priority calls, Paolo works hard to engage
the teams in understanding his thinking, and also to learn from their
thinking. He wants the teams to also be involved in owning the product.

Guide: Splitting,
p. 260

Guide: Scaling Esti-
mation, p. 269

The group then splits a few big new items, doing lightweight clarifica-
tion (more will follow later), and planning poker estimation as a way to
learn more about the items—rather than to create estimates.

The representatives from three teams (including Trade and Margin)
decide to later do multi-team PBR together for some items to increase
their shared understanding and because they are strongly related. And
representatives from two other teams choose items to focus on sepa-
rately in team PBR sessions.

https://less.works For Gene Gendel only, id:gene-gendel

23

LeSS Framework

Multi-Team PBR and Team PBR
(Guide: Multi-Team PBR, p. 252)

On the sixth day, everyone in three of the teams gets together for a
multi-team PBR workshop in the big room.

Although their main business is creating and selling their trading solu-
tion, the company has a small group of bond traders that use it, with rel-
atively small positions that keep them engaged but without high risk.
This way the company has better insight into market trends as well as
some expert users that can easily talk with the development teams.

RULE: All prioritiza-
tion goes through
the Product Owner,
but clarification is as
much as possible
directly between the
Teams and cus-
tomer/users and
other stakeholders.

Tanya and Ted are the traders who told Paolo about a trend that led to
the items being refined in the multi-team PBR session. So they both join,
as experts to help the teams learn and clarify the new items.

The other two teams, in discussion with some other traders, hold sepa-
rate PBR workshops to complete clarification of some items already
under refinement and to start on some new ones. Also, one of the com-
pany’s three lawyers specializing in financial regulations and compliance
joins one of these teams to help them in clarification.

Guide: Tools for
Large Product Back-
logs, p. 210

Tip: Use a wiki for
item details

As a last step in the PBR meetings, people take photos of everything on
the walls and whiteboards. They add those to the wiki pages that are
used to record everything for each item. Plus they update and clean up
the text and tables in the wiki pages that were quickly added during dis-
cussions.

A Chat About Team-Level Backlogs and Product Owners

After the multi-team PBR workshop, Mike (who just joined the com-
pany) sees Sam by the coffee machine and walks over to talk. Mike says,
“Hey Sam. I’m interested in your opinion on something. In the refine-
ment workshop we just finished, of course I noticed that we were work-
ing directly with some of the traders to clarify together. But isn’t that
inefficient? In my last company, every team had its own Product Owner
who did the story writing, wireframes, and specifications, and then gave
them to us to implement. Then we could just focus on the programming.
And each team had its own Product Backlog that the team’s Product
Owner prioritized. But I don’t see that here. Why is it different?”

https://less.works For Gene Gendel only, id:gene-gendel

they are customers/users

24

2. LeSS

Sam says, “Interesting questions. Do you mind if I ask you a few ques-
tions to explore this?”

“Sure, go ahead.”

“Let’s first consider one Product Backlog versus many team-level back-
logs. Suppose each team had its own backlog. How easy and effective is
it for one truly overall Product Owner to have an overview? And how
much knowledge will a team have of the requirements and designs of
items in a different team’s backlog?”

Mike replies, “I can answer that pretty clearly from my last company.
Not much.”

Sam continues. “Now suppose there are eight teams and eight team
backlogs. What if, from the higher company or product perspective, for
some reason, the items in two of the eight team backlogs are actually by
far the most important or highest priority. Maybe there’s some change
in the market so that this situation comes up. So some questions for
you: Can the six teams working in the lower-priority backlogs easily
shift to start working on the high-priority items in the other two back-
logs? And is it likely that the group will even see this problem, given that
they are locked in to each team having their own backlog and local prior-
ities?”

Mike answers, “Our teams at my old place only worked on their own
team item backlog. They couldn’t shift to others. But why would they
want to? Isn’t that inefficient?”

Sam responds, “Well, from a company perspective, the teams are only
working ‘efficiently’ on low-priority stuff because of their narrow
knowledge created by each focusing in a different team backlog and
because the overall priority and overview isn’t visible. Let me ask you
some questions: Does that seem inflexible or flexible—agile? And does
that optimize people working on the highest-impact stuff from the com-
pany perspective?”

https://less.works For Gene Gendel only, id:gene-gendel

25

LeSS Framework

RULE: There is one
Product Owner and
one Product Backlog
for the complete
shippable product.

Mike pauses, “Oh! I think I get it. It’s actually not being agile, even though
our group said they were doing agile. We weren’t responsive to the high-
est-value changes overall. And my old team Product Owner said she
was prioritizing for highest value in our team backlog. But now I see that
my team was just busy efficiently working on what could be low-value
stuff when you look at it from a higher level.”

Sam says, “Exactly. So that’s one of several reasons why we have one
Product Backlog here, and no team backlogs, even though there are
many teams. In short, it supports whole-product focus, system optimi-
zation, and agility. And of course it’s simpler, and it’s easy to see what’s
going across the group.”

“Also,” Mike comments, “I noticed it was much harder in my prior com-
pany for all the teams to really work together at the same time, since we
were working on very different goals in asynchronous Sprints. Here it
feels like all the teams have more of a common focus and direction in
one Sprint together.”

“Exactly!” Sam replies, then continues.

RULE: The Product
Owner shouldn’t
work alone on Prod-
uct Backlog refine-
ment; she is
supported by the
multiple Teams
working directly
with customers/
users and other
stakeholders.

RULE: All prioritiza-
tion goes through
the Product Owner,
but clarification is as
much as possible
directly between the
Teams and cus-
tomer/users and
other stakeholders.

“Here’s another question: If there’s only one Product Backlog and one
real Product Owner who prioritizes it, but each team still had its own
so-called Product Owner who per definition is not prioritizing a team
backlog—since there isn’t one—then what do they do all day long? “

Mike replies, “Well, in my last company it was the job of the team-level
Product Owner to talk to the users and write the stories for the team,
so they could focus on efficiently programming while the team Product
Owner worked on gathering and writing requirements.”

Sam asks, “Mike, before you learned about Scrum terms such as ‘Prod-
uct Owner’, what would you have called middlemen in between the
developers and real customers—the ones collecting requirements and
then giving them to developers?”

“I joined my last company before we adopted Scrum there.” Mike
answers, “And back in the day, there was a group of business analysts
who did that. After we adopted Scrum, we were asked to call them the
Product Owners.”

https://less.works For Gene Gendel only, id:gene-gendel

26

2. LeSS

“Today in your PBR workshop,” Sam asks, “Did you talk with the traders
who were there?”

“Let me think back.” Mike replies, “Yeah, I was talking with Tanya about
her idea to analyze trading Russian corporate bonds. It seemed a little
confusing so I asked her, why? She explained it was because of concerns
around money laundering in offshore accounts. Now, she didn’t know
that we’ve been recently working on some other features that integrate
with new EU and USA regulatory databases to assess this. So I pro-
posed to her a different approach, which I think—and she agrees—will
better solve the problem.

“Now that I think about it,” he reflects, “that probably wouldn’t have
happened in my last company, since we rarely talked directly with users.”

More Development

Minute by minute and day by day the teams develop code, integrating
continuously combined with full test automation. They stop and fix
when the build breaks, working towards their perfection goal of having
a done shippable product they can continuously deliver to customers.
Therefore, when the Sprint is nearly over and the teams are preparing
to join the Sprint Review, there’s no late mad rush of effort to integrate
and test a big batch of code—it’s been integrated and tested all along.

Sprint Review
(Review & Retrospective, p. 313)

RULE: There is one
product Sprint
Review; it is com-
mon for all teams.

Finally it’s the last day and time for an all-together Sprint Review. Who’s
there? Paolo (the Product Owner, lead product manager), all the inter-
nal bond traders, a few trainers and customer service representatives, a
few people from Sales, and four users from external clients who pay
lower annual rates in exchange for participating regularly in these
reviews. Also, there’s all the team members.

https://less.works For Gene Gendel only, id:gene-gendel

27

LeSS Framework

Guide: Review
Bazaar, p. 316

Because there are many items to explore, the group starts with a one-
hour bazaar—something like a science fair—with many devices set up in
the room, each available for exploring different sets of items. Some
team members stay at fixed areas to collect feedback while everyone
else uses and discusses the new features.

https://less.works For Gene Gendel only, id:gene-gendel

28

2. LeSS

Tip: Discuss direc-
tion for upcoming
Sprints

After an hour, the group comes together to discuss the questions and
feedback, in a session led by Paolo. After that, they discuss future direc-
tion. Paolo shares what’s going on in the market and with competitors,
and his thoughts on where to go next, and asks for advice.

Team Retrospectives

RULE: Each Team
has its own Sprint
Retrospective.

After a break, Team Trade (and all other teams) hold separate team-
level Sprint Retrospectives. They decide that holding a multi-team
Design Workshop with Team Margin after Sprint Planning (rather than
earlier) was far from ideal in this case, because major issues were left
unexplored until the last minute—issues which could have seriously
blocked or complicated development. So for the next Sprint they decide
that during their PBR sessions they will strive to identify items that
have major design issues worth discussing with other teams. And if so,
hold a multi-team Design Workshop as soon as possible.

The End

Guide: Belgian Tripel
Karmeliet

Sprint done! Sam invites Team Trade to join Mira and him at the Belgian-
beer pub down the street—Mira’s favorite—to celebrate her birthday.

Summary

Some key points from the story:

> it emphasized flow of people and teams through a Sprint in LeSS

> it connected story elements to specific LeSS guides and rules

> for a reader who knows Scrum, the events should be familiar

> the story shows whole-product focus, even with many teams

> the activities emphasized team-based learning and coordination

> develop items by integrating continuously so that communicating
in code supports decentralized coordination and just talking, in
addition to continuous delivery

> teams clarify directly with users and customers, to reduce handoff
and increase understanding, empathy, and ownership

https://less.works For Gene Gendel only, id:gene-gendel

29

LeSS Framework

• LeSS Story: Flow of Items •

This story focuses more on the flow of items (features) through
part of a Sprint, primarily during refinement and development.

Portia wraps up her meeting with the government regulator and heads
to the airport, and home. She’s another product manager; she helps
Paolo, and specializes in regulatory and audit trends.1

Later, Portia meets with
Paolo. Writing on cards,
she summarizes the new
rules that are going to
impact their product, and
what clients she thinks
are going to want certain
features first. Paolo
points to the five cards
and asks, “So this covers
all the work, as far as you
know?” Portia smiles and
says, “This is regulatory.
It’s never finished or clear.”

Guide: Product
Owner Helpers,
p. 179

Paolo asks, “Can you put these in the Product Backlog for me, unor-
dered at the bottom for now?”

“Sure.”

Guide: Tools for
Large Product Back-
logs, p. 210

Tip: Spreadsheet
and wiki for large
Product Backlog

A week later Paolo tells Portia, “Soon, I want to start delivering some
parts of the big regulatory requirement for bond derivatives. In the next
Sprint’s Product Backlog refinement workshops, I’m going to ask for
some teams to focus on that. You know the most about it, so please be at
the overall PBR and at whatever team refinement workshops where

1. In addition to a lead product manager—who often serves as Product Owner—many
large groups have a few supporting product managers, each specializing in a major
market segment or customer area.

https://less.works For Gene Gendel only, id:gene-gendel

30

2. LeSS

they want you. Also, can you set up a wiki page with links to the new reg-
ulatory docs, to share with the teams?”

“Already done,” answers Portia.

Overall PBR

Guide: Product
Backlog Refinement
Types, p. 249

Paolo kicks off a quick overall PBR workshop, “We’ve got lots of work
around new regulations. Soon we need to deliver related items because
of a legal deadline end of fiscal year. We’ll know better after some split-
ting and estimation, but I wouldn’t be surprised if it ultimately involves
three or more of the teams for implementation, and lots of time.”

Guide: Splitting,
p. 260

The group splits the new giant item into only a few large parts, to learn
major elements. More splitting will happen later in a single-team or
multi-team PBR session. Portia heads to the whiteboard; on the left side
she writes “regulations for bond derivatives.” Then in conversation with
the group, they sketch a tree diagram with four arms representing a
splitting into four major sub-items. But they don’t go any deeper—
they’re avoiding over-analysis.

Guide: Scaling Esti-
mation, p. 269

Next, the group creates four cards for the new items, and everyone
together estimates them with planning poker and relative-size points,
baselining the points against existing well-known items in the Product
Backlog. Their main goal is not to create estimates but to surface ques-
tions and drive more discussion, which they do with Portia.

Next, Paolo asks, “So Portia, of these four big ones, which one first?”

She points to the second card. “Over-the-counter exotic bond deriva-
tives.”

Paolo says, “We need to start delivering some of that as soon as possi-
ble. It’s moving way up the Product Backlog. So I’d like one team to take
a bite into this, next Sprint. Who’s interested?”

Team Trade volunteers.

Finally, team members from three other teams decide to hold a multi-
team PBR workshop for related items.

https://less.works For Gene Gendel only, id:gene-gendel

31

LeSS Framework

Team PBR: Biting In

The next day Team Trade holds a team PBR workshop with Portia. They
have only one of the four giant items to focus on: New regulations for
over-the-counter (OTC) exotic bond derivatives. Sam (their Scrum Mas-
ter) is also there. Portia says, “This is a gigantic complex item, in an area
that frankly nobody is really clear about. It’s going to take us a long time
to split this up, really understand it, and specify it well.”

Sam asks, “Do we really need to understand all of it? And will all that
analysis teach us more, or could it actually delay our learning?”

Guide: Take a Bite,
p. 202

He reviews with them the idea of Take a Bite: to just split off one tiny
fragment, really understand that, and implement it quickly. Sam con-
cludes, “You know, diagrams don’t crash and documents don’t run.”

With Portia, the team splits off one tiny bite of a thin customer-centric
end-to-end item.

Tip: Specification by
example in “Clarify-
ing” on page 254

From now on they will focus on that tiny bite, clarifying and implement-
ing it. Only after implementation and feedback will they return much
later to more splitting and refinement. Using specification by example
Portia and Team Trade spend the rest of the day chewing on their bite.

Multi-Team PBR: Rotation Refinement

Guide: Multi-Site
PBR, p. 254

One outcome of overall PBR was the decision to take a bite with Team
Trade. Another was the decision for three teams to hold a multi-team
PBR workshop for related items, to increase learning and the agility of
multiple teams knowing and thinking about the same items.

In addition to everyone from the three teams, the internal traders
Tanya, Ted, and Travis join to help the teams start clarifying about a
dozen new items.

To start, they form three temporary mixed groups with people from
each team. The mixed groups start clarifying different items in separate
areas in the room, each with a whiteboard, big wall space, laptop, and
projector. Tanya is with one group, Ted another, and Travis, the third.

https://less.works For Gene Gendel only, id:gene-gendel

32

2. LeSS

Then they do rotation refinement: After 30 minutes, a timer goes ding!
One group walks over to the other’s area, and vice versa, but Tanya, Ted,
and Travis don’t move. The timer is restarted, the traders explain the
current results to the incoming groups, and they continue clarifying.

Figure 2.1 multi-
team PBR

Throughout the day, as different items become relatively clear—or are
left with hanging questions that will have to be explored later—new
items are introduced at a work area. Some of the bigger items are split
into two or three new smaller ones.

Guide: Scaling Esti-
mation, p. 269

A few times during the day, the groups stop their clarification and do
some estimation, mostly to learn and to prompt conversation. They’re
using relative (story) points; to remain synchronized against a common
baseline, they calibrate against some already completed and well-
known items in the Product Backlog.

Updating the Product Backlog and Product Owner

Guide: Product
Owner Helpers,
p. 179

Guide: Dealing with
Parents, p. 204

The day after the PBR workshops, Portia and a few team members

> update the Product Backlog with the new split items derived from
the original ones, and delete the originals

https://less.works For Gene Gendel only, id:gene-gendel

33

LeSS Huge Framework

> add links to the new wiki pages of item details, created in the PBR
workshops

> record new estimates, and items ready for implementation

Later, Portia and those team members meet with Paolo to review the
Product Backlog changes and to answer his questions.

The End

Some key points from the story:

> Take a Bite on a giant item to learn from delivery of something
small and to avoid premature and excessive analysis.

> Do multi-team PBR for items, for shared knowledge across teams,
which increases organizational agility, broadens whole-product
knowledge, and fosters self-organized coordination.

> Strive for whole-product focus, even with many teams.

Next—The next section shifts to the LeSS Huge framework, used for
large groups of many teams.

LESS HUGE FRAMEWORK

• Requirement Areas •
With 1000 or even just 100 people on one product, divide-and-conquer
seems unavoidable because of the complexity of so many requirements
and people. Traditional large-scale development divides these ways:

> single-function groups (analysis group, test group, …)

> architectural-component groups (UI-layer group, server-side
group, data-access component group, …)

This organizational design yields slow inflexible development with (1)
high levels of waste (inventory, work-in-progress, handoff, information
scatter, …), (2) long-delayed ROI, (3) complex planning and coordination,

https://less.works For Gene Gendel only, id:gene-gendel

34

2. LeSS

(4) more overhead management, and (5) weak feedback and learning.
And it is organized inward around single-skills, architecture, and man-
agement, rather than outward around customer value.

The Magic Number
Eight, p. 12

But in the LeSS Huge framework when above about eight teams, divi-
sion is around major areas of customer concerns called Requirement
Areas. This reflects the customer-centric LeSS principle.

Size—A Requirement Area is big, usually with between four and eight
teams, not one or two. The following Area Feature Teams section on p. 35
explains why.

Dynamic—Requirement Areas are dynamic. Over time an area will
change in importance, and then it grows or shrinks with teams joining or
departing—most likely to or from another existing area.

Example—For example, in a Securities product (to trade stocks), these
could be some major areas of customer interest—Requirement Areas:

> trade processing (from pricing to capture to settlement)

> asset servicing (e.g. handling a stock split, dividends)

> new market onboarding (e.g. Nigeria)

Conceptually in the one Product Backlog, a Requirement Area attribute
is added, and each item is classified into one and only one area:

Item Requirement Area

B market onboarding

C trade processing

D asset servicing

F market onboarding

… …

https://less.works For Gene Gendel only, id:gene-gendel

35

LeSS Huge Framework

Then people can focus on one Area Product Backlog (conceptually, a
view onto one Product Backlog), such as the market onboarding area:

Common Sprint—Does each Requirement Area work separately in its
own Sprint, with delayed integration until a far-future date? No.

• Area Product Owners •
In LeSS Huge one new role is introduced. Each Requirement Area has
an Area Product Owner who specializes in that area and focuses on its
Area Product Backlog.

Large product groups usually have several supporting product manag-
ers specializing in different customer areas, and some of these are likely
to serve as the Area Product Owners. Sometimes the Product Owner
also serves double duty as an Area Product Owner for one area; that’s
more likely in small less huge LeSS Huge groups!

• Area Feature Teams •
Area feature teams work within one Requirement Area (e.g. asset ser-
vicing), with one Area Product Owner focusing on the items in one Area
Product Backlog. From a team’s perspective, working in the area is like

Item Requirement Area

B market onboarding

F market onboarding

In LeSS Huge, Integrate Continuously in One Common Sprint

There is one product-level Sprint, not a different Sprint for
each Requirement Area. It ends in one integrated whole prod-

uct, and all the teams across all the Requirement Areas are
striving to integrate continuously across the entire product.

https://less.works For Gene Gendel only, id:gene-gendel

36

2. LeSS

working in the smaller LeSS framework—they interact with their Area
Product Owner as though she were the Product Owner, and so on.

The team members come to know the customer domain of that area
well. And fortunately, the items of one Requirement Area tend to cover
a semi-predictable subset of the entire code base, thereby reducing the
scope of what they have to learn well within a vast product.

Key point about size: Many feature teams work in a Requirement Area.

The Magic Number Four

First, why does a Requirement Area have a suggested upper limit of
eight teams? See The Magic Number Eight, p. 12.

What about the lower limit of four teams? Why not one or two teams?
Naturally, four isn’t a magic number, but it strikes a balance so that the
product group is not composed of many tiny Requirement Areas.

What’s the problem with many tiny areas? They reduce visibility into
overall product-level priorities, increase local optimizations, increase
coordination complexity, require more positions, and create teams that
are too narrowly specialized and lack the flexibility (agility) to take on
the emerging highest-value items from a company perspective. Further-
more, in a tiny area the Area Product Owner is increasingly likely to act
as a business analyst between the users and one or two teams.

Are there any reasonable exceptions to the lower limit of four? Yes:

> An early transitional situation when the group is incrementally
growing a new area that is fully expected to ultimately have four or
more teams. Then, start small and simple with one team.

> When re-balancing teams from an area with a decreasing demand
to one with an increasing demand causes an area to go from four

A Requirement Area normally has four to eight teams.
An implication is that a Requirement Area is big.

https://less.works For Gene Gendel only, id:gene-gendel

37

LeSS Huge Framework

to three teams. Ultimately, merge two reduced small areas back
into a new larger area.

Example Requirement Areas and Teams
In summary, a Securities product could have

> one Product Owner and three Area Product Owners, all together
forming the Product Owner Team

> six feature teams in the trade processing area

> four feature teams in the market onboarding area

> four feature teams in the asset servicing area

• LeSS Huge Framework Summary •

https://less.works For Gene Gendel only, id:gene-gendel

38

2. LeSS

Each Requirement Area works as a (smaller framework) LeSS imple-
mentation, each working in parallel in one overall Sprint. We sometimes
summarize a Sprint in LeSS Huge as a stack of LeSS.

As with LeSS, there are rules and optional guides for LeSS Huge; those
are introduced in the following stories and fleshed out in later chapters.

Roles—Same as LeSS, plus two or more Area Product Owners, and four
to eight Teams in each Requirement Area. The one Product Owner
(who focuses on overall product optimization) and the several Area
Product Owners form the Product Owner Team.

Artifacts—Same as LeSS, plus a Requirement Area attribute in the one
Product Backlog and thus an Area Product Backlog view for each area.

Events—There is still only one common Sprint for the product; it
includes all the teams and ends in a common potentially shippable prod-
uct increment.

• LeSS Huge Stories •
Learning LeSS Huge—Readers who prefer exposition can comfortably
skip ahead to following chapters, bypassing these stories.

Simple stories—These are intentionally plain and simple stories just to
introduce basics in LeSS Huge.

Two topics—Following are two stories with distinct topics:

1. Creating and growing a new Requirement Area to deal with a new
gigantic requirement.

2. Working with multi-site teams. (This happens in the smaller LeSS
framework too, but is especially common in LeSS Huge.)

From the viewpoint of a team in one area,
LeSS Huge looks like (smaller) LeSS regarding events.

https://less.works For Gene Gendel only, id:gene-gendel

but Sprint reviews are separate, per Area each

39

LeSS Huge Framework

• LeSS Huge Story: A New Requirement Area •
Guide: LeSS Huge
Product Owner,
p. 193

Priti welcomes Portia to her first day in her new job.1 As a mid-level
Operations manager in the Securities division of the large trading com-
pany as well as Product Owner for their internal Securities system, Priti
is also responsible for finding and retaining talent for her Product
Owner Team of Area Product Owners. And she thinks Portia is a fantas-
tic find, as her expertise is exactly what is required for dealing with
some new huge requirements.

During the recent job interview—when Portia was still a product man-
ager specializing in regulatory issues at a company that made a system
for trading bonds—Priti had laid out the situation. “Portia, after the last
crash, the regulators are coming down hard and they require us to be
compliant with Dodd-Frank. Right now, we don’t know what it exactly
means or how it will impact our system. You’ve got incredible knowl-
edge of this space, and a great professional network with the regula-
tors. I would love it if you would join our group and help us figure out
how to deal with this.”

A Big Surprise

A few days later… Priti welcomes Portia, Peter, and Susan into her
office. Peter is Area Product Owner for market onboarding, and Susan
is a Scrum Master from the trade processing area.

Priti says, “As you know, Dodd-Frank is coming, and it’s huge. What you
don’t know is that this morning the regulators called us and they want
us to take action now. I’d been working under the assumption we could
start next year. So we’re going to have to adapt, big time.

“I don’t think anyone is clear what it means in detail—even the regula-
tors. And we don’t know how it will impact our system and how much
work this is going to take, other than, a lot! But now Portia’s joined us
and she has a better understanding of this than anyone, although she’s
totally new to our systems. So, how can we help her start tackling this
mountain of work?”

1. Reminder: Naming uses an alliteration for role recall. Priti is a Product Owner, Portia
an Area Product Owner, Susan a Scrum Master, Mario a team member.

https://less.works For Gene Gendel only, id:gene-gendel

40

2. LeSS

Susan asks, “You guys understand the Dyslexic Zombies, right?”

Peter and Priti nod. Everyone knows about them—and it isn’t just their
name. The Dyslexic Zombies1 have probably the broadest experience of
all the teams. They’ve been around for years and they were a true pain
in the ass when they adopted LeSS. The team contained two former
members of their now-abandoned architecture group and a couple of
people who had been working on the system for over fifteen years.
Those people’s resistance to the LeSS adoption was legendary as they
were afraid they’d lose their “system perspective.” To their surprise, the
opposite happened! Because of their deep knowledge they continu-
ously get tough items to develop. And they regularly participate as
expert-teachers in current-architecture-learning workshops with new-
comers, and Mario—one of the former PowerPoint architects—is now
coordinator for the architecture community. When fed enough beer,
he’ll admit that working closer with code and tests has increased his real
understanding of the system.

Susan continues, “If any team can quickly
help Portia get a better understanding of
the size and impact of Dodd-Frank, it’ll be
the Zombies. And they led the work on
Sarbanes-Oxley a few years ago. Tomor-
row is their PBR session. They are just
about wrapped up on a new feature. Why
don’t we re-direct the meeting to include
them in a discussion on Dodd-Frank, and
soon after, ask them to focus full-time on
it?”

Refining with Zombies

Next day at the refinement meeting with the Zombies, Portia explains
the situation, “You’ve probably all heard about the Dodd-Frank legisla-
tion. But here’s the surprise: We’ve just been told by the regulators that
they want us to take action ‘now’ and demonstrate significant compli-
ance by the end of the year. Otherwise they might restrict our trading.”

1. Yes, that was really their name, in Lisbon!

https://less.works For Gene Gendel only, id:gene-gendel

41

LeSS Huge Framework

The Zombies are visibly surprised. They had heard rumors but didn’t
expect such a rush!

Mario says, “OK Portia, give us a quick summary of what this means.
And how is it different from Sarbanes-Oxley?”

Portia picks up a pen and
starts sketching on a white-
board. After about 45 min-
utes, she is finished with the
overview and the Zombies
looked a little stunned.

“End of the year, they said?”
says Mario. “If the whole
group started today, it
wouldn’t get finished. This
is huge!”

He takes a pen and at the whiteboard starts a rough sketch of their sys-
tem, talking with the other Zombies about the impact it might have.

He says, “Portia, let’s also use this as a chance to help you understand
the system better. Ask away.”

Portia says, “Can you hold on for a second? Let me start a video record-
ing to help me remember this.”

Michelle, a veteran in the team, says, “We’d better start on some real
development soon and learn more as we go because otherwise we’ll end
up analyzing forever. I’ve seen this story before.”

Guide: Take a Bite,
p. 202

Susan, their Scrum Master, says, “Reminds me… Tom DeMarco once
said that the reason for every failed project is that it started too late.”
Everyone laughs. She continues, “So here’s a suggestion: take a bite.”

https://less.works For Gene Gendel only, id:gene-gendel

42

2. LeSS

Creating a New Requirement Area

The next day, Portia, Priti, and rest of the Product Owner Team meet.
Portia shares a summary of the scope as she understands it now.

Priti says, “This is even bigger than I expected, and we need to show
some tangible progress to the regulators within a few months, and
major progress before fiscal year end—seven months from now. To
state the obvious, they’re now authorized to require more from us, and
with the power to shut us down. As you know, just last month the CEO
made it crystal clear that new regulatory requests take priority over any
other concern. It’s my experience that our goodwill and flexibility with
the regulators goes up if we can give them something early, and be
transparent and responsive. So that’s what we’re going to do.”

Guide: New Area for
Giant Requirement,
p. 223

Priti continues, “It seems to me that we’ll need a new area for this big
surprise. And of course that’s probably going to impact some of our
existing high-priority goals, since we’ll have to shift some teams. Let’s
prepare for a deeper discussion of overall prioritization impact in a cou-
ple of days. But for now, I’d like your input about spinning up a new area.”

After a short discussion, it’s clear that everyone recognizes the impor-
tance of creating a new area.

Priti then says, “Portia, I know you are new to us, but do you think you
would be able to handle the Area Product Owner responsibility for
this?”

Portia nods.

Guide: Leading
Team, p. 308

Priti continues, “Peter, do you think the Zombies could start work on
this? And we’ll need them to learn more Dodd-Frank and figure out the
impact on our system before we can add more teams to this.”

Peter says, “I don’t think we’ve got any choice.”

Priti says, “OK Portia, so currently we’ve got a few items in Peter’s Area
Backlog, the one huge item I think you called “remainder of Dodd-
Frank” and the tiny item which the Zombies and you split off of it. Please

https://less.works For Gene Gendel only, id:gene-gendel

43

LeSS Huge Framework

ask Peter to show you how to set up a new area in the Product Backlog
and move the items over to it.”

Priti continues addressing the group, “The next Sprint starts in three
days. Let’s move the Zombies into your area and get started on this
monster. Probably in a couple of Sprints we’ll be ready to—and need
to—grow your area by moving in another team. Folks, please think
about two major concerns: First, preparing for a serious prioritization
impact meeting in a few days. And second, what other teams will be
good candidates for the new area.”

Sprint Planning in the New Requirement Area

Each Requirement Area holds its own Sprint Planning meetings, all
more or less in parallel. In Portia’s new area, she starts her Sprint Plan-
ning by introducing two unfamiliar faces to the Zombies.

She says, “Gillian and Zak have been in contact with the regulators regu-
larly and will help us flesh this thing out. They’ve agreed to help us now
in Planning, during our PBR sessions, and as much as they can spare
daily during upcoming Sprints.”

She continues, “Here’s my tentative plan of attack for the next two
Sprints. First, together we need to learn more about Dodd-Frank, and
also split it into some major and manageable pieces so we can start to
clear the fog and get a better sense of priorities.

“Second, we implement the smaller bite we’ve taken, starting this Sprint.
That’ll give us better information about the real work and the impact on
our product. And we’ll have some concrete visible progress.

“Third, we prepare for more teams to join our area. What do you think
of this approach? Other suggestions?”

Guide: Leading
Team, p. 308

During the short discussion, Mario says to his team, “Let me give a bit
more context, because I represented our team in the recent Product
Owner Team meeting with all the Area Product Owners and Priti. To
start with, it’s just us to start. We’re going to take the lead on early

https://less.works For Gene Gendel only, id:gene-gendel

44

2. LeSS

implementation, and getting the big picture of the item, and under-
standing the overall impact on our architecture.”

Michelle interrupts, “Like a tiger team working on a new product?”

“Yes, like that,” says Mario. “Think of Dodd-Frank support as a new prod-
uct that needs to be continuously integrated into the rest of the prod-
uct. But we’re in a hurry and it’s a ton of work, so in a few Sprints one
more team will join us and shortly after, probably two more teams. We
keep developing too, but we’ll be the leading team, which means we’ll
need to bring the other teams up to speed and make sure we keep the
overall product in mind.”

Michelle says, “It’s starting to sound to me like we’re going to become
the architecture and project management team!”

Mario laughs, “No. I’m done with that. We’re still a normal feature team,
but besides development we’ll focus on mentoring and bringing the new
teams up to speed as fast as possible. But let’s be clear: team coordina-
tion and management is still the responsibility of each team.”

The First Sprint in the New Requirement Area

Guide: Take a Bite,
p. 202

Guide: Handling
Gigantic Require-
ments, p. 224

Their first Sprint is an unusual balance of clarification versus develop-
ment, but nevertheless quite useful in this extreme situation. They
spend almost half the Sprint in clarification with Portia, Gillian, and Zak.
That’s because even for this extremely small bite, trying to understand
what is wanted in the obscure realm of new government regulations—
with no direct access to the politicians and policy writers—required a lot
of investigation, reading, discussion, and communicating with outsiders.
They expect that in future Sprints, the amount of time needed for clarifi-
cation will soon drop down to a more common 10% or 15% of their
Sprint.

And so they also only spend about half the Sprint developing one small
item. But the discussion and the learning from coding pays off. Slowly
but surely they start to split Dodd-Frank apart—at least the parts that
any of them can understand.

https://less.works For Gene Gendel only, id:gene-gendel

45

LeSS Huge Framework

While implementing the small item they had bitten off first, they spend
much of the time together at whiteboards to discuss the overall design
implications on the system. The team moves frequently back and forth
between the code and the wall.

Sprint Review in the New Requirement Area

The overall Securities product group works together in one Sprint, with
one final shippable product increment. But each Requirement Area
holds its own Sprint Review, all more or less in parallel.

In Portia’s area, during their Review, she, Gillian, and Zak explore the
one “done” item that the Zombies have managed to complete and inte-
grate into the overall product. They had originally forecast two items,
but Portia is impressed that they got even one done, given how fast this
new work was thrown at them.

The Second Sprint

In the second Sprint they’re able to make slightly better progress on
items, though they once again spend a lot of time clarifying together
with Portia, Gillian, and Zak.

Guide: Current-
Architecture Work-
shop, p. 303

In the middle of the Sprint they hold a multi-team PBR session with the
second team that is planned to soon join the area, teaching them about
Dodd-Frank. They hold a current-architecture learning workshop to
introduce the team to the major design elements already in place.

The Zombies know how big the work is and look forward to more help.

Product Owner Team Meeting

Guide: Product
Owner Team Meet-
ing, p. 283

A few Sprints later… It’s time once more for the per-Sprint Product
Owner Team meeting. They use it to align and coordinate between the
different Area Product Owners, and for Priti to give guidance.

The Area Product Owners each share in turn their situation and upcom-
ing goals. When it’s her turn, Portia says, “To none of our surprise, the
progress is little and the surprises are big. But the fog is clearing and the

https://less.works For Gene Gendel only, id:gene-gendel

Shared PSPI but different events.

46

2. LeSS

teams and I are getting our heads around the work. Gillian and Zak have
been tremendous help.”

Pablo, the Area Product Owner of asset servicing, comments on some
close item relationships he now sees between their areas. Portia agrees
to meet with Pablo and some team representatives later.

Priti asks, “Portia, about our upcoming Sprint. What are your goals?”

Adding a Third Team

Two Sprints later… At the Product Owner Team coordination meeting,
Priti says, “As you know, Portia’s area still has only two teams. I know
that Pablo would like to keep his six teams in asset servicing, but Dodd-
Frank is just too important to me this year. So we’re going to move one
team from Pablo’s area into Portia’s. Pablo, please ask for a volunteer
team from your group and let me and Portia know.”

The End

Some key points from the story in LeSS Huge:

> The Product Owner is responsible for finding Area Product Own-
ers and developing their talents.

> The Product Owner is responsible for deciding to start, grow, or
wind down Requirement Areas.

> Requirement Areas are large, normally requiring four to eight
teams, but during initial startup they may be smaller, especially if
initiated with one team using a Take a Bite approach.

> A Leading Team works solo to tackle a gigantic item until they
understand the domain and development, and then they coach
more incoming teams to help with the vast work.

• Multi-Site Teams: Terms & Tips •
Next is a LeSS Huge story involving multi-site teams. But first, some
clarifying definitions, because the common term distributed teams con-
fusingly means several things. The clarifying terms are as follows:

https://less.works For Gene Gendel only, id:gene-gendel

47

LeSS Huge Framework

> dispersed team—One team of (e.g. seven) people spread out in
different locations; either different rooms, buildings, or cities

> co-located team—One team working literally at the same table

> multi-site teams—One co-located team working at one site, and
another co-located team working at another site

Second, an observation and guidance:

> A dispersed team is rarely a real team; it is much more likely a
loosely connected groups of individuals. The communication and
coordination frictions are higher, and they seldom jell as a team.

Rule: Each team is
(1) self-managing,
(2) cross-functional,
(3) co-located, and
(4) long-lived.

> When your product group is 50 or 500 people, dispersed teams
aren’t necessary. Each team of seven-ish people can easily be co-
located. However, some teams may be in different sites, so that
the product group has multi-site teams. Dispersed teams are usu-
ally the result of bad organizational decisions and ignorance about
the cost of not having co-located teams.

• LeSS Huge Story: Multi-Site Teams •
Portia is the Area Product Owner for a new Requirement Area in a
Securities trading system. The new area started with just one team for
focus and simplicity. A few Sprints later Portia’s area adds a third team.
Her first two teams are based in London with her. But her third new
team, HouseDraculesti, is based in Cluj Romania at a major development
site for the company.

Why not add a third team from the London site? That would have
avoided the many aggravations and efficiency penalties that can come
from multi-site development within one area—costs potentially so high
that adding a team can effectively result in deleting a team.

But on the positive side in this case, Cluj is only two time zones from
London, and everyone there speaks English well. And they are all strong
developers with Computer Science degrees, in a city that values long-
term and hands-on engineering mastery. Also, this is a dedicated inter-
nal development site for the company, so these are experienced internal
teams that have in-depth knowledge of the product and domain.

https://less.works For Gene Gendel only, id:gene-gendel

48

2. LeSS

And bottom line, Priti (the Product Owner) didn’t want any of the other
London teams to shift from their current areas.

Priti knows that multi-site teams are a new situation for Portia, and so
at their next meeting, she says, “Please ask your Scrum Master to talk
with Sita, and also ask Sita to coach some of your events. She’s a Scrum
Master in asset servicing, and she’s observed their multi-site situation
for a few years. She knows the importance of Scrum Masters co-located
with their teams, and she’s helped facilitate many multi-site meetings.”

Priti continued, “Also, we’ve had a super profitable year, so I’m providing
funding for you and the Zombies team—at least those that can travel—
to spend a Sprint in Cluj as soon as possible. Work closely with them, all
in one room. The Cluj team could come here to London, but you want to
send a strong signal that they are important, at their site. Try to avoid
making them feel that London is more important than Cluj. Oh—and
you’ll want to regularly visit every few months.”

Multi-Site Sprint Planning Part One

Guide: Sprint Plan-
ning One, p. 276

A few Sprints later, Portia walks into the room. There’s a computer pro-
jector attached to a laptop, displaying via video a room in Cluj. The
whole team in Cluj are sitting and waiting. Sita suggested it would
improve learning and engagement if the entire Cluj team participated in
multi-site meetings for the first few months of their addition to the area.

All the team representatives have tablets or laptops with them.

Portia begins. “Welcome and let’s get started. My offer of items this
Sprint are highlighted in the shared spreadsheet. Can you all see it? I
think you all understand why these are the themes and priorities, since
we’ve been discussing this in PBR and it reflects your input and mine.
But please ask again if you’d like clarification. Other than that, you’re
invited to enter your team names beside the items you want.”

That done, the group enters a Q&A phase to wrap up lingering ques-
tions about the items. The London representatives tape up some flip-
chart papers and start writing questions. The Cluj team members enter
their questions in separate sheets of a shared spreadsheet. Portia

https://less.works For Gene Gendel only, id:gene-gendel

49

LeSS Huge Framework

spends some time at the different paper flip charts, discussing answers
and sketching on the paper. And she spends some time at the spread-
sheet, typing in answers for the Cluj team, while also talking with them
face-to-face via the video session.

After about 30 minutes the separate questions have been resolved, and
Portia asks everyone to come back together. She says, “Any issues or
questions that you want to discuss together, before we wrap up?”

Multi-Site Overall PBR

Guide: Product
Backlog Refinement
Types, p. 249

Guide: Multi-Site
PBR, p. 254

People enter the workshop room in London. Two projectors are set up.
One shows a video session of the workshop room in Cluj. The other dis-
plays a browser on Portia’s computer.

Portia says, “Let’s get started. I want to focus on splitting some items.
I’ve invited Zak to join us because he knows quite a lot about this.”

Using a mind-mapping, browser-based graphics tool, Zak starts to cre-
ate some branches, while discussing with the group.

Afterwards, they use a
shared spreadsheet to
discuss and write a single
example for each of the
new split items, so that
the people at both sites
gain a lightweight but
concrete understanding
of the details. Later, the
group does estimation of
the new items, using

especially big planning poker cards that can be easily seen by the cam-
eras and video when held up.

The End

Some key points from the multi-site story in LeSS Huge:

https://less.works For Gene Gendel only, id:gene-gendel

50

2. LeSS

> Multi-site teams frequently create both obvious and subtle fric-
tions and costs that are surprisingly large in their negative impact.

> Qualities that reduce the friction of another site include similar
time zone, internal dedicated site (not outsourced), developers
that are fluent in the same spoken language, a location and culture
that highly values long-term hands-on developer excellence.

> A Scrum Master must be co-located with their teams.

> Each site must feel like a peer, not a second-class citizen.

> Sites must be visited regularly and cross-pollinated.

> In meetings, strive for face-to-face with video tools.

> The use of shared-document tools make it easy for everyone to
modify artifacts together and at the same time.

ONWARDS
Rather than asking, “How can we do agile at scale in our complex and
awkward organization?”, ask a different and deeper question, “How can
we simplify the organization, and be agile rather than do agile?” And since
truly scaling Scrum starts with changing the organization rather than
changing Scrum, the next major section focuses on understanding and
adopting a simpler customer-focused LeSS organization.

This is followed by major sections on a more customer-focused product
and Sprint in a simpler LeSS organization.

https://less.works For Gene Gendel only, id:gene-gendel

LeSS Structure

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Adoption 54
• Guide: Three Adoption Principles 55
• Guide: Getting Started 59
• Guide: Culture Follows Structure 64
• Guide: Job Safety but not Role Safety 66
• Guide: Organizational Perfection Vision 66
• Guide: Continuous Improvement 69
• Guide: Growing Your Adoption 71

LeSS Huge 72
• Guide: Evolutionary Incremental Adoption 73
• Guide: One Requirement Area at a Time 74
• Guide: Parallel Organizations 74

managers thinking about improvements to help

Contents

https://less.works For Gene Gendel only, id:gene-gendel

53

3
ADOPTION

If you do not change direction, you may end up where you are heading.
—Lao Tze

ONE-TEAM SCRUM
Scrum is simple. Adopting Scrum isn’t. Why not?

Scrum isn’t a process. It doesn’t magically solve your problems and cre-
ate “hyperproductive” teams. It’s a framework that creates short feed-
back loops that dramatically increase transparency. This acts as a mirror
showing the team how good they are at making a product. It also
exposes problems in the team and organization. This visibility underpins
empirical process control, which, along with inspect-adapt cycles, puts
the team, Product Owner, and organization in a continuous improve-
ment loop.

That’s the good news. The bad news is that this sucks. In reality, trans-
parency is discomforting or even threatening, which makes adoption
hard.

One-team Scrum doesn’t say much about Scrum adoption other than to
start “by the book.” This isn’t because the Scrum zealots want to force
their favorite rules on the world but is a recognition that improvement
starts with following and understanding the standard. Or in lean think-
ing, “Where there is no standard, there can be no kaizen.” Experiencing
Scrum by the book creates understanding of how Scrum principles and
practices relate—a systems-thinking perspective. That’s critical for suc-
ceeding with Scrum.

An experienced Scrum Master and a team with a deep understanding of
Scrum will dramatically improve the likelihood you will achieve a suc-
cessful adoption.

https://less.works For Gene Gendel only, id:gene-gendel

54

3. Adoption

LESS ADOPTION
LeSS adoption involves big organizations and many minds with deeply
rooted assumptions about how organizations should work. Successful
adoption requires challenging these assumptions and simplifying the orga-
nizational structure, with all the explosive politics and “loss of face” that
working across a big group entails. Adoption needs everyone to
improve towards a shared goal.

When scaling, principles related to adoption include:

Continuous improvement towards perfection—Naturally, a group
adopting LeSS brings to the table their assumptions and habits about
adoption. Which are those? Create a change vision and kick off many
change projects. When the original goal is apparently achieved then,

1. “the change is done”, and

2. the organization settles into a new status quo, until

3. the next change effort surfaces, and then

4. undoes the previous change.

This classic approach is like the sequential and “big batch” approach of
software development, where change is an exception strictly managed…
by many change-control boards.

In LeSS adoptions, there is no change initiative, no change group, no
change managers. In LeSS, change is continuous through experimenta-
tion and improvement and change is the status quo.

https://less.works For Gene Gendel only, id:gene-gendel

55

LeSS Adoption

• LeSS Rules •

Guide: Three Adoption Principles
These principles are crucial to an organizational LeSS adoption:

> deep and narrow over broad and shallow

> top-down and bottom-up

> use volunteering

Deep and Narrow over Broad and Shallow
Prefer adopting LeSS in one product group1 really well over applying
LeSS in many groups poorly.

Poor LeSS adoptions harm. Lack of deep understanding destroys trans-
parency and the feedback cycles that are keys to empirical process con-
trol and continuous improvement. We’ve even seen “LeSS” abused as a
marvelous micro-management tool. Then, it’s really hard to change
again after a micro-management LeSS adoption is the established norm.
It’s tough to re-learn what you already know.

Therefore, focus LeSS adoption effort on one product group, give them
all the support they need, and ensure that they work really well. This
minimizes risk and if you face big problems, it triggers a focused learning
opportunity. And when you succeed it creates a positive “word on the
floor” that’s vital nourishment for further adoption.

For the product group, establish the complete LeSS structure
“at the start”; this is vital for a LeSS adoption.

For the larger organization beyond the product group, adopt
LeSS evolutionary using Go and See to create an organization
where experimentation and improvement is the norm.

1. In case of LeSS Huge, one Requirement Area.

https://less.works For Gene Gendel only, id:gene-gendel

56

3. Adoption

Top-down and Bottom-up

We are often asked whether adoption is best top-down or bottom-up.
That’s a false dichotomy. Either one is likely to fail. Do both.

for more on man-
agement in LeSS,
see the Management
chapter

Purely top-down—The manager-driven, “thou shalt do LeSS”-adoption
causes resistance and sets up the organization for failure. Ordering
teams to manage themselves is a contradiction. LeSS adoption requires
deep understanding that doesn’t come from directive but from discus-
sion. Only by understanding, choice, and a sense of personal safety will
people take the additional responsibility to reflect and improve. Lack of
these is exacerbated by an us–them relationship between managers
and workers. In that setting, forcing LeSS into the organization encour-
ages victimized behavior and further degrades relations. People will
claim, “We have no choice, our manager says we must do LeSS!” And
secretly and perhaps unconsciously, they rest in that victimization as a
comfortable—or at least familiar—position.

Purely bottom-up—These LeSS adoptions aren’t sustainable. In the
beginning, they create a delightful burst of energy from people who
want to do the Right Thing. This leads to an open mind, accelerated
learning, and deeper understanding. Really wonderful! Then these
energized people energetically hit the organizational walls. Bam! With-
out top-level support to change structures and policies, the enthusiasts
lose energy and become frustrated by obstacles and rigidity. Many
eventually quit or become embittered by hopes squashed. It makes us
feel sad too.

Top-down and Bottom-up—A successful LeSS adoption needs both the
energy of people doing the Right Thing and the support of people with
organizational power. The managers’ frame of mind must be support,
not control. They ensure the proper supporting structure is in place for
the grass-roots energy to flourish and expand.

We commonly hear the wish for managers’ support. Be careful what
you wish for!

> No management support often leads to victimized behavior. “We
can’t do anything without my manager’s support.”

https://less.works For Gene Gendel only, id:gene-gendel

57

LeSS Adoption

> Having management support can lead to an even worse situation.
“We must do this LeSS because our manager says so.” This mind-
less obedience undermines any LeSS adoption.

What kind of management support do you need?
Management support from those who have the organizational author-
ity to make structural changes in your group—usually the head of your
product group. This support must be… supportive.

Authentic support starts with self-education. All managers in the prod-
uct group need to take time to educate themselves about LeSS. This
includes several days in an introductory training and several books to
read. In addition to education, managers also need to provide clear
communication and action about (1) the intention to adopt LeSS, (2) the
promise to make the necessary structural changes, and (3) providing
education and coaching.

What kind of management support do you not need?
The support of high-level managers who oversee multiple products
beyond your single product group often backfires. How come? Igno-
rance of real problems—they aren’t involved enough with the actual
development. Their support often includes making “optimization” and
“harmonization” decisions that seem to make sense from their high-
level position but rarely lead to real benefits at gemba—the place of real
value work. And then what happens? Dealing with these well-intended
harmful decisions saps energy from dealing with the real problems.

Neither do you need management support from managers who do not
yet have a deep understanding of LeSS and its impact. We are fre-
quently requested to summarize a 3-day in-depth training in a 1-hour
presentation because those managers “are too busy” for a 3-day course.
So far, we’ve not been able to squeeze 3-day’s worth of understanding
into a 1-hour presentation. Our bad.

https://less.works For Gene Gendel only, id:gene-gendel

58

3. Adoption

Use Volunteering
How to form new teams? Who will be in a com-
munity? How are you going to answer these
questions, and many more?

Use volunteers! True volunteering is a pow-
erful way of engaging people’s minds and
hearts. It’s underused, likely because manag-
ers feel they’ll lose control. But for the volun-
teering teams it feels empowering.

Volunteering starts with education. Suppose you simply ask for volun-
teers for a promiscuous pairing experiment. You probably won’t get many
takers, and those that do respond are, at best, confused. But if you first
explain that promiscuous pairing is a pair-programming technique that
uses frequent pair swapping to increase learning, you’ll see more and
better volunteers and a better outcome. So first, provide enough educa-
tion and discussion so people understand what they are volunteering
for.

Here are some examples of volunteering:

Initial-product volunteering—Which will be the first product group to
adopt LeSS, with all the implied organizational design changes? Ask for a
volunteer group by canvassing senior R&D and product managers.

Initial-teams volunteering—Suppose the initial product group to
adopt LeSS is already well-established and has about 50 people. There
may be people outside the group that are really interested in joining.
And people inside that want to leave! So before “flipping the entire
group,” use volunteering once again: Invite the entire company to join
(explaining both what and why). And invite people inside the group to
leave. Thus, the initial people will be open for learning and will take
responsibility. They are likely to make the initial teams succeed because
they aren’t just a head being counted anymore, their heart is in it.

Teams-formation volunteering—How to form teams in LeSS? Support
“self-designing teams.” This is done in a facilitated workshop where all
the future team members join. The facilitator kicks off the workshop by

https://less.works For Gene Gendel only, id:gene-gendel

@3 levels of volunteering
-which product group?
-who stays, who leaves, who joins?
-who is on which team?

59

LeSS Adoption

describing the goal of the product and the workshop. Together they
then define the template for a typical team, adhering to any constraints
agreed previously. (The facilitator already knows a good template, but it
is best if the group owns the idea.) Example template:

> Each team is co-located.

> Each team is cross-functional so they can achieve “done.”

> Each team has deep knowledge of several components.

> Each team has around seven people.

The details of “cross-functional” and “cross-component” are discussed
and listed during the definition of the template. Next, the space is open
for a short (e.g. 15 minutes) timeboxed period for people to form new
teams by volunteering, using the template as a guide. Then they review
the nascent teams against the template. If it is not good enough, the
group continues with more rounds; it usually takes two to four.2

Guide: Getting Started
The three adoption principles imply starting adoption in one product
group. How can you increase the likelihood of its success?

0. educate everyone
1. define “product”
2. define “done”
3. have appropriately structured teams
4. only the Product Owner provides work for the teams
5. keep project managers away from the teams

0. Educate Everyone

The best LeSS adoptions we have seen had everyone participating in
several days of Scrum and LeSS training. This was followed up with
team, organizational, and technical coaching.

2. See on the web: How to Form Teams in Large-Scale Scrum? A Story of Self-Designing
Teams. (also at http://bit.ly/1WSJhKo).

https://less.works For Gene Gendel only, id:gene-gendel

http://bit.ly/1WSJhKo

60

3. Adoption

This step isn’t for us to sell more Certified LeSS Practitioner courses,
although we wouldn’t mind. Any excellent education will do; the main
purpose is that without education you won’t get a lot of volunteers
when using the adoption principle of use volunteering.

Teach why—Besides educating on the
what’s and how’s of adopting LeSS, it’s
even more important to help everyone
understand why. There is too much
blind adherence to processes without
understanding why.

A great trainer and a great coach will
have this focus on why and will make a
world of difference in your LeSS adoption. How to choose them? Use
these guidelines:

> Prefer hands-on experience.
Ensure that your trainer/coach has hands-on experience in LeSS
from both inside (as a team member) and outside (as coach). Avoid
training providers who don’t care about who teaches, and avoid
trainers with only theoretical knowledge. They aren’t useful.

> Evaluate a person, not a company.
You are looking for a unique person. Great coaching is personal.
Find your coach and form a long-term relationship. Avoid giant
consulting companies and training companies.

> Require technical depth and understanding.
LeSS requires technical excellence. Technology, team, and organiza-
tional decisions are strongly related and your coach needs to have
this broad and deep perspective. Avoid people with no or limited
technical expertise. These are often ex-PMI-project managers.

> Expect long-term engagement.
LeSS adoptions require patience and take time. Find a coach that is
committed to see your adoption through—for years. Avoid “drive-
by” coaches that come, comment, criticize, and go.

> Look for quality over cost.
Hiring a cheap but bad trainer/coach (ignoring the previous fac-

https://less.works For Gene Gendel only, id:gene-gendel

61

LeSS Adoption

tors) is truly penny-wise and pound-foolish. Flawed and failed
LeSS adoptions are certainly possible; a bad coach doesn’t help.

> Don’t delegate the selection.
The decision is too important to leave to people who aren’t going
to be directly involved themselves. Avoid delegating the selection
to a separate department, such as a PMO, Purchasing, or HR
group—they aren’t involved enough to see the important factors.

> De-emphasize certification.
Most certification of people and courses is almost meaningless. It
probably doesn’t hurt, but certification is not a reliable guide. The
above points are infinitely more important.3

> Evaluate multiple people.
The best groups evaluated multiple people before making a deci-
sion and investment in a long-term relationship.

1. Define “Product”
Your product definition determines the scope of your adoption, the con-
tent of the Product Backlog, and who makes a suitable Product Owner.
Broader product definitions are advantageous, but your definition has
to be practical enough to start.

Creating a product definition involves

> expanding your product definition via expanding questions such as,
“what does our customer think our product is?”

> restraining your product definition via restraining questions such as,
“what is practical in our current organizational setup?”

> exploring improvements for expanding the product definition

see Product chapterThe Product chapter has more details on why broader is better and how
to create the product definition.

3. This includes the Certified LeSS Practitioner course. We do recommend the course,
but not for the certification but for the course.

https://less.works For Gene Gendel only, id:gene-gendel

62

3. Adoption

2. Define “Done:

A better and stronger Definition of Done (DoD or “done”) requires a
broader skill set within the teams. For example, if performance testing is
included in the DoD, then the teams need to acquire that skill. It can be
acquired by learning, but often it is acquired by moving a person with
performance-testing skill from his specialized performance testing
group into the team. On the other hand, if performance testing is
excluded from the DoD, then the separate performance-testing group
will stay and operate the same way as before, until the DoD is expanded.
Therefore…

And a weaker DoD causes additional risk and delay! We explore all
these topics further in the Definition of Done chapter.

see Definition of
Done chapter

The effect on the amount of organizational change makes the DoD a critical
management tool for LeSS adoption. Managers need to make a trade-off
between a strong DoD, leading to more organizational change and less
delay and risk, and a weak DoD, leading to less organizational change
and increased risk and delay. The key question is, “How much change can
my organization handle at this time?”

3. Have Appropriately Structured Teams

Each Team has a shared responsibility for achieving their common goal.
To support their success, ensure that each Team is appropriately struc-
tured. Requirements for the initial teams:

> dedicated—each person is a member of one and only one team

> stable—the members of the team aren’t changed frequently

> long-lived—the team isn’t a temporary project team but stays
together for years

A better and stronger Definition of Done results in
more organizational change (eliminating groups,

roles, positions, …) than a poorer and weaker one.

https://less.works For Gene Gendel only, id:gene-gendel

DSLCC=
Dedicated
Stable
Long-Lived
Cross-functional
Co-located

63

LeSS Adoption

> cross-functional—the team has the needed functional skills to
achieve done functionality

> co-located—the team is in one location, often literally at the same
big table, so that trust grows through face-to-face communication
and learning grows through teaching one another

see Organizing
Around Customer
Value chapter

The Organizing Around Customer Value chapter has more details on each
of these team attributes.

This new structure implies that people leave their functional depart-
ments to permanently join new cross-functional teams. The functional
departments should be eliminated.

Why not have people maintain a reporting relationship to a functional
department manager? Because that causes conflicting loyalties that
destroy the team’s shared responsibility and cohesion. Right now you
might be thinking “They’re exaggerating. It can work in our company.”
Not gonna happen. We’ve seen many try and it doesn’t work. Just don’t
do it. Instead, all team members have the same manager who is explic-
itly tasked to build the environment for the team to succeed.

4. Only the Product Owner Provides Work
You know this feeling?… A loooong day at work, busy, busy, busy, what
the heck got done? It’s the Context-Switching Vampire, sucking the life
out of you. Unproductive, unfocused, and extremely demotivating.

The initial teams have a tough job: focusing on their shared goals for the
product but also resolving a mountain of obstacles in their development
environment. Obstacles (poor test-automation, tools, policies, etc.) are
revealed by working in a cross-functional team in a short cycle to get
“done”.

These trail-blazers are laying the foundation that future teams will build
on, so their need to focus is doubly important. How do they lose it? Well-
intended, perfectly reasonable interruptions and requests for extra work
from their line manager, Sales, the CEO, HR, etc. Don’t let that happen!

see Product Owner
chapter

Prevent this by ensuring that the Product Owner is the only person who
provides work for the teams. Not only does this support focus, it

https://less.works For Gene Gendel only, id:gene-gendel

64

3. Adoption

reduces stress caused from trying to manage competing voices all say-
ing “Me first! Me first!” Prioritization is the Product Owner’s problem,
not the team’s.

5. Keep Project Managers Away from the Teams
The role of project manager within the product group ceases to exist in
experienced LeSS organizations. The role is not needed anymore as the
project management responsibilities are shared between Product
Owner and Teams.

Most LeSS adoptions can immediately eliminate the project manager
role. In some rare adoptions the role is temporarily still needed. That’s
usually when there’s a weak, imperfect Definition of Done (hence,
Undone work) or cross-product-boundary coordination. In those cases,
organizations do not necessarily immediately forgo their project man-
agers.

So sometimes project managers will still be around for a while. What’s
the problem? It’s likely they would regularly interrupt people and intro-
duce conflicting priorities. But it is not allowed for project managers to
interrupt teams, coordinate between teams, or give them work.

see Management
chapter

In essence, this recommendation is the same as “only Product Owner
provides work” and is also valid for other management roles. We’ve dis-
covered that it is important to make it explicit.

Larman’s Laws p. 64 And… renaming all your project managers to Scrum Masters won’t do.

Next steps?
see Product Backlog
Refinement chapter

This Getting Started guide gets you started by putting the right struc-
ture in place. The next step is to get your Product Backlog in shape. Per-
haps you’ll use an initial Product Backlog Refinement event; see the
Product Backlog Refinement chapter for a guide on that.

Guide: Culture Follows Structure
Culture follows structure is actually the fourth of “Larman’s Laws of Orga-
nizational Behavior.” People in organizations are skilled at showing sup-

https://less.works For Gene Gendel only, id:gene-gendel

65

LeSS Adoption

port to the flavor-of-the-month-improvement without doing anything.
We have observed this repeatedly. Why does that happen?

Craig has a long development career, which started with programming
in APL in 1979 and evolved to helping large product groups adopt mod-
ern management practices. Over beer, he might mention retirement. He
was recently disturbed when he discovered no laws were named after
him. He decided to create “Larman’s Laws of Organizational Behavior”
as a reminder for this dysfunctional self-serving behavior that plagues
many organizations.

Larman’s Laws of Organizational Behavior:

1. Organizations are implicitly optimized to avoid changing the sta-
tus quo middle- and first-level manager and single-specialist posi-
tions & power structures.

2. As a corollary to (1), any change initiative will be reduced to rede-
fining or overloading the new terminology to mean basically the
same as status quo.

3. As a corollary to (1), any change initiative will be derided as “pur-
ist,” “theoretical,” “revolutionary,” and “needing pragmatic customi-
zation for local concerns”—which deflects from addressing
weaknesses and manager/specialist status quo.

4. Culture follows structure.

Anticipating your thought, it’s also true that structure follows culture
(especially in startups). But the phrase is meant to be poetically pithy,
not literal.

What do we mean? As long as the structural elements—groups, roles,
hierarchy, and policies, or more broadly the organizational system/
design—aren’t changed, the behavior and mindset aren’t going to
change. The systems-thinking thought-leader John Seddon explains
“culture follows structure” this way:

Attempting to change an organization’s culture is a folly, it always fails.
People’s behavior (the culture) is a product of the system; when you change
the system peoples’ behavior changes.

https://less.works For Gene Gendel only, id:gene-gendel

66

3. Adoption

We have observed many organizations that attempt to adopt LeSS but
refuse to change the organizational structure, roles, and policies
accordingly. All of them have failed in achieving the full benefits of using
LeSS.

Part of the problem is personal safety. Of course people don’t want to
lose a job because of a structural change. That’s one reason why LeSS
adoption emphasizes the lean-thinking principle of job safety but not
role safety.

Guide: Job Safety but not Role Safety
It is difficult to get a man to understand something when his job depends
on not understanding it. —Upton Sinclair

Who is going to strive for continuous improvement when the likely out-
come is losing a job? Nobody. In a LeSS adoption, it is vitally important to
establish the policy that nobody is going to lose employment. At least
not due to position or role eliminations from the structural changes
caused by the LeSS adoption. Communicate this clearly and repeatedly.

see Management
chapter for more on
management
changes

Workers from dissolved functional groups join LeSS teams. Ex-manag-
ers of functional groups may do likewise, as they are usually skilled at
the hands-on value-creating work. The organization must actively help
everyone find their new role within the new structure.

Guide: Organizational Perfection Vision
Organizations are wonderfully complex systems in which it’s impossible
to control everything or to know everything.

Everyone makes small decisions and the organizational behavior
emerges from these. People make decisions based on their experiences,
goals, principles, and values. When decisions are misaligned, then well-
intended people scurry in different directions, causing an organiza-
tional deadlock or gridlock. When these decisions are aligned, energy
gets unleashed and things start moving and improving.

This is especially true related to improvements. We’ve seen a vast
amount of well-intended “improvements” that only caused additional

https://less.works For Gene Gendel only, id:gene-gendel

67

LeSS Adoption

bureaucracy and increased suffering. When is an improvement an
improvement? Obviously, it has to be a global systems improvement
rather than a local optimization. But how do you know? Two questions
help separate most real systems improvements from local optimiza-
tions:

> Will the improvement bring us closer to our organizational perfec-
tion vision?

> Will the improvement be an improvement at the gemba—the real
place of work?

see Management
chapter

The gemba is covered in the Go See guide in the Management chapter.
This guide focuses on the organizational perfection vision. First, what is
a perfection vision?

The classic lean perfection vision is Toyota’s just-in-time system—every
time a customer buys one car then exactly one car is produced just in time.
This perfection vision lead to the ideal of “one-piece flow” in which the
production system is set up to handle small batches of work, ideally
batches of size one. This ideal will probably never be achieved, but it has
guided Toyota’s continuous improvement of their production system
for decades.

Here is the perfection vision for LeSS that we use:

A perfection vision is different from a vision. The goal of a vision is to
achieve it, whereas the goal of a perfection vision is to channel improve-
ments. When you achieve a vision, you celebrate, but when you achieve
a perfection vision, you are sad as it just became useless.

The successful product groups that we’ve worked with have an organiza-
tional perfection vision—an unattainable goal about how their product
group is and works. How is it used? People discuss and evaluate deci-
sions based on whether it brings them closer to the perfection vision.

Create organizations able to deliver or change
direction at any time without additional cost.

https://less.works For Gene Gendel only, id:gene-gendel

68

3. Adoption

Discussing is important work, but words float away. So people also want
to write a vision to help get everyone on the same page, literally. For
example, here is an early version of principles established by a client
adopting LeSS Huge in a product group:

Of course this is just an example, but feel free to use it as a starting point
for your discussion about your perfection vision.

1. The perfection goal is to have a releasable product all the
time. Release stabilization periods need to be reduced and
eventually eliminated.

2. Co-located, self-managing, cross-functional, Scrum teams
are the basic organizational building block. Responsibility
and accountability are on team level.

3. The majority of the teams are organized as customer-centric
feature teams.

4. Product management steers the development through the
Product Owner role. Release commitments are not forced
on teams.

5. The line organization is cross-functional. The functional-spe-
cialized line organizations are gradually integrated in the
cross-functional line organization.

6. Special coordination roles (such as project managers) are
avoided and teams are responsible for coordination.

7. The main responsibility of management is improvement—
improve team’s learning, efficiency, and quality. The content
of the work always comes from the Product Owner.

8. There is no branching in development. And product variation
is not to be reflected in the version control system.

9. All tests are automated with the exception of (1) exploratory
test, (2) usability test, and (3) tests that require physical
movement. All people must learn test automation skills.

10. Adoption is gradual and evolutionary. These principles are
considered in every decision.

https://less.works For Gene Gendel only, id:gene-gendel

69

LeSS Adoption

Managers—together with the whole product group—have to establish
this organizational perfection vision that guide decision making. This is
usually done by informal discussions and workshops, leading to some
guiding perfection vision and principles. There are two common ways of
imagining this perfection vision: (1) imagine you arrive at work, how
would a perfect organization be and work, or (2) envision the perfect
product and then imagine the organization creating it.

Guide: Continuous Improvement
A LeSS adoption ends only when you’ve achieved perfection and world
domination. Without that, there are always things to improve.

see Management
chapter

The job of managers is to build an environment in which teams continu-
ously deliver and continuously improve. Preferably the teams them-
selves do most improvements, but managers and Scrum Masters are
often involved for organizational and environmental improvements.

Tips:

> Focus!
Not doing any improvements because everyone is too busy think-
ing up new improvement ideas is the greatest failure to continu-
ous improvement. “Let’s do yet another assessment of our current
state.” “Hey, they are the same, I wonder why?” Or the popular
alternative, “Let’s adopt NooDLeS because LeSS isn’t working
here” (without ever truly trying out LeSS).
The way out of this? Stop assessing, start doing! Always keep in
mind the top two improvements and focus your energy on them.
When the improvements aren’t done, the teams will quickly lose
interest and stop thinking about new improvements.

see Review & Retro-
spective chapter

> Use retrospectives to create improvements.
The prime place for discovering new improvements is the team
Retrospectives and the Overall Retrospective.

> Focus on true improvements.
Not all of the improvements are real improvements. Some are
local optimizations—improvements that do not improve the whole
system but only one perspective. Two common local optimizations
are (1) functional local optimizations, and (2) unchallenged-

https://less.works For Gene Gendel only, id:gene-gendel

70

3. Adoption

assumption-based local optimizations. Functional local optimiza-
tions are improvements from one functional-specialization per-
spective that are often harmful from the system-output
perspective. For example, “It’s an impediment to test each Sprint.
We should start testing when the system is finished so that the
testing can be done more efficiently.” Unchallenged-assumption-
based local optimizations are improvements based on assump-
tions about “how things work” that are probably false. The big sys-
tems improvements often require that assumptions be
challenged; otherwise, the local improvements have little impact.
Example of such assumptions, “We have to finish programming
before we can test” and “It will be more efficient if everyone has
only one skill.”
Improvement suggestions that might be local optimizations are
valuable as opportunities for learning and expanding perspectives.
When these are suggested, analyze them with the originating per-
son or team. This discussion broadens the perspectives and estab-
lishes a basis for further improvements.

> Avoid quality, process, transformation, or improvement peo-
ple.
Big organizations usually have the quality and process department
staffed with Six Sigma black belts who are responsible for running
improvement projects. Or even better, some have a transforma-
tion department. Avoid that! Continuous improvement must be
done everywhere by everyone, all the time. Having one depart-
ment responsible for improvement is the best way to kill it and kill
engagement of teams. Instead, use existing direct organizational
structures to support adoption and improvements.

> Avoid improvement teams; use normal teams.
Related to the previous tip. Organizations commonly create
improvement teams and task them with implementing improve-
ment items.4 We have seen this approach fail repeatedly. A better
alternative is to have the normal teams work on improvement
items. This can be together with regular items or focused only on
improvement items for a few Sprints. A great advantage is that a

4. This organizational behavior reflects the Taylorist influences discussed in the Manag-
ers chapter.

https://less.works For Gene Gendel only, id:gene-gendel

71

LeSS Adoption

regular team will probably be a future user of their own improve-
ment and so they will implement it to be more usable and useful.

see Product Backlog
chapter

> Avoid improvement projects; use the Product Backlog.
Also, organizations often assume that all improvements must be
done using “projects.” These are separately managed and are
either staffed by improvement teams (see previous point) or even
worse, by removing people from their normal teams. The latter
causes organizational hustling for “resources” and a lack of team
focus, and will break the team’s shared responsibility. Rather,
involve regular teams, and offer improvement items to them via
the Product Backlog. This way, all the work is visible on the Prod-
uct Backlog and continuous improvement becomes the normal
system.

The most frequent cause of the collapse of continuous improvement is
failure to actually improve. This causes frustration in the teams and dis-
trust towards managers. When this happens, managers need to stop
and reflect and ask themselves, “What kind of service do we provide?”

Guide: Growing Your Adoption
First LeSS product adoption done! What’s next? Do we have perfection
and world domination yet? If not, do this:

> Expand to a few more products, with the same support.
Obviously you’ll expand, but to how many products? Maybe two
next rather than one, but not many. The key constraint is the peo-
ple, resources, and focus you can bring to maintain and even
improve the support for each product. A common problem we see
is that the laser-sharp focus given to the first adoption in terms of
support becomes unfocused and lackadaisical when expanding.
Don’t let it happen. Each new product needs the same supporting
environment and focus.

see Definition of
Done chapter

> Strengthen the Definition of Done.
The Definition of Done is unlikely to be perfect. Strengthen the
Definition of Done by increasing the teams’ cross-functionality;
uncovering new hurdles to resolve.

see Product chapter> Expand product definition.
The initial product definition is often restrained by organizational

https://less.works For Gene Gendel only, id:gene-gendel

72

3. Adoption

structure. Try to broaden that to gain better prioritization, more
customer focus, and a simpler organization.

> Improve teams’ output, and share how.
The results from the initial teams are unlikely to be fantastic. They
discovered limitations in their environment and development
practices. They had a lot to learn and to improve, and many limita-
tions still remain. Resolving these should improve their output. Do
share these solutions across the teams and with other products.

> Improve support.
How effective was the support for the initial teams? Get that feed-
back from the teams and use it to improve the support (teaching,
coaching, organizational changes, etc.), so that it is available for
future products adopting LeSS.

> Channel bottom-up energy.
Positive results from the initial teams in the first product can
cause teams in other groups to adopt LeSS without the approval of
high-level managers. Rather than killing this off, let it be and sup-
port it to exploit this bottom-up energy.

LESS HUGE
When scaling further, an additional issue is this:

Too big for all-at-once structural changes—in a huge product group it
is harder to make huge structural changes. It isn’t just the number of
people and minds that makes it hard. It’s because

> there’s a horde of customers who all received promises about new
features by certain dates and that makes large changes risky;

> organizational politics cause such changes to be career-limiting; and

> it’s hard to provide enough education and coaching on that scale.

Thus, a LeSS Huge adoption is done in a more evolutionary way.

https://less.works For Gene Gendel only, id:gene-gendel

73

LeSS Huge

• LeSS HUGE Rules •

Guide: Evolutionary Incremental Adoption
LeSS adoptions are best done all-at-once, but LeSS Huge adoptions
must be done evolutionary and incrementally. There are two
approaches to LeSS Huge adoptions:

Guide: Feature-
Team Adoption
Maps, p. 90

> Gradual incremental adoption over the whole product group.
All the teams gradually improve their scope and capability at the
same pace. This could be by expanding the product-level Defini-
tion of Done and using tools such as feature team adoption maps.

> Focused deeper adoption at a part of the product group.
Improvements focus to make a few teams really good, and then
spread one team at the time. This might be by expanding a few
teams’ Definition of Done, letting them work on specific improve-
ment items, and by focused coaching.

Both approaches work. The impatient gradual incremental adoption has
the advantage of hopefully having faster product-wide results, though it
often doesn’t happen because all teams need to solve the same prob-
lems at the same time—causing new problems. The focused deeper
adoption seems slower but avoids pain in all teams. The drawback, of
course, is that the already existing pain won’t be resolved as they aren’t
(yet) the focus of the adoption.

The LeSS adoption principles suggest a preference to the focused
deeper adoption, which is covered here. The gradual incremental adop-
tion is covered in the Organizing by Customer Value chapter.

LeSS Huge adoptions, including the structural changes, are
done with an evolutionary incremental approach.

Remember each day: LeSS Huge adoptions take many months
or years, infinite patience, and a sense of humor.

https://less.works For Gene Gendel only, id:gene-gendel

74

3. Adoption

Guide: One Requirement Area at a Time
The easiest incremental step to start a LeSS Huge adoption is to adopt
LeSS within one Requirement Area. This focuses the LeSS adoption first
in the area where the benefits are high and the risks low—or at least the
latter.

This implies creating only one new Requirement Area at a time.

Now here’s where it gets tricky: This new (and perhaps only) Require-
ment Area is still part of the product and therefore there will be depen-
dencies between the Requirement Area and the vast “old organization.”
The hard part is to find the balance between supporting this young
Requirement Area by disrupting the “old organization” and still con-
forming to the organizational interfaces.

Pick your battles. One disruption that must happen in the “old organiza-
tion” is to abandon individual/team code ownership; otherwise, the young
Requirement Area doesn’t stand a chance.

Guide: Parallel Organizations
The previous guide is an instance of the more general technique for cre-
ating structural change without changing anything: build a parallel orga-
nization. This means you keep your existing organization as it is and
gradually build the new organization next to it, starting with a few fea-
ture teams or one Requirement Area. This works well with feature
teams since they have essentially no dependencies. Once the first
teams are working well, you gradually shift teams from the traditional
organization. When there is enough momentum, you merge the old
organization into the new one.

Some caveats:

> A parallel organization is not a pilot, and one consequence is that
the line of organizational reporting must be separate from the tra-
ditional organization.

https://less.works For Gene Gendel only, id:gene-gendel

75

LeSS Huge

> Don’t let the parallel organization branch the codebase as that will
lead to merge-hell. They are separate organizations but work on
the same product and the same codebase.

> Communicate very clearly that eventually everyone will be in the
new organization. That’s an important message so that people in
the old organization do not focus on rivalry.

https://less.works For Gene Gendel only, id:gene-gendel

Organize by Customer Value in
LeSS 78

• Guide: Build Team-Based Organizations 79
• Guide: Understanding Feature Teams 81
• Guide: Feature-Team Adoption Maps 90
• Guide: Prefer Specialization in Customer

Domain 95
• Guide: LeSS Organizational Structure 97
• Guide: Organizing Multi-Site in LeSS 100

LeSS Huge 101
• Guide: Requirement Areas 102
• Guide: Dynamics of Requirement Areas 105
• Guide: Transitioning to Feature Teams 106
• Guide: LeSS Huge Organization 109

Teams organized around customer value

Contents

https://less.works For Gene Gendel only, id:gene-gendel

77

4
ORGANIZE BY

CUSTOMER VALUE
I want it to be transparent, but I don’t want the background to show through.

—Anonymous customer

ONE-TEAM SCRUM
A central theme in Scrum is a relentless focus on delivering customer
value. The order of the work is based on delivering value to customers
rather than on the convenience to development. For the developers
who want to build the framework first, this focus on validating technical
decisions by delivering value early is a difficult change.

The three Scrum roles provide a balance between a relentless focus on
customer value and caring about technical excellence.

> The Product Owner is responsible for return on investment. She
makes difficult business decisions. What is in? What is out? When
to release? How much to invest? She has a customer-centric view
on what the product is.

> The Team is a cross-functional, self-managing team that consists of
professional product developers who share the responsibility for
delivering working and maintainable done functionality every
Sprint. They decide how to build the product and thus the effort.

> The Scrum Master is responsible for getting Scrum to work and be
beneficial for the organization. Her focus is on growing a well-
functioning productive Team, a responsible Product Owner, and a
continuously improving organization.

https://less.works For Gene Gendel only, id:gene-gendel

78

4. Organize by Customer Value

ORGANIZE BY CUSTOMER VALUE IN LESS
When scaling, these principles relate to organizing:

Customer-centric—In a small one-team product, organizing by cus-
tomer value is trivial. The more teams, the more they become like cogs
in the large development machine. Like Charlie Chaplin in Modern Times,
his job is to turn screws but he has no idea how the customer will use
the product… or who that customer actually is. How to scale and keep a
customer focus?

Large-Scale Scrum is Scrum—We once visited a team that wanted to
adopt Scrum. We taught them LeSS; and when they exclaimed, “So you
want us to do what we used to do when there was only one team?” we
replied, “Yeah.” When the company grew rapidly, it brought in “profes-
sional management” and layers of projects, programs, portfolios, and
other governance. That additional structure had damaged the core of
the company—building great products. How can we keep scaled Scrum as
simple as Scrum?

Systems thinking and whole-product focus—Traditional organiza-
tions contain a lot of local optimizations such as a relentless pursuit to
optimize individual output. How can we structure our organization with
more focus on the whole product and relentless delivery of customer
value?

https://less.works For Gene Gendel only, id:gene-gendel

79

Organize by Customer Value in LeSS

• LeSS Rules •

Guide: Build Team-Based Organizations
Yoshiro Nakamatsu is the inventor of the floppy disk. His other inven-
tions include a pillow that prevents you from falling asleep, a cigarette
that activates your brain, and a condom with an embedded magnet. He
claims to hold the world record of the number of inventions with over
4000 patents. He is an example of the modern-day “crazy scientist”…
but most inventions—and most software development—is done by
teams, not individuals.

Products are created by teams, yet traditional (Western) organizations
are built around individual accountability. You are held accountable by
your manager for your individual performance. This gets reflected in
practices such as assigning work to individuals, individual performance
reviews, and individual rewarding. These practices promote individual
crazy scientists but not well-functioning teams that take a shared respon-
sibility for achieving their goal.

Team-based—LeSS—organization has the following structure:

> Dedicated teams
Each team member is dedicated for 100% of his time to one and
only one Team. This might feel inflexible, but team members
require dedication if you want them (1) to take a shared responsi-

Structure the organization by using real teams as the basic
organizational building block.

Each team is (1) self-managing, (2) cross-functional, (3) co-
located, and (4) long-lived.

The majority of the teams are customer-focused feature
teams.

https://less.works For Gene Gendel only, id:gene-gendel

80

4. Organize by Customer Value

bility for the Team’s goal, and (2) to take ownership of how a team
works—own their processes.

> Cross-functional teams
Each team contains or acquires all functional skills needed to pro-
duce a shippable product. Traditional functional specialized teams
might feel the most “efficient” from that function’s perspective,
but most effort spend and problems in product development are
between the functions, and thus teams must be cross-functional if
you want them to focus on the whole working product.

> Co-located teams
Each team is co-located in the same room.1 This might sound
unreasonable. Wouldn’t you, in today’s globalized world, want to
use the best skilled individuals in the place where they are? No.
We want the best teams that take a shared responsibility for the
outcome of the team and learn from each other. Shared responsi-
bility requires trust and humans are more likely to build trust by
close cooperation and face-to-face communication. Co-location
also promotes faster feedback and team learning—the essence of
continuous improvement.

> Long-lived teams
A Team stays together forever. This might feel idealistic, but Teams
need to have stability if you want them to care about how they
work as a Team. Anyone who has ever been on a real long-lived
team knows that teams get better as the team members get to
know each other and learn how to do and improve work together.

This advantageous team-based organizational structure causes inter-
esting dynamics. It is important to recognize these, as sometimes they
feel counterintuitive and can cause organizational anxiety. These are
described below.

Learning humans over “one-skill resources”—Organizations fre-
quently look at people as “human resources” which puts people in the
same category as money, machines, and memos. Resources have one
skill. A machine does what it does and when you need it to do something

1. This does not mean all teams must be at the same site, although that is definitively
preferred. Multi-site development is unfortunately common in LeSS organizations.

https://less.works For Gene Gendel only, id:gene-gendel

81

Organize by Customer Value in LeSS

else… then you will need a new machine. People are born fairly skill-less.
But we have an extraordinary meta-skill: to acquire new skills. This skill
is the most essential for organizations that aim to be flexible. Having
dedicated, long-lived teams automatically causes people to practice
those learning skills.

Teams over individuals as unit of “resourcing”—Resourcing, the pro-
cess for deciding which people ought to work on a product, is usually
based on individual people. When following the team-based structure,
the question will no longer be “Which individuals do we need?” but will
become “Which teams do we need?”

Give work to creative teams over creating teams around work—Tra-
ditional organizations form a project group with exactly the right set of
skills and people for each new feature request. But organizations with
long-lived teams don’t re-organize but instead split the work and give it
to an existing team that can learn and adapt.

Guide: Splitting,
p. 260

Stable organizations over dynamic matrixed structures—Constantly
changing organizational structure doesn’t create flexibility but causes
confusion. Instead, true organizational flexibility comes from splitting
work in meaningful customer-centric ways and giving that to suitable
teams who make up for missing skills by using their learning skill. The
effect? LeSS organizations abandon matrix-based structures in favor of
stable organizational structures.

Guide: Understanding Feature Teams
Most large product groups are organized around technology following
a model we call component teams. LeSS product groups organize
around customer value following a model we’ll call feature teams.2 The
shift from organizing around technology towards organizing around
customer value is profound.

2. We’ve written extensively about these two models. What follows is a summary of
earlier work. For a thorough treatment see Scaling Lean & Agile Development: Thinking
and Organizational Tools for Large-Scale Scrum, or feature teams at less.works or feature-
teams.org.

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works
http://www.featureteams.org
http://www.featureteams.org

82

4. Organize by Customer Value

What are feature teams?

A feature team (see Figure 4.1) is a stable, long-lived team that does
end-to-end customer-centric features.3 The team delivers done fea-
tures every Sprint.

Figure 4.1 feature
team

Feature teams have the following advantages, among others.

> Crystal-clear responsibilities—The goal of a feature team is clear.
The feature, Product Backlog Item, should be done before the
Sprint is over. Everything that needs to be done to achieve that
goal falls within the responsibility of the team. This simplifies plan-
ning and resolves dependencies.

> Purpose and customer focus—Feature teams speak the language
of customers. They create features for real people to improve
their lives rather than creating technology for technology’s sake.
This heightened customer focus and purpose enables the team to
work directly with customers in their language and to co-create
the best product. This is powerful.

3. Note, this doesn’t mean any team can deliver any feature. Teams might specialize on
certain types of features, as long as they still deliver high value.

https://less.works For Gene Gendel only, id:gene-gendel

83

Organize by Customer Value in LeSS

> Flexibility and learning—No more planning hell and enormous
dependency matrices. You need a new feature? Find a suitable
team.4 The team won’t have exactly the skills required, so they get
to practice their meta-skill of learning.

Guide: Splitting,
p. 260

Guide: Handling
Gigantic Require-
ments, p. 224

A common misunderstanding of feature teams is that a team gets a
gigantic feature, covering the whole system, and needs to make changes
everywhere. This is not so. Instead, the gigantic feature has to be split
before giving smaller end-to-end customer-centric parts of the huge
feature to a feature team. A key difference is in splitting work into cus-
tomer-centric parts instead of into component parts.

Changing to feature teams requires a thorough understanding of how
and why they work. We summarize the differences between feature
teams and component teams and briefly analyze their benefits and
drawbacks. Feature teams have drawbacks too. They are not a quick fix
to all your problems. Adopting them requires a long-term perspective.

Component Team Model
Component teams are organized around the architecture, as illustrated
in Figure 4.2. Every team is specialized in a part of the system or tech-
nology. This could be front-end versus back-end, Java versus C++, or
more generally by components (modules, subsystems, frameworks,
libraries, etc.)

This is the default for most product groups and has some advantages:

> clear code and design ownership

> clear boundaries (each team in its own sandbox)

> deep specialization

4. Important to understanding feature teams is that features aren’t randomly distrib-
uted over the teams without taking their skill and experience into account.

https://less.works For Gene Gendel only, id:gene-gendel

84

4. Organize by Customer Value

Figure 4.2 the
component team
model

These advantages aren’t without significant costs:

Clear code and design ownership—Having ownership of design and
code creates identity and clear responsibility. When there is a problem
in our code, then it is clearly our responsibility to fix it.

The flip side is that only one team can change the code, which causes
a bottleneck. In addition, the owners also won’t receive much feedback
on alternative code/design as nobody else really cares about their code.

Clear boundaries—We have our area in which we can do whatever we
want and other teams will not interfere with our work.

The flip side is that integration rarely is just pushing everything
together. Figuring out who is responsible for what, when the integration
failed, is painful and time consuming. LeSS avoids sandboxing with a
whole-product focus and continuous integration to reduce product risk.

Deep specialization—Our system is complex and nobody can under-
stand everything. Our team has its own area in which we specialized for
years and that makes our work better and more efficient.

https://less.works For Gene Gendel only, id:gene-gendel

85

Organize by Customer Value in LeSS

The flip side is that the specialization is in only one dimension—a
technical one. This advantage of specialization (more local efficiency)
comes at a price: not specializing in other dimensions. More on this in
the upcoming guide: prefer specialization in customer domain.

The component team model has some serious drawbacks:5

> imbalanced and asynchronous dependencies

> focus on amount of output rather than value

> results in sequential life cycle and a long release cycle

Analysis of these drawbacks and typical workarounds show that getting
“agile” component teams to work well is perhaps impossible.

Imbalanced and asynchronous dependencies—Customers want fea-
tures and those tend to involve multiple components. This causes
dependencies between the teams. These dependencies are (1) imbal-
anced, e.g. team Zombies have lots of work but team Draculas have lit-
tle, and (2) asynchronous, e.g. team Mummies have work that depends
on team Werewolfs who won’t be working on that as they have more
important items. This causes serious coordination and integration chal-
lenges.

The typical answer: (1) plan more, (2) create a new role for coordina-
tion, and (3) create a “project team” with regular status meetings. All
those so-called solutions are futile. The dependencies won’t ever be
resolved over time, and quick fixes within the existing system causes
pain, suffering, and horrible conflict. You may feel we’re exaggerating.
But if you look closely at what is really going on below the facade of neat
status reports, even in groups that have been trying for years, it’s a
mess.

Focus on amount of output rather than value—Specialization in a
technical dimension might increase output as measured in code pro-
duced but that does not equal value to customers. Especially when the

5. A more complete list can be found in the Feature Team chapter of the Scaling Lean &
Agile Development: Thinking and Organizational Tools for Large-Scale Scrum book or fea-
ture teams at less.works.

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works
https://less.works

86

4. Organize by Customer Value

optimization for efficiency influences the prioritization of features. Do
your customers prefer lots of code or valuable features?

Results in sequential life cycle and long release cycles—Who does
the original customer requirement analysis? Who defines the technical
component work for a component team? Who will integrate and test
the whole customer centric feature? An analysis team, architecture
team, and a system test team? Back to a sequential life cycle with all its
handoff problems and additional delay with long release cycles.

These drawbacks are well known and no quick fix in the component-
team model can resolve them. Moving to a feature team model avoids
them.

Feature Team Model
Feature teams are organized around customer value, as shown in Fig-
ure 4.3. Every team might be specialized around one or more types of
features in the customer domain. This could be diagnostics, bond trad-
ing, or administration.

Figure 4.3 feature
team model

https://less.works For Gene Gendel only, id:gene-gendel

87

Organize by Customer Value in LeSS

Advantage of feature teams:

> clear feature ownership

> no dependencies that cause delay

> development organization that speaks customer language

As with the component-team model, these do not come without cost.

see Coordination and
Integration chapter
for component men-
tors and multi-team
design meetings

Clear feature ownership—Who is responsible for ensuring that the
whole customer-centric feature works within the existing system?
Many organizations love to play the integration ping-pong game of con-
stantly deflecting responsibility to the other team. This dysfunctional
behavior evaporates with feature teams as the responsibility is always
with the feature team.

The flip side is that a feature team works on multiple components.
Other teams work on the same components at the same time, and that
will impact the design/code of the components. This impact can be posi-
tive where the design/code improves. But many people worry that it will
get messier. Adoption of modern development practices such as unit
testing, merciless refactoring, continuous integration, multi-team
design workshops, and evolutionary design can prevent component
degradation and grow the product healthily. Furthermore, component
mentors and component communities provide learning and support for
changing components the team isn’t yet familiar with.

see PBR and Coordi-
nation & Integration
chapters for related
guides

No dependencies that cause delay—When a feature requires a change
to a component, then the feature team makes the change. They do not
wait for another team to make the change for them. This reduces syn-
chronization needs for delivering customer features and in turn dra-
matically reduces the time from feature request to value delivery.

The flip side is that there will be shared components or platforms. If
each feature team just focuses on implementing their functionality then
that could lead to the same functionality being implemented many
times. They lost the opportunity to cooperate with other teams. This
can be resolved by emphasizing cooperation across teams related to the
technical implementation. Useful techniques for this are multi-team
Product Backlog Refinement or multi-team Sprint Planning Two.

https://less.works For Gene Gendel only, id:gene-gendel

88

4. Organize by Customer Value

Development organization that speaks customer language—Feature
teams speak the same language as customers and can directly ask cus-
tomers for clarification. This makes work more purposeful as the teams
know what, why, and who they build it for. It also reduces layers of indi-
rection—analysts, product and project managers—between customers
and developers.

The flip side is that some engineers have never considered customer
communication to be a required skill. Some might prefer not to talk with
customers, some might not be able to. Our experience has been that
broadening skills is rewarding but can feel uncomfortable at first.

A feature team model has its own challenges:

> requires developers to learn a larger part of the system

> can lead to messy code/design

> affects the way work is split

These are serious challenges yet not insurmountable ones.

Guide: Current-
Architecture Work-
shop, p. 303

Requires developers to learn a larger part of the system—Develop-
ers will need to learn a larger part of the system, yet a common miscon-
ception is that developers or teams have to know the entire system. This
is untrue. People within a team will have their primary specialization and
teams will also have their specialized area. Imagine a system with 50
components. Traditionally a developer knows 1 well. In a feature team,
he will need to know a few of them in depth and perhaps a dozen shal-
lowly. He won’t need to know all 50.

see Coordination &
Integration chapter
on practices that
help

Can lead to messier code/design—As mentioned, removing compo-
nent ownership potentially causes the degradation of the code/design.
This stems from the “shared responsibility is no responsibility” thinking.
Technical excellence and modern development practices can prevent
this degradation. Additionally, sometimes this degradation doesn’t hap-
pen because developers know others will see their code, so they put in
extra effort to maintain their reputation. Stimulate this code pride.

Guide: Splitting,
p. 260

Affects the way work is split—With component teams, work is split
into technical component tasks. This is usually done by a separate per-
son or group: architects, analysts, or specifiers. This type of splitting is

https://less.works For Gene Gendel only, id:gene-gendel

89

Organize by Customer Value in LeSS

unnecessary with feature teams. Work still needs to be split. This split-
ting is in the customer domain and is done in Product Backlog Refine-
ment meetings. Customer-centric splitting is not difficult but it is
different. Without understanding of customer-centric splitting, feature
teams will seem inconceivable.

These challenges are real yet resolvable. A feature team transition is
not hard for a 4-team LeSS adoption, but on the other hand for a 100-
team LeSS Huge adoption, it takes months or even years. But it is possi-
ble and the benefits are substantial.

Dependencies in Component Teams and Feature Teams
Figure 4.4 shows both models; a comparison leads to important
insights.

Figure 4.4 feature
and component
team models
compared

A major problem with component teams is the asynchronous nature of
dependencies between teams related to customer-centric features.
Feature teams resolve dependencies and create the opportunity for
teams to benefit from each other via shared work without being
blocked by dependencies. When using development practices rooted in
1980s practices—producing lots of paper before writing code and only
integrating all parts when you’re done—this shared work causes a major

https://less.works For Gene Gendel only, id:gene-gendel

90

4. Organize by Customer Value

pain as the shared work is just speculation. But with modern agile devel-
opment practices—focus on clean code, merciless refactoring, and con-
tinuous integration—this shared work becomes a true opportunity. The
feature dependencies of component teams aren’t resolvable as they are
structural and systemic in nature.6

Thus, LeSS requires the majority of the teams to be feature teams.

Guide: Feature-Team Adoption Maps
What is a component? What is a feature? What is functional specializa-
tion? So far, we’ve looked at them as binary but the answer exists along a
continuum. One group’s work scope might be limited to an individual
class whereas another group could work on an entire subsystem. They
are different types of component teams.

A similar scale exists that’s related to functional specialization. Some
product groups have five levels of testing and that gives “include testing
in the team” a very ambiguous meaning!

Drawing these scales in a graph, as shown in Figure 4.5, affords some
insights in feature-team adoption and the kind of organizational change
you can expect.

for product defini-
tion see Product
chapter; for Defin-
tion of Done see
Definition of Done

The Y-axis represents a gradually increasing work scope of the teams
expressed as architectural decomposition and the expansion of the
product definition. The X-axis represents the degree of cross-function-
ality of the teams expressed as a gradually increasing Definition of
Done.

6. And we’ve seen organizations try over and over again to resolve the drawbacks of
component teams. The problem are never resolved. Unfortunately, many organiza-
tions have to learn this by themselves.

https://less.works For Gene Gendel only, id:gene-gendel

91

Organize by Customer Value in LeSS

Figure 4.5 feature-
team adoption map

Figure 4.5 shows four areas:

Component teams—Any team that (1) focuses on parts of the product
rather than end-customer-centric features or (2) focuses on finishing a
task rather than delivering a product increment is a component team.
The smaller the work scope and the stricter the specialization, the bigger
the component-team problems.

see Product chapter
for broader product
definitions

Feature teams—Any team that has a whole-product focus and is
involved from clarifying customer-centric features to testing them is a
feature team. Feature teams also exist along a scale. They can be limited
to just implementing the features stated they need. Or, when the prod-
uct definition is broad enough, they can be involved with identifying and
solving the customers’ real problems and thus co-creating the product
on the whole system.

https://less.works For Gene Gendel only, id:gene-gendel

92

4. Organize by Customer Value

Functional overspecialized team—Any team that performs a limited
task on a larger scope is probably functionally overspecialized. This
leads to lots of waste due to handoffs. This is to be avoided.

Product Owner
Guide: Don’t Be
Nice, p. 189

Extended component teams—Any team that has a limited component
work scope yet is responsible for checking that their part works within
the larger product is an extended component team. The team has an
internal conflict as they have both a limited “component scope” and a
“whole product scope.” This conflict leads to either (1) duplication of
work as multiple teams create the same tests or (2) additional coordina-
tion effort as the teams have to coordinate their “product focused” test-
ing. The same conflict of scope is true for requirements clarification.
The Product Owner will need to remind the team that completely done
items are expected at the end of the Sprint. These teams are perhaps an
improvement over basic component teams but fall far short of deliver-
ing the benefits of feature teams.

A perfect feature team is a team that works across the whole system
and co-creates the product together with actual users. This is a good
yet difficult-to-achieve perfection goal.

Examples
With that perfection goal, we can use the earlier chart as a feature-
team adoption map. Two examples are explored next.

The Figure 4.6 feature-team adoption map is from a huge telecom prod-
uct adopting LeSS Huge. When they started their adoption they had tra-
ditional component teams. They chose the adoption strategy of
expanding the teams’ functional scope and created extended component
teams. Their goal for the next few years is to move to full product-wide
feature teams. However, there are some shared components created by
a peer product group and that makes it hard to include these compo-
nents as doing so would require a significantly larger organizational
change. So, these are excluded from their current goal.

Expanding to the system-scope is difficult because doing so would
involve several code bases of millions of lines of code each, an enormous
amount of functional specializations, and a full reorganization involving
thousands of people. So, cross-product group coordination and integra-

https://less.works For Gene Gendel only, id:gene-gendel

93

Organize by Customer Value in LeSS

tion activities are likely to stay as is for the next decade and will con-
tinue to cause a constant headache.

Figure 4.6 feature-
team adoption map
of telecom systemThe Figure 4.7 feature-team adoption map is from a trading product

and is a much smaller LeSS Huge adoption. They had the same starting
point as the telecom product group but decided to go with an all-at-
once adoption strategy. Deploying to production is still outside the
scope of the feature teams. This is reflected in their imperfect Defini-
tion of Done.

The amount of change required in an all-at-once LeSS Huge adoption is
often too large for the organization to cope with. That’s why we don’t
recommend all-at-once LeSS Huge adoptions. This case is a great exam-
ple. The product group adopted whole-product feature teams, with one
exception: One rather important component was organizationally in
another product group. The changes forced on the organization and

https://less.works For Gene Gendel only, id:gene-gendel

94

4. Organize by Customer Value

especially that product group became one of the reasons the adoption
eventually took a few steps backwards. Large-scale organizational
change is a breeding ground of nasty politics.

Figure 4.7 feature-
team adoption map
of financial trading
system

Help with Decisions
A feature-team adoption map is an important tool when you are adopt-
ing LeSS. It helps with the following decisions:

> What is “all”?—A smaller LeSS framework adoption requires an
all-at-once change to feature teams. Who is included in “all”
depends on the scope of the feature teams.

> Future improvement goals—The map can be used for setting
future goals as the telecom product group had done. These future
goals frequently go hand in hand with the expansion of the Defini-

https://less.works For Gene Gendel only, id:gene-gendel

95

Organize by Customer Value in LeSS

tion of Done. The map also shows the expected changes and their
difficulty, as expanding beyond the current organizational bound-
ary involves the hard work of “political” boundaries.

> LeSS or LeSS Huge?—The scope of the feature teams influences
the size of your adoption and can swing a LeSS group into adopt-
ing LeSS Huge instead. For example, a network-performance tool
is a customer-centric product and its development-group size
leads to the smaller LeSS Framework. However, when realizing it
is always sold as an integrated part of a network management sys-
tem changes the product scope and then is likely a LeSS Huge
adoption.

Guide: Prefer Specialization in Customer
Domain

One essential concept behind feature teams is to organize and special-
ize in the domain of the customer rather than the domain of technology.
The same concept also guides other LeSS structuring decisions.

A common misunderstanding of feature teams is that it leads to aban-
doning specialization altogether. Part of this misunderstanding comes
from the false dichotomy of either specializing in one component or not
specializing at all—which we’ve covered extensively in our writing on
feature teams. Part of the misunderstanding comes from the belief that
specialization is a one-dimensional thing—specializing in a component.
But specialization is multi-dimensional. Exploring these dimensions
leads to better decisions on how to balance these.

The conventional way of thinking about specialization is almost exclu-
sively around functional skill or components, as shown in a feature-
team adoption map. But other dimensions of specialization exist; they
include programming language, hardware, operating system, API, mar-
ket, type of customer, and type of feature. We can group these as (1)
technological (component, OS, etc.), or (2) customer-oriented (market,
type of feature, etc.). Looking at the adoption of feature teams from
these dimensions leads to the chart in Figure 4.8.

https://less.works For Gene Gendel only, id:gene-gendel

96

4. Organize by Customer Value

Figure 4.8 two
dimensions of
specialization

LeSS brings users and developers closer together. The user perspective
is almost always lost in traditional large product groups. Feature teams
are one way of organizing by customer value, but not the only one. The
principle of preferring specialization in customer domain also leads to
other structuring decisions.

For example: Banks create mobile apps for banking services on mobile
devices. The teams are typically organized by platform such as the iOS
teams and the Android teams. These teams are feature teams and they
are specialized in the technical dimension—namely, the platform. Alter-
natively, they can be organized in customer domains such as mobile pay-
ments, admin, and reporting. This leads to the teams implementing the
same type of features on multiple platforms instead of implementing
many types of features on the one platform.

Which specialization dimension is better? Traditional organizations
tend to specialize in technology dimensions. Why? Perhaps technology
is perceived as more difficult and hence specializing in that dimension
leads to faster development? LeSS prefers specialization in the cus-
tomer domain to increase collaboration with real users, remove hand-
offs, and make work more meaningful. Let’s explore another example…

We worked with a company that builds graphics cards. They structured
their organization around technology: (1) hardware team, (2) Linux-

https://less.works For Gene Gendel only, id:gene-gendel

97

Organize by Customer Value in LeSS

driver team, and (3) Windows-driver team. These are component
teams, but a move to feature teams requires a cross-functional hard-
ware/software team. That’s possible but difficult to achieve in most
hardware companies—for cultural reasons. The software teams are
additionally specialized in driver API. This organization is predicated on
the assumption that learning the OS-driver-API is more important and
difficult than understanding the hardware—the company’s product.
LeSS prefers organizing around the customer and thus an alternative
team organization is (1) 2D-graphics chip team and (2) 3D graphics chip
team.

What is the perfect balance between technology specialization and cus-
tomer specialization? A hard decision. When adopting LeSS, prefer spe-
cialization in the customer domain.

Guide: LeSS Organizational Structure
How does this all fit together in an organizational
structure? Of course, each organization is differ-
ent, yet LeSS organizations tend to follow a sur-
prisingly simple structure. The first difference
between LeSS organizations and most traditional
ones is that the structure is stable as (1) work is
organized around teams and (2) mismatch of skills
triggers learning and coordination within existing
teams.

A typical LeSS organizational chart is shown in Figure 4-9.

https://less.works For Gene Gendel only, id:gene-gendel

98

4. Organize by Customer Value

Figure 4.9 typical
LeSS organizational
chart

Notice what isn’t here:

> No functional organizations.
Having team members with programming skills report to the
development manager and team members with testing skill report
to the QA manager won’t create great teams. Why? It causes con-
flicting loyalty where a QA person has one loyalty towards the
team for all the work of the team and one loyalty towards the QA
manager for his functional specialization. LeSS organizations avoid
this conflict by abolishing functional organization and instead cre-
ating cross-functional line organizations.

> No project/program organization or project/program manage-
ment office (PMO).
These traditional control organizations cease to exist in a LeSS
organization as their responsibilities are distributed between the
feature teams and the Product Owner. Insisting on keeping such
organizations will cause confusion and conflicts of responsibilities.

> No support groups such as configuration management, contin-
uous integration support, or “quality and process”.
LeSS organizations prefer to expand the existing teams responsi-
bility to include this work over creating more complex organiza-
tion with specialized groups. Specialized support groups tend to
own their area which leads to them becoming a bottleneck.

Let’s examine a LeSS organization…

https://less.works For Gene Gendel only, id:gene-gendel

99

Organize by Customer Value in LeSS

See Management
chapter for more on
the role of manage-
ment.

Head of Product Group—Most product development LeSS organiza-
tions still have managers including a “head of product group.” They sup-
port the teams by Go See and help them remove obstacles and improve.
(We cover manager responsibilities in the Management chapter.) LeSS
organizations don’t have matrix structures and there are no dotted-line
managers.

The name “Head of Product Group” might be confusing to you. This is
probably because different organizations use quite different terms for
this. What we mean is the line manager of all the teams, whatever that is
called in your organization.

Feature teams—This is where the development work is done. Each
team is a cross-functional, self-managing feature team with a Scrum
Master. They are permanent units that stay together for the duration of
a product (and sometimes longer). Preferably all members have the
head of the product group as their direct manager. We’ve seen 150 peo-
ple who all had the same direct manager as most management activities
were taken over by the teams. But some larger LeSS organizations have
some additional team line manager structure. Try to avoid the addi-
tional organizational complexity whenever possible.

Product Owner (Team)—This is also commonly called “Product Man-
agement.” It can be one person but in a larger LeSS organization the
Product Owner might be supported by other product managers.

An important point in this organizational structure is that the Teams
and the Product Owner are peers—they do not have a hierarchical rela-
tionship. We have found it important to keep the power balanced
between the roles. The Teams and Product Owner should have a coop-
erative peer relationship to together build the best possible product,
and a peer structure supports this. This point is further explored in the
Product Owner chapter.

Guide: Who Should
be Product Owner?,
p. 173

This organizational structure is especially common for product compa-
nies. The frequent alternative, especially for internal development, is
for the Product Owner to belong to a different organization—the busi-
ness side. Thus, he is not within the hierarchy of the Head of the Product
Group. This is recommended, though it does often require additional

https://less.works For Gene Gendel only, id:gene-gendel

100

4. Organize by Customer Value

effort to ensure the Product Owner has a close relationship with the
Teams.

Undone department—This department, ideally, does not exist.

Unfortunately, sometimes the teams are not yet able to create a true
shippable increment every Sprint. This is reflected by their “Definition
of Done” not being equal to “Potentially Shippable.” The difference
between them is called Undone Work. Someone needs to do this
Undone Work, and a common “solution” is to create separate groups
that pick up the “undone work”—the undone department. More on this in
the Definition of Done chapter.

Undone departments such as test, QA, architecture, or business analy-
sis groups should never exist in the smaller LeSS framework groups;
rather they should be integrated into the teams from the start. On the
other hand, we unfortunately still frequently see an operations or pro-
duction undone department in LeSS adoptions, as they often cross orga-
nizational boundaries.

A goal in every LeSS adoption is to remove the undone department.
How long will this take? The answer is highly dependent on how fast the
organization improves its capability.

Guide: Organizing Multi-Site in LeSS
We worked at an online games company when a new Product Owner
joined. She asked, “Where are my teams located?” Someone listed the
three cities in Eastern Europe. She asked, “How long is the flight to the
first city?” Her question triggered laughing. The answer, “There is no
flight or airport. You have to fly to Kiev and take a three-hour train ride!”
The new Product Owner was astounded. That site was closed down.

Product development is best done with only one site. And yet there are
good (and more not so good) reasons for having multiple sites. Apply
these principles for your site strategy:

https://less.works For Gene Gendel only, id:gene-gendel

101

LeSS Huge

Reduce sites—Multi-site might be inevitable due to external factors.
Even then, have an explicit policy to co-locate as much as possible. Close
down smaller sites and at least reduce time-zone differences.

Reduce time-zone differences—Time is a bigger obstacle than dis-
tance. You can mitigate problems caused by physical distance with
video and text chat, etc., though all are inferior to being face-to-face at a
whiteboard. But the only way to overcome time differences is to shift
your work day. Most teams prefer not to do that and thus big time dif-
ferences guarantee a one-day delay in communication.

Co-locate whole teams—Team members share responsibility for the
team’s work. Shared responsibility requires a high level of trust. Unfor-
tunately, distance breeds distrust as humans find it difficult to trust
people they don’t see and directly interact with. Plus the people in one
team need to be together to learn from each other.

Do not have sites specializing in functional skill—An unfortunate yet
common division of work between sites is based on functional special-
ization, e.g. one development site and a second (cheaper) testing site.
This division of work doesn’t work in LeSS as it leads to every cross-
functional team having members in multiple sites.

Do not have sites specializing in components—Another common way
of deciding “site responsibility” is to take the architecture diagram and
assign parts of the architecture to sites. This doesn’t work when adopt-
ing feature teams.

LESS HUGE
When scaling, context and issues include:

Customer-centric—It is easy to forget the customer in large develop-
ment efforts when the added structure pushes teams away from cus-
tomers towards technology single-specialization. How do you prevent
that? How do you keep customer closeness with perhaps a thousand
developers?

https://less.works For Gene Gendel only, id:gene-gendel

102

4. Organize by Customer Value

More with LeSS—When scaling to LeSS Huge, it seems inevitable that
some additional structure is required. Requirement Areas and the Area
Product Owner role provide this while keeping the framework small.

• LeSS Huge Rules •

Guide: Requirement Areas
A Requirement Area is a grouping of Product Backlog items that logi-
cally belong together from the customer perspective, such as trade pro-
cessing or new-market onboarding. Requirement Areas allow us to
manage an area as if it is its own product with its own (smaller) LeSS
adoption. A Requirement Area consists of:

> Area Product Backlog—A subset of the Product Backlog that
belongs to one area. This is not a separate backlog but is logically a
view on the Product Backlog but might be managed as a separate
backlog. This is covered in the Product Backlog chapter.

> Area Product Owner—A separate “Product Owner” who special-
izes in a logical area of customer requirements. The Area Product
Owner acts as the Product Owner towards the teams. She also
works with the overall Product Owner and other Area Product

Customer requirements that are strongly related from a cus-
tomer perspective are grouped in Requirement Areas.

Each Team specializes in one Requirement Area. Teams stay
in one area for a long time. When there is more value in other
areas, teams might change Requirement Area.

Each Requirement Area has one Area Product Owner.

Each Requirement Area has between “4–8” teams. Avoid vio-
lating this range.

https://less.works For Gene Gendel only, id:gene-gendel

103

LeSS Huge

Owners as part of the Product Owner Team to keep the whole-
product focus. This is covered in the Product Owner chapter.

> Feature teams—The Teams that specialize in part of the product
while still speaking the language of the customer. Each Team
belongs to exactly one Requirement Area.

Requirement Areas are the prime structural addition to LeSS when you
are scaling above “8” teams—thus creating LeSS Huge. They were cre-
ated to resolve the following problems encountered when scaling LeSS:

> Product Backlog too big.
Suppose there are four items per team per Sprint with 3 Sprints’
worth of clarified granular ready items, and 20 teams. That implies
240 items in the fine-grained section of the Product Backlog. Hav-
ing so many items in just the fine-grained section—not to mention
the many less-refined items—makes the Product Backlog unman-
ageable.

> Product Owner stretched too thin.
How many teams can one Product Owner work with? If the Prod-
uct Owner is not involved in detailed clarification of every item
and she focuses instead on prioritization, customers, and team
collaboration, then we see there is a tipping point somewhere
between 5 and 10 teams (e.g. “8”). Above that, there’s too much
going on to maintain a balance of outward and inward focus and to
be sustainable.

> Meetings too crowded.
Two team representatives from each of 20 teams lead to big Sprint
Planning meetings It is hard to keep meetings of that size produc-
tive and focused.

> Teams lacking focus.
Teams get frustrated and go slow when they change focus too fre-
quently or when they cover too broad an area. Specializing a team
in a customer-centric area creates the focus required to create a
productive team.

Figure 4.10 shows an example of a Requirement Area structure:

https://less.works For Gene Gendel only, id:gene-gendel

104

4. Organize by Customer Value

Figure 4.10
Requirement Areas

The Product Backlog contains all Product Backlog Items. Each of these
items is assigned to one and only one Requirement Area. Each Require-
ment Area has one Area Product Owner, and all items that belong to
that Requirement Area form the Area Product Backlog. Each team
belongs to one Requirement Area for a long time.

The overall Product Owner monitors the value of the items across all
areas. When the value difference between areas becomes too large,
then the Product Owner can move a team to another area. This way the
Product Owner focuses on the return on investment of the whole prod-
uct.

https://less.works For Gene Gendel only, id:gene-gendel

105

LeSS Huge

Guide: Dynamics of Requirement Areas

LeSS Huge Story: A
New Requirement
Area •, p. 39

Requirement Areas contain four to eight teams. But why four? Having
smaller Requirement Areas inevitably leads to lack of transparency and
local optimizations. Why? Let’s first explore the evolution of a Require-
ment Area over time.

Birth—There are two ways in which new Requirement Areas are born:

see previous guide
Requirement Areas
for signs of an area
becoming too big

> A Requirement Area grows “too big” and is best split into two
smaller Requirement Areas by grouping items inside the Area
Backlog to discover a natural split. This is the preferred way of cre-
ating new areas and is equal to how smaller LeSS adoptions grow
to LeSS Huge.

Guide: Handling
Gigantic Require-
ments, p. 224

> A (probably big) new product opportunity arises7 that is signifi-
cantly different from earlier features. When that happens, we can
create a totally new Requirement Area, move one team into it and
gradually grow into at least four teams.

Midlife—The relative importance of a Requirement Area will change
during its lifetime. That’s because customers won’t neatly divide their
needs into Requirement Area, but instead one area will get a higher pri-
ority for some time while others fall in priority. It’s the responsibility of
the overall Product Owner to recognize this and dynamically adjust
Requirement Areas by moving teams to where the most value is.

When Requirement Areas are not dynamic, then this hints at deeper
systematic problems.

Retirement—It is rare for a Requirement Area to just disappear, as
there will always be small changes in the area. But they will shrink to
below four. Then what? Merge Requirement Areas. Take two Require-
ment Areas, expand their scopes to be the same and then merge the
Area Backlogs and have one Area Product Owner continue. Having a
meaningful combined scope is best, but if that can’t happen, then taking
the name of the first Requirement Area, appending the word and, and
taking the name of the second Requirement Area will do to start.

7. This could be a whole new market or it could be one insanely huge feature that would
require many teams many months.

https://less.works For Gene Gendel only, id:gene-gendel

106

4. Organize by Customer Value

this often happens
when sites and
Requirement Areas
are aligned

Guide: Organizing
Multi-Site in LeSS,
p. 100

So, why combine small areas and avoid areas smaller than four? Tiny
Requirement Areas at best cause a lot of work for the overall Product
Owner in dealing with cross-Requirement-Area prioritization. This
should cause the Requirement Areas to be rapidly changing. At worst, it
doesn’t happen and the cross-Requirement-Area prioritization is lost
and with it, the overview on the Product Backlog. Having tiny Require-
ment Areas is usually a sign of these problems: (1) silo-Requirement
Areas with too powerful Area Product Owners, (2) lack of customer
focus leading to a lack of prioritization in the overall Product Backlog, or
(3) the Area Product Owner’s being too involved with the clarification
and therefore unable to handle more than two teams.

Guide: Transitioning to Feature Teams
When adopting (smaller framework) LeSS, the transition to feature
teams is all-at-once. But when adopting LeSS Huge, you can choose
from several transition strategies. Which one is best? These simplistic
steps help you determine the best strategy for your organization:

1. Determine your context.

2. Determine your transition strategy.

Let’s explore both in more depth.

1. Determine Your Context

The transition to feature teams is influenced by several factors:

Size of the product group—Obviously it is easier for a 10-team prod-
uct group to transition to feature teams than for a 100-team group.

Lifetime of the product—Products that will probably be around for the
next 30 years tend to make slow changes, ostensibly to lower risk. Prod-
ucts that last only a few years must change faster.

Degree of component and functional specialization—More special-
ization makes feature-team adoption a larger change. Use the feature-
team adoption map to draw the current state of component/functional
specialization.

https://less.works For Gene Gendel only, id:gene-gendel

107

LeSS Huge

Number of development sites—More development sites makes fea-
ture-team adoption harder. This is doubly true when sites specialize in
certain components or function. This site specialization is an obstacle to
cross-component and cross-functional learning.

2. Determine your Transition Strategy
There are three broad transitioning strategies:

All-at-once—As also used in LeSS adoption. In LeSS Huge all-at-once is
less common because of the amount of organizational change it
requires. Yet when (1) the product group is relatively small, (2) the life-
time of the product is short, (3) the specialization is low, and (4) the
development is co-located at one site, then all-at-once is a good strat-
egy. A common mistake in all-at-once LeSS Huge adoption is to underes-
timate the amount of learning and coaching required.

Gradually expand component team responsibility—You can plot the
current state of your organization in a feature-team adoption map and
mark future goals for expanding the scope of the teams. The cross-func-
tional expansion is achieved by expanding the Definition of Done. More
on this in the Definition of Done chapter.

We’ve encountered this transition strategy repeatedly. It can work but
has a couple of big weaknesses: (1) It gives you the drawbacks of both
feature and component teams while not giving the best benefits; (2) it is
hard to adopt customer-centric Requirement Areas when the teams are
still component teams.

Still, this transition strategy is a good idea in a multi-site environment
when a lot of multi-site learning must happen.

Guide: One Require-
ment Area at a Time,
p. 74

Parallel organization—In this strategy you keep the existing compo-
nent team organization in place and gradually build a feature team orga-
nization next to it as a parallel organization.

https://less.works For Gene Gendel only, id:gene-gendel

108

4. Organize by Customer Value

Figure 4.11 grow a
parallel organization

The existing component-team organization keeps functioning the way it
did before, except that the new feature team(s) will change their code.
The new feature team(s) take on valuable but painful features (those
with the most dependencies) and work across the components by
changing the components directly. Remember: Seek volunteers for these
nascent feature teams.

This strategy is gradual and low-risk and is well-suited for huge LeSS
Huge product groups. Its most important drawback? It will take a long
time.

When using this strategy, give your young feature teams a lot of support
and do not expect much output. They have to resolve obstacles such as
different practices in different components, different component struc-
tures, different tool usage, and different test environments. On top of

https://less.works For Gene Gendel only, id:gene-gendel

109

LeSS Huge

that, they’ll also need to deal with learning new component and new
functional skills. Give them lots of support and time, as they are the
messengers of all weaknesses and dysfunctions in the organization.

Guide: LeSS Huge Organization
Scale is often accompanied by additional organizational structure.
Before we explore the typical additional structure, we need to stress
that scale doesn’t have to mean additional structure. Additional struc-
ture usually causes narrower responsibilities, which paves the way for
loads of organizational dysfunction and politics. Keep organizational
design simple.

With that caveat, a LeSS Huge structure is built on top of the LeSS
structure. A typical LeSS Huge organizational chart looks like the one
shown in Figure 4.12.

Figure 4.12 typical
LeSS Huge
organizational
structure

https://less.works For Gene Gendel only, id:gene-gendel

110

4. Organize by Customer Value

Notice that there is still no project/program organization (or PMO). In
Scrum and LeSS adoptions, these departments cease to exist.

Let’s examine parts that differ from the LeSS organization.

Teams in sites—LeSS Huge adoptions are almost always multi-site, and
organizations usually prefer to keep the line organization local. This
allows managers to Go See easily and really help the teams to improve.
Avoid having the Requirements Areas be equal to the organizational
structure as it leads to them being difficult to change.

Product Owner Team—Conceptually the same as in a LeSS structure.
The team is larger since it includes all the Area Product Owners. In huge
LeSS Huge groups, the Product Owner Team has sub-teams based on
the Requirement Areas.

Undone Department—Also conceptually the same as in a LeSS struc-
ture. In LeSS Huge groups there tend to be bigger Undone depart-
ments, and it takes a longer time to get rid of them. In huge LeSS Huge
groups, there will be additional structure in the Undone department,
potentially with their own antiquated project management practices.

Support—This department provides development environment sup-
port for the teams. In LeSS the teams support each other without the
need for a separate group. But a LeSS Huge organization typically does
centralize some support because of the massive volume of work. Still,
this department should be as small as possible with the attitude “How
can we help?” rather than “Take it this way!” Why? Support groups often
end up taking over responsibilities from the teams and become huge
ever-growing pulsating abominations controlling rather than support-
ing the teams.

Configuration-management support is a common example of a support
group becoming a control group. They take ownership of the build and
create all the build scripts. The effect? Teams have no idea what hap-
pens when “the build is done,” are clueless as to why it takes 92 minutes,
and don’t feel empowered to make the build better. It’s all magic to them
and out of their control.

https://less.works For Gene Gendel only, id:gene-gendel

111

LeSS Huge

Limiting understanding of the build to a support group causes bottle-
necks, inefficiency, local optimizations, and dis-empowerment. The con-
figuration-management support group ought to be the experts who help
teams improve it and who explain the build and teach better build
designs without becoming the owners. They might pair up with team
members and observe how they work so that they can together devise
ways to improve.

Other common support groups include laboratory support, continuous-
integration system support, or operations support.

Competence and Coaching—Software is created by people. Improving
people improves products. This seems obvious, yet we rarely see orga-
nizations that are truly committed to relentlessly training and coaching
their people. LeSS Huge organizations have a dedicated training and
coaching department which is essential for continuous improvement.

The competence and coaching department focuses on three things:

> observation (Go See)

> training

> coaching

In traditional organizations, the training and coaching requests go from
unaware-of-reality managers to a really unaware training group. They
then create an alternate-reality training and waste people’s time. This is
not a good idea. Instead, the competence and coaching group consists
of skillful practitioner-experts who actively Go See and observe how
people work. They pair up and work with people to discover their train-
ing needs. People don’t ask for training on subjects they don’t know
exist or for skills they don’t know they are weak at.

Coaching is key! It is the most effective way to help teams improve.
Coaches work with or in teams. They observe, pair, shadow, and ques-
tion. They give observations, feedback, ideas and examples on how the
team can improve. Coaching happens on three levels: (1) organizational,
(2) teams and Product Owner, and (3) technical. All these levels are
important. We have yet to see a successful LeSS adoption without
active coaching.

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Management 114
• Guide: Understand Taylor and Fayol 115
• Guide: Theory Y Management 117
• Guide: Managers Are Optional 120
• Guide: The LeSS Organization 121
• Guide: Go See 125
• Guide: Managers as Teachers and Learners 128
• Guide: Both Domain and

Technical Capability 129
• Guide: LeSS Metrics with Less Targets 130
• Guide: Management Reading List 131

the dysfunction of management separation

Contents

https://less.works For Gene Gendel only, id:gene-gendel

113

5
MANAGEMENT

The prevailing—and foolish—attitude is that a good manager can be a good
manager anywhere, with no special knowledge of the production process he's managing.

—W. Edwards Deming

ONE-TEAM SCRUM
Scrum does not mention managers. But Scrum is a change in manage-
ment style more than just a development framework. This change is
mostly caused by the following three Scrum elements: self-managing
teams, Product Owner, and Scrum Master.

With a self-managing team the responsibility of the Team is extended
to include “managing and monitoring process and progress.”1 These
responsibilities are removed from the manager’s responsibilities.

All work that the Team does has to come from the Product Owner. This
removes the responsibility of managers to decide what the Team is
working on.

The Scrum Master is responsible for a functioning Team, Product
Owner, and organization. She facilitates conflict resolution and
improvement by fostering reflection and learning. She is a team coach
and an organizational coach.

Traditional manager responsibilities focus on what, how, and tracking. In
summary, all these are no longer the responsibility of managers in a

1. LeSS uses the term self-managing teams instead of self-organizing teams. In Scrum
literature, the terms are often mixed or used interchangeably. Self-managing teams
has a clear definition: the team is responsible for the work and monitoring and man-
aging process and progress. This definition was given by the inventor of the term,
Harvard professor and team researcher Hackman. In contrast, the term self-orga-
nizing teams is frequently used ambiguously or inconsistently.

https://less.works For Gene Gendel only, id:gene-gendel

114

5. Management

Scrum organization. With that, the management style changes from
command and control to supporting.

What then is the role of managers in a Scrum organization? Scrum is
silent and asks organizations to figure that out for themselves. But LeSS
is not silent, and opens up the difficult discussion of the change in the
manager role in LeSS organizations.

LESS MANAGEMENT
LeSS follows traditional organizational theory. If you want to increase
organizational flexibility (agility), you do so by delegating responsibility
so decision making doesn’t slow down responses. This leads to flatter
organizations and less managers.

Most LeSS adoptions are in organizations with no shortage of manag-
ers. So, what is their role?

When scaling, principles related to management include:

Empirical Process Control—Ownership of how the work is done ought
to be with the people doing the work. They experience feedback and
improve. How does shifting process ownership to the teams change
management?

Customer-Centric—Teams working directly with customers dramati-
cally increases customer focus and tends to make work more meaning-
ful. Managers are no longer directly involved in this cooperation and
neither do they act as intermediates.

A common problem with Scrum adoption occurs
when managers do not give up these responsibilities,

thereby causing an organizational conflict between the
Team, Product Owner, Scrum Master, and managers.

https://less.works For Gene Gendel only, id:gene-gendel

115

LeSS Management

Continuous Improvement towards Perfection—With day-to-day
management out of the way of managers, they can change their focus
towards improving the system.

Systems Thinking—Pre-LeSS organizational structure often caused a
silo mindset behavior. That has to change to a whole-system and whole-
product perspective. The change of perspective is often unfamiliar and
discomforting and will require significant learning.

• LeSS Rules •

Guide: Understand Taylor and Fayol
Management is an invented concept. Understanding its origins and con-
text is important in order to adapt and make it relevant for today. Are
the problems it solved back then the same problems we need to solve
today? Without challenging and deep understanding there is no contin-
uous improvement, but only… continuity from the 19th century.

Two early and key influencers of management are Frederick Taylor and
Henri Fayol.

Frederick Taylor, born in 1856, was a mechanical engineer obsessed with
worker productivity. As foreman he successfully applied scientific prin-
ciples to his workers. This led him to open his own consultancy firm and
his ideas became known as “scientific management.”2

In LeSS, managers are optional, but if managers do exist, their
role is likely to change. Their focus shifts from managing the
day-to-day product work to improving the value-delivering
capability of the product development system.

Managers’ role is to improve the product development sys-
tem by practicing Go See, encouraging Stop & Fix, and “exper-
iments over conformance.”

https://less.works For Gene Gendel only, id:gene-gendel

116

5. Management

Henri Fayol, born in 1841, was a French mining engineer who joined a
large French mining group at age 19. His first job was to improve mining
safety. He never left the company and eventually became the managing
director. Under Fayol, the company flourished and became one of the
largest French companies. He formulated his thoughts on manage-
ment3 and published them in a landmark book called General and Indus-
trial Management.

Frederick Taylor introduced two concepts that unfortunately are still
prevalent today.

> There is one best way of doing a job, which you can prove scientifi-
cally. Once discovered, this “best practice” should be pushed
throughout the organization.

> Planning and improvement work should be separated from normal
work. The planning and improvement work should be done by spe-
cial higher-educated people while the normal work can be done by
mostly uneducated people. In the words of Taylor, “There is no
question that the cost of production is lowered by separating the
work of planning and the brain work as much as possible from the
manual labor.”4

Henri Fayol created 14 principles of management, which include division
of labor, authority, unity of direction, and chain of command. He also
defined the five responsibilities of managers: planning, organizing, coor-
dinating, commanding, and controlling.

Many so-called “modern” management theories can be traced back to
the ideas of Taylor and Fayol.5 They have changed the way companies
and the world works.

However, today’s world is not the world of Taylor and Fayol. This differ-
ent context makes some of the best ideas of the past the worst ideas of
the present. For example:

2. Also known as Taylorism.
3. Also known as Fayolism.
4. From Shop Management by Frederick Winslow Taylor published 1903.
5. Other important influencers such as Max Weber and Mary Parker Follett are

skipped here but are well worth study.

https://less.works For Gene Gendel only, id:gene-gendel

117

LeSS Management

> Taylor wanted to maximize the productivity of the low-educated
workforce. But today’s product developers are highly educated
and smart people. Separated planning and improvement leads to
additional handoff, rigid specialization, and more overhead.

> Fayol wanted to increase unity by improving communication, as it
took up to ten days to travel from France to the United States. But
today’s travel takes less than 7 hours and communication takes
seconds. Extensive hierarchies for creating unity and to ease com-
munication are obsolete.

> Scientifically analyzing shoveling to find the best practice and
copying it might work when moving pig iron. While using science
to analyze work is an excellent idea, copying without context is
not. In addition, though sharing good practices in context is a great
idea, copying best practices contradicts continuous improvement.

> Centralized managers creating unity by planning, coordinating,
commanding, and controlling might work when optimizing mining.
And creating unity or vision in an organization is an excellent idea.
But centralizing planning and control is not. The focus on com-
mand and control results in less focus on systematic improve-
ments.

Examine your organizational structure, practices, and policies. How
many are there because “that’s the way it has always been”? Where did
these ideas come from? Are they really relevant for your organizational
context today?

Guide: Theory Y Management
Consider 1960. This was when the laser and the birth control pill were
invented—one year before the Berlin wall was built and two years
before the first Bond movie. Over twenty Bond movies later, a lot has
changed! Or has it?

In 1960, Douglas McGregor of MIT Sloan School of Management pub-
lished his landmark management book, The Human Side of Enterprise. It
examines why the full potential of humans in organizations isn’t utilized.
And concludes that most “modern day” (1960!) management theories
and practices are based on a set of underlying unexamined assumptions

https://less.works For Gene Gendel only, id:gene-gendel

118

5. Management

he called Theory X. These assumptions of human social behavior are
limiting management practices, models, and behavior that truly utilize
the human potential.

Theory X

Theory X management is based on these assumptions:

> People inherently dislike work and try to avoid it.

> Thus, people need to be coerced, controlled, directed, or even
threatened so that maximum effort can be extracted from them.

> People want to be directed as they have little ambition and avoid
taking responsibility.

These are rarely stated as simply and directly, yet they form the hidden
assumptions under many—if not most—management practices... still
today!

Human Resource groups espouse striving for engaged employees. Yet,
ironically, most HR practices such as performance reviews, individual
targets, and bonus systems have strong Theory X assumptions. But we
shouldn’t be surprised! What are the assumptions behind the very term
Human Resources anyway?

Theory Y

To maximize the human potential, we need to replace—in our minds and
management practices—Theory X with assumptions based on research
conclusions of social sciences. Theory Y assumptions:

> People spend effort to work as naturally as they do to play and rest.

> People will use self-direction and self-control for goals that they
are committed to.6 Commitment comes mostly from the intrinsic
rewards related to the achievement itself. That is: the challenge,
the learning, and the sense of purpose.

6. “People commit to” (Theory Y) is not “the commitment was made for them” (Theory
X)

https://less.works For Gene Gendel only, id:gene-gendel

119

LeSS Management

> Provided the right environment, people seek responsibility rather
than avoid it. Imagination, ingenuity, and creativity are skills all
people have.

“Why is it every time I ask for a pair of hands, they come with a brain
attached?” is a quote attributed to Henry Ford. Ford was influenced by
scientific management and Theory X.

“Good thinking, good products” is a sign on the wall of a Toyota factory
where they say TPS doesn’t mean Toyota Production System, but it
means Thinking People System. Toyota formed the base for Lean Manu-
facturing and was influenced by Theory Y.

LeSS, Scrum, and all Agile development is based on Theory Y.

Why is this relevant? Two reasons:

1. Theory X practices cause problems in LeSS adoption.
Most organizations are packed with Theory X practices that focus
on individual accountability and manager-control. In a LeSS orga-
nization that must change to team accountability and self-control.

2. Theory X assumptions are hard to change.
LeSS requires a change in management style—a change in man-
ager behavior and assumptions. Changing these assumptions
requires reinterpreting all previous experiences—not just work
experience. Cultural and family assumptions about how work
works are especially deeply rooted and hard to change.

Oh, today is performance review time! A lot has changed since 1960?

Many problems in LeSS adoptions can be classified as
attempting to apply Theory Y management practices with

Theory X management assumptions.

https://less.works For Gene Gendel only, id:gene-gendel

120

5. Management

Guide: Managers Are Optional
Guide: Job Safety
but not Role Safety,
p. 66

In LeSS, managers are optional. Organizations that have managers don’t
have to get rid of them—they can perform a useful role—but you don’t
add managers for your LeSS adoption.

Guide: Manage-
ment Reading List,
p. 131

An important trend in the world is manager-less companies. These com-
panies debug the assumptions behind management—what problems
does it solve?—and discover different ways of splitting responsibilities7

and distributing power. Such experiments are great sources of ideas,
innovation, and inspiration even when your company still has managers.

Most large organizations have no shortage of manager roles and posi-
tions. Challenge these roles when adopting LeSS. In a LeSS organiza-
tion, the preference is to move responsibility to teams instead of
assigning them to manager roles.

Why are many companies stuffed with managers? Because of the
default organizational problem-solving technique they adopted:

1. Discover a problem—the blah-blah problem.

2. Create new role—the blah-blah manager.

3. Assign problem to new role.

Blah-blah managers abound in most organizations! Examples: fault man-
agers (we have bugs), release managers (problems releasing), feature
managers (problems coordinating), quality managers (problems with
quality), etc. The leading organizations have blah-blah departments
headed by blah-blah manager managers who guide their blah-blah man-
agers and the blah-blah specialists through their blah-blah career path.

This shouldn’t occur in LeSS organizations because of:

> Systems thinking—Many blah-blah problems are systemic (e.g. as
component team dynamics) and assigning them to a role without
changing the system is a simplistic quick-fix. True understanding

7. These and related ideas include holacracy, sociocracy, beyond budgeting, #nomanag-
ers and unboss.

https://less.works For Gene Gendel only, id:gene-gendel

121

LeSS Management

of systems dynamics allows for systems changes tackling the
causes without additional roles.

> Team-based organizations—Some problems can indeed be solved
by creating a new role and assigning the problem to them (e.g.
coordination with 3rd party). For those problems the preference
is to give them to normal feature teams, rather than creating addi-
tional roles. Doing this leads to (1) people involved in work making
the improvements, (2) improvements based on reality, (3) simpler
organizations, no additional roles.

All that said, managers can be of service. But what will their responsibil-
ity be in a LeSS organization? The following guides explore this.

Guide: The LeSS Organization
Lean Thinking emphasizes a focus on gemba—Japanese term for the
real place of work, or the place where customer value is created. We
distinguish two gembas:

> the place the product is used—the gemba of value consumption

> the place the product is created—the gemba of value creation

In a LeSS organization, these two gembas should be brought as close
together as possible. Needs flow from users to teams and Product
Owner. Value flows back from teams to users. Value delivery should
flow through the organization without having to be pushed up a hierar-
chy.

Managers aren’t involved with the decisions related to value delivery or
product direction. So, what do they do? In a LeSS organization, they
focus on the development system—on increasing the organizational-
value delivery capability. Their job is improvement!

While they might facilitate improvements by coaching the teams and
help people grow, they don’t do the work improvement themselves as
this leads straight back to Taylorism. We don’t want drones following
processes but instead we want to maximize human potential. Thus,
managers focus on ensuring that the organization is improving. They do
focus on development system improvements which often involves orga-

https://less.works For Gene Gendel only, id:gene-gendel

122

5. Management

nizational structure, decisions, and policies. Figure 5.1 shows a LeSS
organization.

Figure 5.1 a LeSS
organization
overview

The different roles have a different focus. The three focus areas:

> product creation and delivery

> product vision and direction

> organizational capability improvement

It is a mistake to think that each role fits exactly in one area. There is
overlap, indeed there must be overlap as the roles work together.
Figure 5.2 maps the roles and responsibilities to the focus areas.

https://less.works For Gene Gendel only, id:gene-gendel

123

LeSS Management

Figure 5.2 roles and
responsibilities to
three focus areas

Let’s elaborate on the overlapping areas.

> Teams–Product Owner—The Product Owner determines the
direction of the product (the vision) and teams need to be involved
in that. The teams should own the product as much as does the
Product Owner. It is their product and they work closely with
users and must provide input for the Product Owner. Concretely,
teams add items to Product Backlog and discuss prioritization
with the Product Owner.

Guide: Go See,
p. 125

> Teams–Managers—Teams do improvements while managers
focus on improvement capability and support with necessary orga-
nizational changes. Improvements often require change in organi-
zational structure or policy and often can’t be done by the teams
themselves. Teams need to work with Scrum Masters and manag-

https://less.works For Gene Gendel only, id:gene-gendel

124

5. Management

ers to achieve these changes. For example, teams improve auto-
mated deployment whereas managers change the regulatory and
organizational policies related to deployment.

> Managers–Scrum Masters—Both managers and Scrum Masters
focus on improvement and should work together. Managers focus
more on organizational things whereas Scrum Masters focus
more on team and cross-team dynamics. For example, Scrum Mas-
ters discover and explain the need for expanding the cross-func-
tionality of teams whereas managers do the related organizational
change such as eliminating testing groups.

Guide: What Is Your
Product?, p. 157

> Managers–Product Owner—First-level managers have little over-
lap with the Product Owner as they focus on improvement. Per-
haps they might encourage the teams to add improvement ideas
to the Product Backlog. Senior managers have a strategic perspec-
tive, covering multiple products. They should work closely with
the Product Owners to determine the right products and work
together with lower-level managers and Scrum Masters on the
right improvements. For example, work together with all Product
Owners on determining new markets to enter and organizational
implications.

The preceding section mentions product focus versus organizational
focus. Drawing the roles on this scale creates another perspective of
the LeSS roles, as shown in Figure 5.3.

Figure 5.3 product
and organizational
focus of LeSS roles

The figure visualizes the slightly different focus of managers and Scrum
Masters: managers more organizational, Scrum Master more team and
product.

https://less.works For Gene Gendel only, id:gene-gendel

125

LeSS Management

The common question that comes up when observing the similarity
between Scrum Master and managers is this: Should we make the man-
agers Scrum Masters? No, not a good idea. Manager/Scrum Master
organizational “manager” status impedes team self-management even
when she is Scrum Master of a “different team.” Why? Team members
have deeply rooted assumptions about managers that will implicitly
change their behavior. It is best avoided by having less management
roles.

Finally, what does focus on the capability of the development system con-
cretely mean? The upcoming guides cover these practices:

> Go See

> managers as teachers… and learners

> both domain and technical capabilities

Guide: Go See
Go See is the most important management skill for LeSS managers. The
practice seems too simple—you just go to gemba—the real place of
work—to see the reality. In practice, it is a difficult practice to under-
stand and master.

Let’s first explore what Go See is not. Go See is not micromanagement.
Micromanagement can be described as “Go See, Interrupt and Disap-
pear,” and it is, at best, a demotivating practice for employees.
Approaching Go See with a traditional control-management-mindset is
likely to turn it into micromanagement. Be aware of that.

Go See as practiced by managers means they habitually8 go to gemba to
truly understand the real problems and use that understanding for
developing the capability of the organization.

What is the gemba? For product development: two places:

> gemba of value creation—teams creating the product

8. Most of their time, not an exception.

https://less.works For Gene Gendel only, id:gene-gendel

126

5. Management

> gemba of value consumption—users using the product

Both places must be visited regularly to get a sense of reality at gemba.

Go See has at least two important goals:

> better problem-solving capability

> better organizational decisions

Guide: Managers as
Teachers and Learn-
ers, p. 128

Better problem-solving capability—By exploring gemba and under-
standing the day-to-day work reality of the teams, you can truly under-
stand the problems they face. Don’t “solve” them! No matter how
tempting that is. As a LeSS manager, you want the teams to solve the
problems. If they don’t, then your key role is teaching and facilitating the
problem-solving with them. In other words, increasing their problem-
solving capability.

Improved organizational decision making—Problems at gemba can
be categorized as (1) context/team-specific problems, (2) problems
caused by decisions outside of the teams. The latter are caused by orga-
nizational structure, decisions, and policies; and they tend to be the
same across all teams. Thus, a LeSS manager practices Go See to truly
understand the work context of a few teams and to get feedback about
important management decisions. This real place-of-work feedback
causes better organizational decisions that are grounded in reality.

The more senior the manager, the more important this practice because
(1) he is further removed from gemba and staying connected requires
extra effort, and (2) the decisions he makes tend to have a higher
impact. Without Go See, senior managers’ decisions are likely to be dis-
connected from the reality at the gembas, leading to disastrous deci-
sions and the eventual collapse of the organization. Sounds familiar?

Go See is a difficult practice to adopt. Why?

No time—Many managers are apparently not in control of their time
but are mostly reactive. Their calendars fill with meetings and they have
a hard time finding the decline button. They’re flooded with action

https://less.works For Gene Gendel only, id:gene-gendel

127

LeSS Management

points, since after all saying “yes” to everything got them there. Besides,
what is more rewarding than putting out today’s fire?

In contrast, practicing Go See would mean a deliberate effort to keep a
large part of their time reserved for visiting gemba, ending the meetings
and action-points dance.

No understanding—Going to gemba isn’t for showing sympathy with
the workers. Neither is it for checking up on the progress. No, it is for
truly understanding the problems encountered at gemba. It is not just
having a chat with a team or inviting them in a meeting—that just leads
to superficial understanding. Go See requires observing the teams and
asking lots of open-minded questions with a sincere interest in their
work and problems. In software products, this is likely to involve watch-
ing and discussing code.

No patience—Many managers are excellent problem-solvers, so after
they truly understand the problems at gemba, they can solve them.
Don’t! The teams need to improve by solving their own problems at
gemba. They don’t need a drive-by, problem-solving manager. What if
the team can’t solve a problem because the problem is external, organi-
zational, and systemic? Then take action later.

No analysis—Once truly grasping the problems at gemba, ask: do these
problems originate from team- and context-specific causes or from
organizational and systemic causes? This is not easy to determine.
Many managers attribute most problems to context as they don’t recog-
nize the patterns and… it is safe as contextual problems require no
action from them. Others see everything as having organizational
causes and end up making terrible decisions based on the feedback and
context of only one team. Finding the true cause is hard.

Go See is a practice that requires practice… lots of it! It also requires an
open mind and a natural curiosity for understanding—in detail—the cre-
ative work of creating products.

https://less.works For Gene Gendel only, id:gene-gendel

128

5. Management

Guide: Managers as Teachers and Learners
There are two common manager styles that we consider a problem and
frequently encounter:

> Dummy manager—These are managers who stopped learning as
soon as they became a manager. They haven’t read a single profes-
sional book, joined any course, or watched a non-funny movie.
They spend all their work-time on administrative tasks such as
reporting or performance appraisals. They’ve become useless
automatable administrative drones.

> Professional manager—These are managers who didn’t stop
learning but who read only popular management books9. How-
ever, they’ve completely lost touch with the real work of creating
products. And why would they keep in touch with the real work,
since “as a professional manager you can manage anything, you
don’t have to understand it.” This is such a profound delusion that
we prefer dummy managers; at least they tend to be less harmful.

LeSS managers are life-long learners of everything. They keep in touch
with the latest in domain and technology to ensure they can understand
the reality of today and not just the reality of when they became manag-
ers. Obviously, this understanding is needed for Go See, but also…

LeSS managers practice the Lean Thinking practice of managers as
teachers. This practice doesn’t mean the managers must be the best
technical and domain experts. Instead, they do have a good understand-
ing of both the domain and current technical skills and use that to coach
and teach the team in improving their development capability.

How can you, as manager, stay up-to-date? Ideas:

> fix a bug for the team every now and then

> use and test the product

> join code reviews, even when not commenting

> visit or observe users

9. We sometimes refer to them as airport books. You can explain so many organiza-
tional hypes by seeing which management books are popular at airports.

https://less.works For Gene Gendel only, id:gene-gendel

129

LeSS Management

> refactor some code; perhaps throw it away

> browse latest domain magazine

> pair up with team members doing work

> automate something

> join a community

National culture—In some countries, the practice of managers as
teachers is much harder and requires a lot more effort than in other
countries. Some national cultures are naturally more engineering
focused and have a tradition of knowledgeable managers, whereas oth-
ers have managers rarely keeping in touch with technology as they’ve
“passed that stage in their career.”

Guide: Both Domain and
Technical Capability

Organize by Cus-
tomer Value in LeSS,
p. 78

Teams need the right balance between technical skill and domain
understanding. We often experience teams that have excellent techni-
cal skills but lack domain knowledge, or vice versa. This is even worse in
organizations that have a history of “outsourcing the programming
work.”10

LeSS managers should regularly evaluate the skills of the teams in order
to determine where to focus their capability-improvement efforts. A
common mistake is to overvalue the skills the manager possesses him-
self and undervalue other skills. Don’t fall into that trap.

LeSS Huge adoptions tend to have multiple development sites. In this
case, it is common for development sites to have strength in one dimen-
sion but not the other. Evaluate sites from this perspective and take
action accordingly.

10. Having both lived in Asia—Craig in India, Bas in China and Singapore—and based on
our in-depth time at gemba and in the code, we consider the idea of “offshoring the
programming work” truly misguided and have never seen it work. People we met
who claimed it worked spend no time in gemba to see that reality.

https://less.works For Gene Gendel only, id:gene-gendel

130

5. Management

What action? An imbalance is often caused by a lack of learning invest-
ment in one dimension. This is typically due to under-appreciating that
dimension. For example, one site we worked with had excellent domain
knowledge, yet shockingly poor technical skills, as the culture at the site
was that “anyone can program.”

So, example actions:

Guide: Communi-
ties, p. 295

> increase awareness of this imbalance, discuss with managers,
Scrum Masters, and teams

> organize training and coaching

> create sharing between teams, share examples

> promote communities for learning

> encourage teams to select work that reduces the imbalance

Guide: LeSS Metrics with Less Targets
A common question from management involved in a LeSS adoption is
“What should we measure?” It is a compelling, fascinating, and wrong
question. Why? It assumes that metrics are inherently bad or good. Find
the right metrics, set the right targets, and good things will happen.
Untrue.

The metric itself is not important; much more important are (1) the pur-
pose of the metric and (2) who sets it.

Our most-liked example is test coverage. Is that a good metric or a bad
one? Absurd question. If test coverage is set by managers as an organi-
zational target or, even worse, as an individual performance target, it is
guaranteed to cause harmful behavior. Sure, we’ve seen extreme dupli-
cation and sabotaged measurements, but our favorite is tests without
checks so they won’t fail. This is smart! It achieves maximum test cover-

Great products only get created by teams
with balanced technical and domain knowledge

working directly with users solving their real problems.

https://less.works For Gene Gendel only, id:gene-gendel

131

LeSS Management

age and lowers maintenance effort. Isn’t employees achieving targets
while minimizing effort the dream of management?

However, if the teams want to improve their test automation and mea-
sure test coverage to learn more, then excellent! Likely to result in
insights, improvements, more engagement, and ownership. But it wasn’t
the metric that mattered.

Metrics are useful tools, but please avoid these mistakes:

> having targets without clarifying the purpose

> setting targets for teams

> measuring for control

> measuring something without knowing why

> creating waste for others in order to measure

In general:

Teach the people who use the metric to set their own metrics. That
ensures proper understanding of the metric and its purpose, and elimi-
nates wasteful work to fulfill an arbitrary target.

Guide: Management Reading List
LeSS managers need to continuously learn about their domain and
technology. They also need to stay up-to-date on management ideas
themselves. There is a lot to learn, and so we suggest books that we
consider important:

> Fifth Discipline—Peter Senge
This is a true classic on creating learning organizations and on sys-

Focus on purpose, not on targets.

Targets without purpose is not
command & control management, it’s dictatorship.

https://less.works For Gene Gendel only, id:gene-gendel

132

5. Management

tems thinking. We consider this an absolute must for LeSS manag-
ers.

> Lean Manager and Lead with Respect—Michael and Freddy Balle
Both these books are in business novel form and follow a student
of lean management (Andy) who needs to make the jump from tra-
ditional management to lean management. Especially, Lean Man-
ager has perhaps the best description of the practice of Go See.

> Workplace Management—Taiichi Ohno
Taiichi Ohno is the original creator of the Toyota Production Sys-
tem, and his Workplace Management a classic in lean thinking and
lean management. The way he approaches problems and focuses
on Go See is extraordinary.

> Future of Management—Gary Hamel
Do we need managers? Gary Hamel does think so, but the man-
agement style of the future is definitively going to change. How is
explored in this classic.

> Hard Facts, Dangerous Half-Truths & Total Nonsense: Profiting from
Evidence Based Management—Jeffrey Pfeffer and Robert Sutton
That context-free best practices is a harmful illusion doesn’t mean
we can’t learn new ideas from one another. Yet, too many ideas are
just based on the latest management fad from airport books. Pfef-
fer and Sutton promote grounding management decisions in solid
research-based evidence.

> Reinventing Organizations—Frederic Laloux
Do we really need managers? Frederic Laloux explores current
companies that abandoned traditional management. They are
completely organized based on self-management principles—
often completely removing the manager role. There is no need to
take your organization that far, but the book explores possible
ideas and structures of the future companies.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

LeSS Scrum Master 135
• Guide: Scrum Master Focus 137
• Guide: Five Scrum Master Tools 141
• Guide: Large-Group Facilitation 143
• Guide: Promote Learning & Multiple Skills 143
• Guide: Community Work 144
• Guide: Scrum Master Survival Guide 146
• Guide: Scrum Master Reading List 149
• Guide: Especially Pay Attention To... 150

LeSS Huge 151
• Guide: Avoid Requirement Area Silos 151

Scrum Master facilitating a large Open Space event in a LeSS adoption

Contents

https://less.works For Gene Gendel only, id:gene-gendel

135

6
SCRUM MASTERS

A good Scrum Master can handle multiple teams, a great Scrum Master just one.
—Michael James

ONE-TEAM SCRUM
The Scrum Master teaches Scrum to the organization and coaches
them in their never-ending adoption. She has mastered Scrum theory
and uses this deep Scrum understanding to guide everybody to discover
how they can best contribute to creating the most valuable product.

The Scrum Master role is often misunderstood and performed poorly
because people attempt to map this new role to an existing one. It
doesn’t map. It is not the master of the team, nor is it an “agile” project
manager or a team lead.

The Scrum Master role is one of two “meta-feedback loops” to discover
whether Scrum itself is working.1 It is a supporting role helping the
organization reflect and improve towards their organizational perfec-
tion vision. The Scrum Master creates the environment for people to
succeed.

LESS SCRUM MASTER
The Scrum Master role is a new one and often not understood when
Scrum is being adopted. A frequent response is to make the “leftover
people” the Scrum Masters. They might be nice people but often lack
the right skills, motivation, and Scrum knowledge. They morph the role
into something else and that becomes accepted within the organization
as the role of Scrum Master—after all, the Scrum Master should know,

1. The other meta-feedback loop is the Retrospective.

https://less.works For Gene Gendel only, id:gene-gendel

136

6. Scrum Masters

right? Their actions are sometimes then against the Scrum adoption—
transforming them into anti-Scrum Masters.

The role Scrum Master in LeSS is still called Scrum Master and not LeSS
Master, for obvious reasons.

When scaling, principles related to Scrum Master include:

Systems thinking and whole-product focus—The bigger the group,
the harder it is to see the whole. A Scrum Master helps people see
beyond their perspective to see the system—the product group interac-
tions, delays, causes, and potentials. She also reminds everyone of the
whole-product focus—unintegrated individual team output won’t cre-
ate customer value.

Large-Scale Scrum is Scrum—A LeSS Scrum Master will encounter
complex large-scale problems, and she’ll need to resist resolving them
with complex large-scale solutions. Instead, she’ll need to return to the
spirit of Scrum and find simple means that empower people to resolve
their impediments. She needs to explore large-scale simple solutions by
experimenting.

Transparency—Scrum Masters are guardians of transparency. But
most large-scale product development has a persistent haze hovering
over it. Clearing the haze—creating transparency—is a hard and thank-
less job in an organization’s political jungle.

https://less.works For Gene Gendel only, id:gene-gendel

137

LeSS Scrum Master

• LeSS Rules •

Guide: Scrum Master Focus
The Scrum Master Checklist by Michael James is an excellent Scrum Mas-
ter tool. It identifies four areas of focus for a Scrum Master:

> Team

> Product Owner

> Organization

> Development practices

Rule: Scrum Master
is a dedicated full-
time role.

Those focus areas also expose a common Scrum Master problem: too
much focus on the Team. An overemphasis on Team leads to shallow
LeSS adoptions as the Scrum Master has a key educational and reflec-
tive role in LeSS adoption. The cause? One is that the Scrum Master is
frequently a part-time role taken by a member of the Team. In LeSS, the
Scrum Master is a full-time Scrum Master for 1–3 teams because she is
vital for a good LeSS adoption and she needs to focus on all areas.

The four focus areas help us understand the Scrum Master role in LeSS,
especially when we plot the typical Scrum Master focus over time, as
shown in Figure 6.1.

Scrum Masters are responsible for a well-working LeSS adop-
tion. Their focus is on the Teams, Product Owner, organiza-
tion, and development practices. A Scrum Master doesn’t only
focus on a team but also on the overall organizational system.

A Scrum Master is a dedicated full-time role.

One Scrum Master can serve 1–3 teams.

https://less.works For Gene Gendel only, id:gene-gendel

138

6. Scrum Masters

Figure 6.1 Scrum
Master focus over
time

Let’s examine this graph and the reasoning behind it.

Focus on the Organization
See Organizing
around Customer
Value chapter for
more on structural
changes

Adopting LeSS requires an initial structural change, thus initially organi-
zational focus is high. The focus on improving the organization drops
once the basic structure is in place. Then it’s the teams’ turn to produce
results. That’s the best way to change an organization: produce results.
A shippable valuable product. Why would the organization trust you
and your teams if you didn’t show them results and benefits?

Here’s an important dynamic: Over time the dominant constraints move
from inside the teams towards the organization. The organizational struc-
ture and policies hold the teams back from increasing their perfor-

Producing working shippable software produces credibility.

https://less.works For Gene Gendel only, id:gene-gendel

139

LeSS Scrum Master

mance. Then the Scrum Master‘s focus towards improving the
organization increases.

Focus on Teams
The initial focus of a Scrum Master towards the team(s) is high, but it
should decline over time. When the teams are formed, the Scrum Mas-
ter spends a lot of effort educating and coaching the team(s) in self-
management, inter-team coordination, and increased shared responsi-
bility. Over time, the team(s) rely less on their Scrum Master as they
take on all responsibility by themselves.

The maturing of teams is one reason many Scrum adoptions opt for
part-time Scrum Masters. But in LeSS, the Scrum Master isn’t a part-
time role. When the Scrum Master’s first Team has matured, then she
may take up another team—in fact, up to three. Being a Scrum Master
for multiple teams automatically shifts focus to the bigger picture of the
organization and the Product Owner.

Focus on the Product Owner
Initially, the Scrum Master focus towards the Product Owner is in
coaching her in the role. This includes education on how she can best
use the Product Backlog, facilitation of her interaction with the team(s),
and being there to help her reflect.

see Product Owner
chapter for more on
the Product Owner
relationships

A Product Owner has several relationships, including the ones shown in
Figure 6.2.

Improvement is continuous and the world won’t stop
changing, so the work of a Scrum Master is never “complete.”

https://less.works For Gene Gendel only, id:gene-gendel

140

6. Scrum Masters

Figure 6.2 Product
Owner relationships

Don’t focus only on the Product Owner-Teams relationship. The other
Product Owner relationships also need the support of a Scrum Master.
Let’s explore these:

> Product Owner–Customers
The Scrum Master helps the Product Owner getting closer to real
users and customers. The Product Owner needs feedback from
them to validate the direction of the product. It also happens that
the Product Owner is not a suitable Product Owner; then the
Scrum Master should help the organization to find a better Prod-
uct Owner who is close to users and customers.

> Product Owner–Higher management
The Scrum Master should help the Product Owner to work with
the higher management to keep the status of the development vis-
ible, to support the Product Owner, and to work towards optimiz-
ing the impact of the product.

> Product Owner–Teams
The Scrum Master helps build up a relationship of trust, equality,
and cooperation. This is hard work as historically this relationship
is fraught with opacity, blame, and distrust.

https://less.works For Gene Gendel only, id:gene-gendel

141

LeSS Scrum Master

The focus of the Scrum Master towards the Product Owner should
decrease over time as the Product Owner becomes more comfortable
with her role within the LeSS organization.

Focus on Development Practices
Initially, a Scrum Master is occupied with creating well-working teams
that produce something together. But as the focus on the team(s) and
Product Owner decreases, the Scrum Master increases her focus on
helping the teams improve their development practices.

As a Scrum Master, be aware of what the top-notch modern develop-
ment practices are and promote their introduction to the team. LeSS
adoptions usually involve massive codebases with lots of archaic and
messy legacy code; applying modern practices—such as test-driven
development, continuous deployment, and automated acceptance
test—on them is challenging. The focus on development practices stays
high as it will only become harder and harder to improve teams further.

Guide: Five Scrum Master Tools
Before diving into more LeSS-specific guides, we included this guide on
Scrum Master tools to clarify how Scrum Masters work. We like these
five Scrum Master tools:

Guide: Scrum Mas-
ter Reading List,
p. 149

> Question
As a Scrum Master, you act as a mirror to everyone to help them
reflect and improve. One powerful way of achieving this is by ask-
ing lots of open-ended questions. But remember, be humble and
remember that your job is not to provide the answer but to help
people figure out the answer themselves.

> Educate
As a master of Scrum, you have a deep understanding of Scrum
and need to help the team understand why Scrum is the way it is.
Education is one way of doing this. Warning! Avoid being overzeal-
ous as that turns people off and no learning will happen. Avoid
zealotry, by focusing education on why, keeping an open mind, and
careful active listening.

https://less.works For Gene Gendel only, id:gene-gendel

142

6. Scrum Masters

Guide: Scrum Mas-
ter Reading List,
p. 149

> Facilitate
Show the teams how to do the LeSS events, and have productive
conversations by facilitating them. Create transparency by making
conflicts visible, and help the teams resolve them. But remember,
you want the team to take most responsibilities themselves. If you
still have to facilitate the Sprint Planning meeting in Sprint 10 then
you are failing.

> Actively do nothing
You need to create the space for people to take responsibility.
How? Don’t take it yourself is a good start. When your team or
teams have a problem, first observe and see if they can resolve it
themselves without your support. This creates the space to grow.

> Interrupt
Teams need to learn by themselves but when things do get out of
hand, then you interrupt to avoid irrevocable damage.

Some commonly practiced and promoted Scrum Master tools are
explicitly not on this list. Why? Lets look at why they are best avoided.

Avoid being team representative—In LeSS, several activities require
team representation and that is not you—the Scrum Master. Who is
then the team representative? That’s up to the Team, as long you aren’t
it. In LeSS, the Scrum Master is a full-time role and thus you aren’t a
member of the Team. Representing the Team would be strange at best.

Avoid making decisions for teams—The team makes their own deci-
sions. Multiple teams together also make their own decisions. Don’t
make them for teams but do help facilitate their decision making.

Be careful giving suggestions—Your suggestions to the team(s) aren’t
always interpreted as suggestions. That’s especially true for young
teams who are looking for an authority to make decisions for them.

Be careful removing impediments—We’ve seen “removing impedi-
ments” used as an excuse for any behavior. Most day-to-day impedi-
ments need to be removed by the teams. The Scrum Master focus is on
creating the environment for teams to succeed and as such you remove
the organizational cause of impediments. This is much harder.

https://less.works For Gene Gendel only, id:gene-gendel

143

LeSS Scrum Master

Guide: Large-Group Facilitation
Having productive, effective, and fun meetings isn’t easy… especially
when there are a lot of people. But meetings don’t have to be boring.
Facilitating large-group meetings is an essential skill that you’ll need to
acquire. Learn about techniques such as Open Space and World Cafe.

Some techniques we often use in facilitations:

Decentralize—Having all attention focused to one central point slows
down meetings. Whenever possible, split into smaller groups and have
parallel activities. But include “merging” too, for sharing and alignment.

Arrange for whiteboards and flip charts—Lots! Discussions are so
much more productive when people are writing and drawing their
thoughts.

Avoid furniture—Had boring meetings around a boardroom table? Just
remove the table. This will change the dynamic instantly!

Avoid computers with projectors—Computers are one of the best
ways to kill meeting dynamics. They centralize meetings, and the person
controlling the computer becomes the bottleneck. If you must use a
computer, then use more than one. Don’t make them the central point.

Use volunteering:
See Adoption chap-
ter

Use volunteering—Avoid forcing people in discussion. List topics and
decentralize with people volunteering to participate in the topics they
are interested in.

Have clear goals—Start with: Why we are here? What is our goal?

Retrospect—End with retrospection to improve future meetings.

Guide: Promote Learning & Multiple Skills
The essence of continuous improvement is continuous learning—espe-
cially for software products where there is no machine but just people
producing. Unfortunately, many do not seem to consider learning new
skills to be part of their job… or lives.

https://less.works For Gene Gendel only, id:gene-gendel

144

6. Scrum Masters

The lack of organizational learning is a major obstacle when adopting
LeSS. As Scrum Master, you need to create an environment where peo-
ple want to learn and move away from being a single-specialist to being
a specialist in multiple areas.2

Some ideas to promote learning:

> Be the example; learn a new skill.

> Share the things you’ve learned with your team.

> Ensure that books are lying around.

> Remind your team that they were born skill-less, so they have
proven that they are able to learn new skills.

> Share articles, not only related to Agile, Scrum, or LeSS.

> Encourage learning sessions, such as mini courses, lightning talks,
or “book club” discussions.

> Remind teams they are empowered to plan learning in the Sprint.

> Propose to analyze existing skills during their Retrospective.

Guide: Community Work
Guide: Communi-
ties, p. 295

A community is a group of volunteers from the teams who share an
interest or topic and have the passion to deepen their knowledge or
take action through discussion and interaction with peers. Participation
in communities is completely voluntarily.

Communities create informal networks between teams that are essen-
tial for learning, coordination, and continuous improvement. As Scrum
Master, you need to perform community work—coach communities to be
healthy and sustainable. Two communities in particular require active
Scrum Master participation: the LeSS community and the Scrum Mas-
ter community.

2. We aren’t suggesting that everyone be a generalist and know everything. For more
on the subject see the online article: Specialization and Generalization in Teams.

https://less.works For Gene Gendel only, id:gene-gendel

145

LeSS Scrum Master

LeSS Community

Scrum Masters promote cross-team learning related to any subject
including LeSS itself. As teams work within the same context, they are
likely to encounter similar obstacles and can learn a lot from each other.
The Scrum Masters together can create such a community. Some ideas:

LeSS discussion group—Have a product-group or even company-wide
LeSS discussion group for discussion and sharing experiences.

Guide: Open Space,
p. 305

Internal LeSS gatherings—Organize gatherings where people get
together to share experiences. Use Open Space for organizing these, as
its reliance on self-organization is well aligned to LeSS.

LeSS beer—Plan pub meetings with more beer.

Share stories on a blog, wiki, or newsletter—Write stories about your
team(s) or convince your team(s) to contribute.

Observe other teams—Invite your team over to observe another team
and discuss together how and why they work differently.

Scrum Master Community

Being a LeSS Scrum Master is frequently frustrating. But you are never
alone! Reach out to the other Scrum Masters and build a community.
Others can coach you in your role as Scrum Master. Some ideas:

Scrum Master-only mailing list—Similar to the LeSS mailing list, but
make it elitist invitation-only. Ensure that people thoroughly under-
stand LeSS so that the discussion goes beyond the basics.

Observe other Scrum Masters—Ask other Scrum Masters to observe
you and ask to observe them. Follow this up with an open conversation
about it, reflect, and come up with improvement ideas.

Pair up with another Scrum Master—Facilitate a meeting together,
observe a team together, or pair-coach a team.

https://less.works For Gene Gendel only, id:gene-gendel

146

6. Scrum Masters

Study-group—Ask everyone to read the same chapter of a book and
afterwards get together to discuss it. One chapter every week. Perhaps
lunch?

Guide: Scrum Master Survival Guide
Organizations are dangerous places full with Dyslectic Zombies,
Dummy Managers, Context-Switching Vampires, Undone Developers,
and Anti-Scrum Masters. Don’t Panic! Some tips to survive:

Convert Blame into Action
Blame is unfortunately a common response when something goes
wrong. The more teams and sites, the worse this gets. Blaming is com-
fortable as it allows you to not take responsibility… after all, it is clearly
caused by the other team!

As a Scrum Master, you should never join the blame game. Instead, help
your team(s) to convert blame into constructive actions they can do.
How do you do this? By asking these two questions:

> What can we do to change X in our environment?

> If nothing, then accept what can’t be changed for now. What can
we do to avoid or reduce X from impacting us?

For example:

Team: “We can’t test as it requires admin access to the environment”
Scrum Master: “OK, so what can we do to get that access?

Team: “We can’t get the access due to organizational policy.”
Scrum Master: “OK. So, what can we do to show the cost of this organi-
zation policy so it will be changed, or accepting no admin access; how
can we best test without it?

Don’t Be a Coordinator Between Teams
see Coordination &
Integration chapter

Traditional organizations have a coordinator (project manager) who
coordinates work between teams. In LeSS, the multi-team coordination
is the responsibility of the teams.

https://less.works For Gene Gendel only, id:gene-gendel

147

LeSS Scrum Master

Many teams are so used to having a coordinator that they will look for
the Scrum Master to take on this role. Don’t do it. Help your teams this
way:

> Remind them that it is their responsibility, and why.

> Introduce teams to one another.

See Coordination &
Integration chapter
for more on coordi-
nation mechanisms

> Help them agree on a coordination mechanism.

But don’t do the coordination yourself.

Team Up to Create Change

The organizational changes required to create the environment for
your team(s) to succeed are likely to be hard… and similar for all teams.
So work together with other Scrum Masters—together you’re stronger.

How? Discuss the currently most impactful change and make a case for
it. Gather all relevant information you can and make a proposal to
(senior) managers. Don’t expect them to accept it immediately but use it
as a discussion starter, and remember… patience.

Partner with Managers
Responsibility of
Managers: See Man-
agement chapter

The responsibilities of managers and of Scrum Masters are similar. Both
create the environment to build the best product. Scrum Masters work
closer to the teams while managers are often tasked with additional
organizational work. But to bring change they have to work together, as
suggested in Figure 6-3.

Figure 6.3 Product
and organizational
focus of different
roles

https://less.works For Gene Gendel only, id:gene-gendel

148

6. Scrum Masters

Start with regular weekly discussions to create a shared understanding
of the current problems. Then pick the most important one, work on it,
take the next most important, etc.

Sometimes partnering with managers is easy because the managers
became Scrum Masters! But this often causes problems with team’s
self-management. Some organizations resolve this by making the man-
ager of one team the Scrum Master of another. This works… sometimes.
Yet, we don’t recommend it. Why? Two reasons: (1) In some hierarchical
environments the gap between managers and non-managers is so big
that it is nearly impossible for the team to trust a Manager–Scrum Mas-
ter, and (2) some managers are so occupied with “other organizational
work” (the value of which we are never quite sure) that they can’t serve
as a full-time Scrum Master.

Staying Sane
As a LeSS Scrum Master, you need to change the organization… and you
have no official authority to do so. This is a good thing. It requires you to
convince people to change because they believe it is the right thing to
do. But influencing change in organizations is far from trivial and fre-
quently, no matter how hard you have tried, it changes in the opposite
direction. The question then becomes, how do you survive? Staying
alive and sane in organizations requires these attributes:

> Patience and low expectations
Most organizations change slowly. You’d better set your expecta-
tions low (not your goal!) and remind yourself that you will be
working on this for years. But do celebrate small changes.

> Persistence
Don’t expect your change suggestions to be adopted immediately
but do expect to explain them a gazillion times (often to the same
people).

> Courage
Nothing will change without courage. Don’t be afraid to speak up
to higher management or make proposals that are way out of your
comfort zone.

> Sense of humor
You’ve worked for a year to convince people to change something.

https://less.works For Gene Gendel only, id:gene-gendel

149

LeSS Scrum Master

They did… and they made it worse. What do you do? Take it seri-
ously and don’t take it seriously. Laugh. It is the only way to survive.

> Openness and humility
You must courageously, persistently, and patiently propose
change. Laugh it off when stupid decisions ruin your work. And all
of this must be done in an open and humble way as otherwise
there is no new learning for you. Maybe you are wrong and they
were right?

Did we mention patience?

Guide: Scrum Master Reading List
We’d expect a Scrum Master to be an expert in Scrum. But did she mas-
ter Scrum? Mastering suggests that there is not much more to learn.
But we have been involved with LeSS adoption for a long time and we
still learn more about LeSS. Scrum Masters need to continuously
improve themselves. Reading is one way and we recommend reading
these books:

> Leading Teams—Richard Hackman
Hackman’s Leading Teams summarizes 30+ years of team research
and is perhaps the best book on building self-managing teams.

> The Skilled Facilitator—Roger Schwarz
There is a lot to facilitation and this book is an excellent text on
improving your facilitation skills.

> Co-active Coaching—Kimsey-House et al.
There is a lot to be learned about coaching and this book is one of
the better starting points.

> The Five Dysfunctions of a Team—Patrick Lencioni
Wonderful little fable about how teams work (or don’t).

> Humble Inquiry—Edgar Schein
Schein has 50 years experience in organization development and
coaching organizations. One of his conclusion from his experience:
We need less telling and more asking.

https://less.works For Gene Gendel only, id:gene-gendel

150

6. Scrum Masters

Guide: Especially Pay Attention To...
Some areas are frequent pain areas that require special attention:

see Product Owner
chapter.

> Dysfunctional Product Owner—Teams relationship
There is often a historical distrust between the Product Owner
and the teams. The cause is a Product Owner’s forcing commit-
ments, a behavior that causes havoc in development.

> Dysfunctional Teams—Product Owner relationship
Actually producing “done” functionality at every Sprint seems diffi-
cult for many teams. One reason is that those teams are accus-
tomed to worrying only about far-away deadlines and don’t care
about the Sprint. Product Owners make it worse by being “nice” to
the team and “accepting” unfinished work, thereby causing even
more negligence.

> Us vs. them
The emergence of opposing groups that point to one another
without themselves taking action, makes everyone lose. Example:
Teams vs. Product Owner, Teams vs. managers, one site vs.
another site.

> Adopting Scrum without change
“We want to adopt LeSS but we don’t want to change anything.” As
insane as this might sound, it’s common. Organizations love play-
ing the big renaming game. They attach new labels to old ideas, and
tada! They’ve adopted LeSS. Great, what’s next?

> Scrum Master as team assistant or anti-Scrum Master
Don’t be a team-assistant who books meetings and arranges cof-
fee. Neither be the anti-Scrum Master who was assigned this role
but doesn’t give a damn.

> Remote Scrum Master
Ensure that the Scrum Master is at the same site as her team(s).
The Scrum Master needs to experience the actual work of the
team(s) so that she can figure out how to help them and the orga-
nization.

> Scrum Master as project manager
This was already mentioned but seems worth repeating. A Scrum
Master is not a project manager. Project managers manage the

https://less.works For Gene Gendel only, id:gene-gendel

151

LeSS Huge

project by scheduling work, tracking progress, coordinating and
taking actions to get the project back on planned schedule. Scrum
Masters do not do any of that and are not responsible for a proj-
ect. They are not the contact point for the project nor for the
team. Instead their focus is building great teams, creating a
healthy organizational environment, and educating.

LESS HUGE
The Scrum Master role in LeSS Huge is essentially the same and so LeSS
Huge doesn’t add additional rules related to the Scrum Master.

Guide: Avoid Requirement Area Silos
see Organizing by
Customer Value
chapter.

The most common problem in LeSS Huge is this: No cooperation
between Requirement Areas. The problem arises most frequently when
the organizational structure, site organization, and Requirement Areas
are mapped one-to-one. As Scrum Master, you need to help avoid this.

Tips:

Product Owner
Team: See Product
Owner chapter

> Pick one Scrum Master who helps the Product Owner Team and
gives them improvement feedback.

> Have a Scrum Master for two teams, each belonging to different
Requirement Areas.

> Organize the previously mentioned LeSS community events (such
as internal gatherings) across Requirement Areas.

> Organize a multi-area Retrospective and/or Review spanning at
least two areas.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

LeSS Product

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Product 156
• Guide: What Is Your Product? 157
• Guide: Define Your Product 162
• Guide: Expanding Product Definition 168
• Guide: Product over Project or Program 168

LeSS Huge 169

Two products or one?

Contents

https://less.works For Gene Gendel only, id:gene-gendel

155

7
PRODUCT

Any product that needs a manual to work is broken.
—Elon Musk

ONE-TEAM SCRUM
Early Scrum was confused.

Most early Scrum descriptions refer to Scrum as a framework for man-
aging complex projects. Ken Schwaber, one of the creators of Scrum,
wrote Agile Project Management with Scrum, which opened with “I offer
you Scrum, a most perplexing and paradoxical process for managing
complex projects.” This feels strange as Scrum has always been about
products, not projects. There is a Product Backlog and a Product Owner,
not a project plan and neither a project manager.

Luckily, this confusion is resolved. The Scrum Guide now states, “Scrum
is a framework for developing and sustaining complex products” and
eliminated projects.1 Does that matter? Hugely! As we’ll touch upon in
this chapter:

see Adoption Guide
Getting Started

What is your product? The Scrum Guide is silent on what product means
and what the scope of that product is. Perhaps because it’s obvious? In
large-scale development the definition of product is rarely obvious and
one of the most important decisions you’ll make.

1. Except noting that each Sprint is like a mini-project.

Managing work as products rather than projects changes
structures, decisions, and behaviors in product development

https://less.works For Gene Gendel only, id:gene-gendel

156

7. Product

LESS PRODUCT
Why is the definition of product important? It will define the level and
size of the Product Backlog, determine who are your end-customers,
and who is a suitable Product Owner.

It also makes LeSS Huge more common than people would expect. A
broader product definition often has more teams working on that prod-
uct which leads to LeSS adoptions becoming LeSS Huge.

When scaling, principles related to product definition include:

Whole-product focus—Obviously, different product definitions lead to
different focus. What product definition can lead to a broad perspective
while still be meaningful enough to deserve focus?

Systems thinking & Continuous improvement towards perfection—
Different product definitions lead to a broader or narrower perspec-
tive. Assuming broader product definitions are advantageous, what sys-
tem dynamics does it cause? If the product definition is flexible, can it
aid in continuous improvement?

Customer-centric—Whatever product definition is chosen, it must stay
customer-centric. Will broadening the product definition be more or
less customer-centric? From this perspective, are there different direc-
tions of expanding the product definition that are better or worse?

More with LeSS—Broader product definitions lead to LeSS Huge being
more common than initially expected. Does this just add complexity or
will it lead to more with LeSS?

https://less.works For Gene Gendel only, id:gene-gendel

157

LeSS Product

• LeSS Rules •

Guide: What Is Your Product?
The Product Owner prioritizes the Product Backlog, and the Teams
incrementally build the product while keeping a whole-product focus.
But what is the product? Is the product the output of the teams? Or
whatever your current department happens to build? Or is it a compo-
nent? A framework? A platform? Does it matter?

It matters. The product definition determines the scope of your Product
Backlog and who makes a good Product Owner. When adopting LeSS, it
determines the amount of organizational change you can expect and
who needs to be involved. The question “What is your product?” might
sound simple, but it isn’t. It is an essential choice.

You can choose to define your product narrowly. Suppose that a compo-
nent developed by twenty teams is the “product.” That leads to a non-
customer-centric technical Product Owner and technical items on the
Product Backlog. Is that bad? Yes. It can’t be sold, it is not customer-cen-
tric, it doesn’t deliver customer value, and it often leads to building tech-
nical cool stuff that isn’t used or usable.

Alternatively, you can choose to define your product broadly. Broader
definitions tend to be more customer-centric. Yet, when your product
definition is too broad, it becomes impractical, as it may cover less
friendly departments or even different companies. Also, it becomes
increasingly hard to express a clear and compelling product vision.

So, what product definition to choose?

In LeSS, broader product definitions are preferred because they lead to:

The definition of product should be as broad and end-user/
customer centric as is practical. Over time, the definition of
product might increase. Broader definitions are preferred.

https://less.works For Gene Gendel only, id:gene-gendel

158

7. Product

> enabling more customer-centric and finer-grained prioritization—
all in all, a better overview of the development and the product

> resolving dependencies using feature teams

> thinking together with the customer—more focusing on the real
problem and impact than on the requested “requirements”

> avoiding duplicate functionality

> creating simpler organizations

Enabling customer-centric and better prioritization—Narrow prod-
uct definitions lead to many separate small Product Backlogs. How can
you prioritize across them? How do you know there is a mismatch in pri-
ority, as there is no overview? The result? At best, big-batch coarse-
grained prioritization between backlogs rather than item level. But
more commonly, political games to promote one’s favorite team that is
hyper-productively continuously delivering low-value items. In contrast,
with a broad product definition all items are in the same backlog,
thereby enabling fine-grained prioritization and increasing the over-
view in development and product.

Resolving dependencies—Narrow product definitions cause depen-
dencies between separate products. Consider a platform product with a
few “application products” built on top of it. The dependencies between
them are managed by creating coordination roles who do lots of addi-
tional planning. These so-called products are, in fact, just components of
a larger product, and the techniques to deal with dependencies are the
same as used in component-team organizations. But we can resolve
these dependencies differently. With a broader product definition
those “dependencies” are within the same product. They can be
resolved by giving a feature team the end-customer-centric feature
that spans platform and application. This avoids additional roles and
complexity.

Thinking with customers—A narrow product definition limits the pos-
sible solutions to real customer problems to the current product scope.
For example, a customer requests the ability to export data in XML so
that another “application product” can import that data. If the product
definition were one of those applications—narrow—then it would be
implemented as requested since the requirements (solutions) are lim-

https://less.works For Gene Gendel only, id:gene-gendel

159

LeSS Product

ited to the product scope. But if the product definition were broader, it
would increase the creative scope of the teams, who could explore bet-
ter solutions to what the user is trying to achieve. In the case of data
export, the teams might figure out a way to link the applications, thus
eliminating the manual exporting and importing by the user.

Avoiding duplicate product functionality—A narrow product defini-
tion can lead to some similar products or product variants. These end
up as separate departments who have or will have separate code repos-
itories. When similar or the same product functionality is needed in
multiple products, they end up with either (1) porting the functionality
from the first product to the others, which tends to involve additional
coordination and code clarification and rarely works well (2) re-imple-
menting the same functionality for the different products, or (3) creat-
ing a new internal “component product” and moving the functionality
there, with all the associated organizational complexity.

With a broader product definition, though, the product variants are
managed as one, through one Product Backlog. This leads to one shared
code repository and avoids the need to re-implement the same func-
tionality multiple times. It also leads to simpler organizations.

Creating simpler organizations—A narrow product definition leads to
additional organizational structures for the work and decisions between
“products.” For example, the resolving dependencies section mentioned
coordinator roles. Another example of this additional structure is project
(or program) portfolio management, which boils down to big-batch
requirements prioritization. The work from the narrowly defined prod-
ucts must be somehow prioritized and funded. Traditionally, the solu-
tion is project portfolio management whereby big batches of
requirements—projects or programs—are periodically prioritized and
funded together. Notice that the apparent need for this portfolio manage-
ment is a consequence of complexity created by the narrow product defini-
tions!

In contrast, a broad product definition would cause all work to be in
the same Product Backlog: leading to all prioritization going through

https://less.works For Gene Gendel only, id:gene-gendel

160

7. Product

the one Product Backlog. This eliminates the need for the now obsolete
project portfolio management, leading to a simpler organization.2

Restraining Forces that Narrow a Product Definition

So broader product definitions are preferred. However, taking this to
the extreme would lead to one Product Backlog for The World. What
restrains the product definition? In short, commonality and structures.

Commonality—The items in the backlog must have some common rea-
son for belonging to the same product. Three key commonalities
restrain the product definition:

> Vision
A common product vision motivates people and facilitates
bounded creativity. A too-broad product definition would general-
ize the vision to “Do Stuff” and people would stop caring. So prefer
all items to be towards a common meaningful vision.

> Customers or markets
Multiple related smallish products might serve the same custom-
ers or markets. Having the product definition include all these
smallish products eases prioritization and encourages teams to
explore unserved customer problems. But a too-broad product
definition containing all possible customers makes it impossible to
figure out whose problems to focus on. So prefer all items to be for
a clear and usually related set of customers.

> Domain
Multiple products in the same domain often share a significant
amount of similar functionality (or implementation) and require
the same domain knowledge. Thus, broadening the product defini-

LeSS de-scales organizational complexity by broader product
definitions, dissolving unnecessary complex organizational

solutions and solving them in simpler ways.

2. Company-level product portfolio management makes decisions about which markets
the company wants to be in. That will probably remain in very large companies.

https://less.works For Gene Gendel only, id:gene-gendel

161

LeSS Product

tion avoids duplicating functionality and allows for finer-grained
prioritization. But, when the product definition was expanded to
multiple domains—too broad—then no domain specialization
would be allowed, causing the teams to forever learn new things
without ever building anything. So all items should be in one or a
few clear customer domains.

The questions about commonalities lead to both narrowing and broad-
ening the product definition.

Existing structures—These also restrain how broad the product defini-
tion can be. The teams working from the backlog work within the same
Sprint, coordinate and integrate their work together, and deliver one
integrated product increment.3 Organizational structures need to
change when adopting LeSS, but sometimes existing structures prevent
a broad product definition… for now. Two existing structures that might
prevent a broad product definition are companies and departments:

> Companies
A part of the product might be built by another company. That can
limit the product definition. Below are three common types of lim-
iting multi-company structures:

> Hired teams or outsourced development—The teams in the
other company work only on this product. Thus they should
work from the same Product Backlog and in the same Sprint.
Avoid letting this constrain your product definition for long.
Also avoid giving the other company one component, as that
leads to component-team structures with all its associated
problems.

> Customized components—The other company customizes
their generic product, which is a component in yours. They
probably can’t work from the same Product Backlog as they
have multiple customers. At least try to have them continuously
integrate their product and customizations to our codebase.

> Generic components—Either your company is creating a
generic component that is part of a larger product, or your com-

3. The one integrated product increment can consist of multiple deliverables or even
multiple sellable products. That’s a big idea we don’t expand on in this introduction.

https://less.works For Gene Gendel only, id:gene-gendel

162

7. Product

pany is using a generic component made by another company.
Either way, the teams building the component will never work
from the same Product Backlog and in the same Sprint.

> Departments
LeSS adoption usually involves structural change. However, the
existing departmental structures can influence the amount of
change and restrain the product definition. For example, applica-
tion A runs on platform X. Platform X is also built internally and
has only a few applications built on top of it. If product A and plat-
form X are organizationally close, they should merge when adopt-
ing LeSS. Neither A nor X is an individual product but both are part
of a broader product definition. However, if the only common
manager is the CEO five levels up the hierarchy, then merging
them would require a CEO-level decision. That would be impracti-
cal and would prevent the LeSS adoption from starting. So, tempo-
rarily create or continue with narrow product definitions for A and
X but try to expand those over time.

Guide: Expanding
Product Definition,
p. 168

The previous section mentions a key point: Product definitions can
change over time. This is explored later in a separate guide.

Guide: Define Your Product
Deciding on your current product definition and the potential future
expansion is an important adoption step. It is usually done with early
continuous discussions or sometimes in a more focused workshop.

We approach it by first exploring the expanding forces and then the
restraining ones. We take the following steps:

Step 1: Expand Product Definition as Broad as Possible
Take whatever you consider your current product and ask the following
product definition-expanding questions:

> What would the end customers answer if we ask them, “What
is our product?”
This question eliminates technical internal products and increases
the customer focus.

https://less.works For Gene Gendel only, id:gene-gendel

163

LeSS Product

> Do we have components that are shared or functionality that is
the same across our current products?
This question looks for product families that might be treated as
one.

> Our product is part of? What problem does the product solve
for end-customers?
These questions explore larger products or systems that your
product belongs to.

Step 2: Restrain the Product Definition as Practical
Explore the restraining forces by asking these questions:

> What is the product vision? Who are the customers? What is
the product’s customer domain?
These questions explore the commonality that must exist within
the product.

> What development is within our company? How much struc-
tural change is practical?
These questions explore the structural boundaries of the product
definition.

Step 3: Decide Initial Product Definition
Compare the broad product definition (outcome of step #1) with the
practical product definition (outcome of step #2) and explore what is a
good future product definition. What changes are needed to achieve
that?

The output of these steps is the initial product definition and ideas for
how to expand it in the future.

Examples of Product Definitions
Following are three examples of product definitions. NB! They are sim-
plified as each could be a book in themselves.

https://less.works For Gene Gendel only, id:gene-gendel

164

7. Product

Financial Trading

A financial trading group is often organized by financial product type
(e.g. securities, derivatives) and further subdivided into a front office
(deal making) and back office (processing). Each has its own business
plus support development department.

A simplified trade-life cycle: pricing, capture, validation and enrichment,
and settlement. For each step there is a component (or “application”)
such as the Derivatives Pricing component or the Securities Settlement
component. There is arguably 50% or higher duplication of functionality
between components across the product types.

The traditional structure is component teams, with the view that the
Securities Settlement component is a product, and so forth. Is it? Let’s
apply the expanding and restraining questions:

> What would end-customers say if we ask, “What is our prod-
uct?”
Probably “complete trading solution” or “complete securities trad-
ing solution”.

> Do we have shared components or functionality that is the
same across our current products?
Yes, such as Reference Data and Market Data, and some are poten-
tially shared but currently separated with high (but hidden) levels
of duplication, such as Settlement, Trade Capture, etc.

> Our product is part of?
If it’s claimed that Securities Settlement is the product, it’s part of
Securities Back Office, which is part of Securities Trading, which
may be part of a larger Financial Trading. Taking that further, the
Financial Trading product is part of the Financial Trading system
that includes several such products and exchanges.

These expanding answers point to defining the product as one that
allows customers to trade. It would span securities and derivatives, front
to back, and potentially even more. What restrains this?—only focusing
on the key questions:

https://less.works For Gene Gendel only, id:gene-gendel

165

LeSS Product

> What development is within our company?
Our trading system development is all within our company, but the
systems of the securities exchanges are outside. This definitively
restrains the definition.

> How much structural change is practical?
Securities and Derivatives are in different profit and loss centers,
and the front-end traders specialize in one financial product. The
managing directors of these groups aren’t very concerned about
company-wide technology efficiency—unless pushed by the CEO.
Thus, it isn’t yet practical to broaden across the financial product
types.
The front/back office technology subdivision encompasses com-
ponents that no doubt should be within one broader product such
as a broader front-to-back Securities Trading product. But the sepa-
rate directors will fight hard to keep their fiefdoms, and no one
higher in the organization is yet focused on or especially con-
cerned about merging them. Merging the front and back office is
currently politically impractical.

In conclusion, most of the restraining answers support one overall Trad-
ing product that does not include the external securities exchanges. But
the last question—How much structural change is practical?—points to
political restraints that narrow the products further. Therefore the real-
istic starting point of defining products might be four products: (1) Securi-
ties Trading front office, (2) Securities Trading back office, (3) Derivatives
Trading front office, and (4) Derivatives Trading back office.

In the future, the likely next step is to merge Securities front and back
office products into one Securities Trading product, and likewise for one
Derivatives Trading product.

Telecom: Base Stations

A base station is the part of a telecom network that talks to your phone
and connects it to the Internet. Usually, thousands of people are
involved in developing a base station. Each generation of telecom net-
work (2G-GSM, 3G-WCDMA, 4G-LTE, 5G) has a different variant of
base station. These variants have different functionality running on dif-
ferent hardware. And within each generation, there might be sub-vari-

https://less.works For Gene Gendel only, id:gene-gendel

166

7. Product

ants with different technology for different markets. For example, for
LTE there are a TDD-LTE and a FDD-LTE sub-variant. A telecom group
is often organized around these sub-variants.

One base station variant consists of some major components: Platform,
Application, and several others. The Platform is shared across several
variants and is traditionally a separate department from the Applica-
tion.

At first, the definition of product seems trivial. But when it is explored
with the expanding and restraining questions, it turns out to be far from
trivial. We explore only some of the most important questions.

> What would end-customers say if we ask “What is our prod-
uct?”
In that case, if we decide an end-customer is a telecom operator,
such as AT&T, then they would say: one specific base-station vari-
ant such as a TD-LTE base station.

> Do we have components shared or functionality that is the
same across our current products?
Yes. The functionality of the variants are similar and they share a
common Platform component, suggesting that they are just one
product.

> What problem does the product solve for end-customers?
A single base station by itself does not deliver any value or useful
functionality without the support of the phone and other compo-
nents in a telecom network. In fact, a base station is just a compo-
nent in a larger network, which suggests the expanded product
ought to be the entire telecom network.

The expanding questions lead to the entire telecom network as the
product. That would be pretty funny to everyone in telecom, so let’s use
the restraining questions to explore why:

> What development is within our company?
A telecom network potentially involves elements from many ven-
dors and thus would be impossible to treat as one product. But all
variants of base stations are within one company, so it would make
sense to define the product as base station (covering all variants).

https://less.works For Gene Gendel only, id:gene-gendel

167

LeSS Product

> How much structural change is practical?
Different base station variants have their own departments and
separate code repositories… that have a common origin but got
split off along the way. Merging the departments would be, in the
short run, politically hard to achieve, and merging the code reposi-
tories would be an enormous amount of work.
The Platform component that is shared between variants also has
its own department and thus the organization will initially resist
the inclusion of Platform within one variant. All this seriously
restrains the product definition.

Conclusion? Unfortunately, the initial product definition must be one
variant of the base station, albeit with an annoying external dependency
on the Platform component, leading to internal component team
dynamics. Over time, the product definition should include Platform
and expand to cover more variants.

Online Banking

We keep this example short, but include it because of its important con-
clusion.

A banking group initially viewed online banking as their product. How-
ever, when exploring the expanding questions, they quickly realized that
online banking by itself was not a product at all. Instead, it was one
channel towards their real product—core banking services. After they
exposed online banking for the component it really was, they realized it
was the root cause of a lot of unnecessary complexity, such as synchro-
nization between “products,” program management, and project portfo-
lio management.

Unfortunately, the restraining forces exposed the political difficulty of
merging their group within the real product, and hence their initial
product definition is still just online banking. In this case, however, it
wasn’t their product definition that should expand. Instead the core
banking services product needs to extend to include online banking.

https://less.works For Gene Gendel only, id:gene-gendel

168

7. Product

Guide: Expanding Product Definition
The previous guides determined that the product definition is a choice
and explored how the restraining forces can cause the initial product
definition to be less than perfect. This opens the door for using the
product definition as a tool for continuous improvement.

See Definition of
Done chapter

During the life of the product, the organization must constantly ask
themselves, “What prevents us from expanding the product definition?”
The answers provide actions for future organizational improvement. In
this sense, the product definition plays a role similar to that of the Defi-
nition of Done, except that the product definition tends to be harder to
expand, as the organizational impact tends to be bigger, involving, as it
does, different departments with their own goals, P&L, and politics.

Guide: Product over Project or Program
With the popularity of project management, most companies seem to
assume that all work must be organized around projects or programs.
But what defines projects? A project has a clear start-date, a clear end-
date that will be missed, and sort-of a fixed scope. Decisions, status
tracking, and budgeting are based on the short-term project goal. The
project ends with a release, and when a project is done, it’s done.

Products are not like that!

Instead, products have a clear-ish start-date, an unclear end-date, and a
clear purpose with an unclear and evolving scope. They will be around
longer than you expect! One product has multiple releases that are just
points in time in which the product is shipped to the customer. Examples
of products include nearly all software development. Not only obvious
products such as mass-market software or online service products, but
also less obvious internal products such as trading systems. Products out-
live projects.

People are so accustomed to projects that they forget to notice that the
usage of many projects in companies is to build and extend products.
But that’s a mistake! Managing products as projects has severe disad-
vantages. These include: (1) decisions of long-term versus short-term
trade-offs will be made based on the short-term, (2) frequent fantastical

https://less.works For Gene Gendel only, id:gene-gendel

169

LeSS Huge

budget processes, (3) overhead of starting and stopping projects, and
(4) temporary teams or even temporary employees.

LeSS prefers managing products as products. That means one Product
Owner with one Product Backlog for the lifetime of the product. Advan-
tages include (1) proper perspective on short-/long-term trade-offs, (2)
financing based on the future value of the product rather than on spe-
cific features, (3) elimination of project and program structures and the
associated overhead, and (4) stable long-term teams.

Much more can be said about the project/product distinction and its
organizational impact. It probably deserves a book by itself.

LESS HUGE
The preference for broader product definitions leads to more LeSS
Huge cases than most people would expect. In the cases where the ear-
lier narrower product definitions were at least customer-centric, these
smaller products might become Requirement Areas of a single larger
product definition. For example, in the Financial Trading product men-
tioned earlier, the Requirements Areas would probably be Securities
and Derivatives.

Don’t manage products using projects or programs!

https://less.works For Gene Gendel only, id:gene-gendel

Product Owner in LeSS 171
• Guide: Who Should be Product Owner? 173
• Guide: Start Early or Messy with a Temporary

Fake Product Owner 176
• Guide: Who Are Those Users/Customers? 177
• Guide: Prioritization over Clarification 178
• Guide: Don’t Do It 178
• Guide: Product Owner Helpers 179
• Guide: Five Relationships 180
• Guide: Customer Collaborations over… 187
• Guide: Ship at Least Every Sprint 189
• Guide: Don’t Be Nice 189
• Guide: Let Go 190
• Guide: Don’t Let Undone Work

Be Your Undoing 191
• Guide: LeSS Meetings 192

LeSS Huge 192
• Guide: LeSS Huge Product Owner 193
• Guide: Area Product Owners 194
• Guide: PO Team Helped by Scrum Master 195

Product Owner Team prioritizing in LeSS Huge group

Contents

https://less.works For Gene Gendel only, id:gene-gendel

171

8
PRODUCT OWNER
Personally, I'm always ready to learn, although I do not always like being taught.

—Winston Churchill

ONE-TEAM SCRUM
One Product Owner is responsible for the vision of a great product for
customers, and optimizing its impacts (ROI, …). As Product Owner, you
continuously evolve the Product Backlog, adding, removing, and re-pri-
oritizing (re-ordering) items based on learning and adapting to changes.
And you maintain transparency by keeping it visible to higher manage-
ment, the Team, and customers. You work with the Team and customers
to ensure that items are clear. You adaptively decide what items to offer
each new Sprint, though only the Team decides how much to select.
Only the Product Owner can give work to the Team. The Scrum Master
coaches the Product Owner in her role and responsibilities.

PRODUCT OWNER IN LESS
When scaling, these principles relate to the Product Owner:

Whole-product focus—It’s easy in large-scale product development
for sandboxes to be created where people play with their part. One Prod-
uct Owner with one Product Backlog underpins whole-product focus.

Lean Thinking: Avoiding overburden—How to have one Product
Owner with many teams while keeping the Product Owner’s workload
manageable? Many of the guides in this chapter address this, such as
delegating most clarification work to the teams, and connecting teams
directly with customers/users.

https://less.works For Gene Gendel only, id:gene-gendel

172

8. Product Owner

Large-Scale Scrum is Scrum; Systems Thinking—Real Scrum implies
the end of the contract game, the traditional model where a fixed scope
and date internal “contract” is first negotiated between business and
development, and then development executes a project to deliver the
contract. To be clear: Scrum is not a more efficient mechanism for deliv-
ering the internal contract; it is a paradigm shift to customer collabora-
tion and adaption, shipping every Sprint, with someone from the
business side with decision-making authority acting as Product Owner.
In large-scale traditional development this contract game is baked into
the organizational design, with a program-management office responsi-
ble for the internal contract and myriad related positions, policies, and
processes. When LeSS is introduced into this environment, it is incor-
rectly viewed as something that fits into the current model rather than
replacing it. And consequently the Product Owner role is incorrectly
believed to be held by a program or project manager.

More with less—It’s possible in LeSS to effectively scale the Product
Owner role with just one person. Less roles, positions, and complexity.

• LeSS Rules •

There is one Product Owner and one Product Backlog for the
complete shippable product.

The Product Owner shouldn’t work alone on Product Backlog
refinement; it is mostly done by the multiple Teams working
directly with customers, users, and other stakeholders.

All prioritization (ordering) goes through the Product Owner,
but clarification is as much as possible directly between the
Teams and customer, users, and other stakeholders.

https://less.works For Gene Gendel only, id:gene-gendel

173

Product Owner in LeSS

Guide: Who Should be Product Owner?
In a group adopting LeSS, where to find a Product Owner?

Step 1: Know Your Development Type
Where to find a Product Owner depends on the type of development.
Figure 8.1 summarizes the major cases.

Product development—For external customers or a market.

Internal (product) development—For one or more groups within the
company. The development group is called IT, Technology, or Systems
Development.

see also
agilecontracts.com

Project development—Usually for one external customer. The work is
organized and contracted as a project of some kind, though that does
not necessarily mean a fixed scope/date/cost project contract. The
development company is usually an outsourcer or systems integrator.
Within the client company are both the paying customer and the users,
who are not always in the same department.

Step 2: Find a Product Owner
Product development—The company will have either (1) a business
unit driving the product initiative (e.g. Retail Banking) or (2) a Product
Management department. Traditional Product Management is responsi-
ble for customer and competitor analysis, product vision, coarse-
grained feature selection and prioritization, product roadmap, and
more. They don’t manage the work of a traditional development group,
which is instead handled by the Development management who (appar-
ently) take responsibility for meeting the internal big-batch scope-and-
date “commitment”, coordinating between teams, and more.

Where to find a Product Owner for a group adopting LeSS? If there’s a
Product Management department, then a Product Manager is a good
choice. Otherwise, a person in the business unit that’s driving the initiative.

https://less.works For Gene Gendel only, id:gene-gendel

http://www.agilecontracts.com

174

8. Product Owner

Figure 8.1 types of
development & PO
location

https://less.works For Gene Gendel only, id:gene-gendel

175

Product Owner in LeSS

Internal (product) development—A good Product Owner in LeSS (1) is
from within the group that will use the system, and (2) is closely
involved in and deeply experienced in doing the real work that the sys-
tem will support. They are very close to the real users. And once they
become Product Owner, they need to have serious and independent
decision-making authority about the product.

(Outsourced) project development—The key point is that a Product
Owner is from the company receiving the system and, as with internal
development, is involved in and deeply experienced in the hands-on
work, close to users.

A common variant for both internal and project development is the case
when the system will be used by many departments. Then, a good
choice for Product Owner is an experienced hands-on candidate from
one of the major user departments who is interested in taking on the
role and is politically savvy.

Finally, in all cases, a great Product Owner has a passion for the product,
political savvy, and charisma. No problem!

Step 3: Give Authority and Responsibility to the Product Owner

A Product Owner is not a new name for a traditional project or program
manager who delivers a scope and date contract of work, or for a sub-
ject-matter expert. Rather, as Product Owner, you have the indepen-
dent authority to make serious business decisions, to choose and
change content, release dates, priorities, vision, etc. Of course you col-
laborate with stakeholders, but a real Product Owner has the final deci-
sion-making authority.

Multi-Site Tip: Close to Customers over Teams

It’s more important—leaving aside the global mass-market case—for the
Product Owner to be physically close to customers and users, rather
than with teams. As a Product Owner, don’t co-locate with the teams
rather than with customers; you will become too inward focused and
lose sight of paying customers and users.

https://less.works For Gene Gendel only, id:gene-gendel

176

8. Product Owner

An implication is that there will be multi-site meetings (Sprint Planning
One, …) with remote teams. Such meetings can work relatively effec-
tively with great video collaboration tools; we’ve seen it many times.

Guide: Start Early or Messy with a Temporary
Fake Product Owner

Usually a LeSS adoption is driven from within the development group.
Suppose the group decides, “Let’s first find a great business-side Prod-
uct Owner and then start the adoption.” Potential problems:

> A later start—Business-side people who didn’t initiate the change
are busy, being asked to get involved in something big, don’t com-
prehend any benefits, and don’t know how to act as a Product
Owner. So it will take time to find and prepare someone.

> A messy start—When the group starts their first (or second)
Sprint, the results can range from a little messy all the way up to a
train wreck. A mountain of problems may have been exposed. In
the best case, a novice business-side Product Owner will under-
stand what’s going on, and have patience. But in the worst case
she just sees a mess. Their conclusion? “LeSS is making everything
worse, and I don’t know why I should be involved at this early
phase when nothing is done.”

Therefore, an option in this context is to quickly start a LeSS adoption with
a temporary fake Product Owner who understands what’s going on, can
perform the mechanics of the role but is not from the business side,
doesn’t have the specialized business knowledge, and doesn’t have ROI
responsibility. Complete a few Sprints until the major kinks are worked
out, and—important!—the group can deliver a truly “done” shippable
increment (or something close) every Sprint. Why? When development
people go to the business group and invite them to participate with a
real Product Owner, they can show a compelling new capability that
offers very tangible business benefit. That’s attractive!

It’s terribly important that everyone understand that the temporary
fake Product Owner is… a fake. And is replaced as soon as possible. It
helps to literally use the name Fake Product Owner.

https://less.works For Gene Gendel only, id:gene-gendel

177

Product Owner in LeSS

Guide: Who Are Those Users/Customers?
By customers we mean people who buy, acquire, or choose stuff or are
deeply involved in the commercial decisions.

Users are a bit more complicated, especially in large-scale development
where organizational silos have made it difficult for developers to know
who the users are. By users we usually mean—though not always—the
hands-on people using the product. These are not always the same as
the paying customer or senior decision makers. Who and where are
they? Or more specifically, who is the source of needs and require-
ments, and who should validate features and provide feedback?

 Type Sub-type Who is the source of requirements?a Who validates &
gives feedback?

Product
development

Innovation-centric,
and/or strongly influ-
enced by new tech-
nologies and/or
standards-driven.

No real users or even proxies provide
requirements. Rather, requirements come
internally from product managers (includ-
ing the Product Owner), team members,
etc.

Pseudo-users: candi-
date users, internal
volunteers, and
users of prior
related products.

Product
development

Driven by customer
requirements, and
it’s a mass market.

User proxies such as product managers,
marketers, team members, and other cus-
tomer- or market-facing experts. Use focus
groups of candidate or existing users.

source

Product
development

Driven by customer
requirements, and
there are only, say,
50 customers.

Hands-on users at multiple customers. source

Internal
development

Regular. Internal hands-on users. source

Internal
development

Special change initia-
tive, e.g. regulatory.

The source of the special change, such as a
policy maker or regulator.

source

Project devel-
opment

Hands-on users at the one paying cus-
tomer.

source

a. This is an illustrative introduction; not meant to be thorough or in-depth.

https://less.works For Gene Gendel only, id:gene-gendel

178

8. Product Owner

In most of these cases, the LeSS goal is to dramatically increase direct
collaboration between developers and the people who are the true
source of requirements for clarifying requirements.1 But it’s a big shift in
mindset and behavior that challenges status quo positions and pro-
cesses. So the Product Owner needs to proactively ensure that the old
structures are replaced and to act as a connector of developers and
users.

Guide: Prioritization over Clarification
There are two key information flows in Scrum related to the Product
Owner: (1) Adaptively deciding the direction to evolve the product and
reflecting that decision in Product Backlog prioritization, and (2) Dis-
covering and clarifying the details of user needs and items. In the first
flow (direction and prioritization), information is sought and analyzed
related to profit drivers, strategic customers, business risks, etc. In the
second flow (details and clarification), the objective is to discover the
fine-grained behavior and qualities of items, the user experience, etc.

Guide: Prioritiza-
tion over Clarifica-
tion, p. 178

As Product Owner, you focus on thinking hard about direction and pri-
oritization, but delegate to the teams as much of the detailed discovery
as possible. You encourage and help teams enter in a direct conversa-
tion with users, acting as a connector, not an intermediary. In short, you
are mostly focusing on prioritization rather than detailed clarification,
which is delegated to the teams.

Guide: Don’t Do It
You might be wondering, “Wow, can one person acting as Product
Owner effectively do the work for a product with six teams, lots of
requirements, and a gazillion stakeholders?”

As a LeSS Product Owner, it’s easy to get overloaded. You are the one
steering the development to achieve the product vision and are
involved with so much, including all of these:

> direction & prioritization—deciding where to evolve to next

1. Throughout, user preferably means truly hands-on people or variants.

https://less.works For Gene Gendel only, id:gene-gendel

179

Product Owner in LeSS

> vision, evolution, and adopting technologies—taking a long-term
view

> relationships and politics—keeping everyone happy (enough)

> judging & predicting—evaluating markets and competitors

Those are core responsibilities; the Product Owner should focus on
them. But there are other time vampires that suck up time:

> clarification—discovering the details of what items mean

> administrative work—reporting and tracking metrics

> cross-department coordination—correlating manufacturing, sales,
etc.

> learning about markets, technologies, and competitors

That stuff should be delegated, preferably to the teams. And the Prod-
uct Owner should not be doing these tasks:

> managing dependencies or coordinating between teams

> predicting and planning the work of the teams

> challenging estimates

> more generally, carrying information between people

Guide: Product Owner Helpers
Building on the last guide: Share the Product Owner work. With whom?

Teams—First and foremost, use the teams. Erode the walls between
development and product management work, and engage teams
increasingly in the business. Not only does this share the work, it can
increase engagement and seeing the whole. Did anyone consider asking
a team to learn how to do a market study? Try it! Plan this simply by add-
ing items (“market study”, etc.) to the Product Backlog. And, as men-
tioned, delegate item clarification and meeting with users to the teams.

Product managers—If the Product Owner is part of a Product Manage-
ment group, she can ask other product managers for help.

https://less.works For Gene Gendel only, id:gene-gendel

180

8. Product Owner

Step 2. Discover
Which Activities
Can Be Done Each
Sprint, p. 232

Release manager/coordinator—Large products can have myriad
other-department tasks to actually ship, such as preparation for cus-
tomer support, sales support, and manufacturing. In traditional big
groups the coordination is handled by someone often called a release
manager. If the LeSS adoption still has Undone Work that includes
cross-department coordination tasks, don’t have the Product Owner do
it. If it’s small work, a regular team member should do it. But if it’s big work,
such as shipping telecom equipment, it’s probably a full-time role still
for the existing release manager. At least, until there is a perfect Defini-
tion of Done. And, a release manager serves and supports the Product
Owner and the teams; not vice versa.

The Product Owner
Team, p. 193

If a helper is so busy that it’s a full-time job (such as a cross-department
coordinator for telecom equipment release), then she is part of the
“Product Owner Team.” That said, the core meaning of “Product Owner
Team” is a LeSS Huge framework term, meaning the Product Owner plus
all Area Product Owners.

Guide: Five Relationships
A Product Owner needs to understand the five key relationships shown
in Figure 8.2 that exist in large-scale development groups.

Many groups that adopt LeSS quickly grasp the Product Owner–Teams
relationship, but don’t appreciate the others as much, even though they
are important for being a successful Product Owner. So the upcoming
sections expand on them all.

Product Owner–Teams
Traditional groups: strong silos. We’ve worked with groups where the
product or business managers (one of whom will be Product Owner)
have never worked with (or even seen) developers. Then there’s a lack of

Caution! No analysts, specification writers, UI/UX
designers, or architects in a “Product Owner Team.” That

would maintain the status quo problems and structures under
a new label. Specialists join normal feature teams.

https://less.works For Gene Gendel only, id:gene-gendel

181

Product Owner in LeSS

trust or understanding on both sides when both parties come together.
Know that developers take pride and pleasure in creating features.
They will go the extra mile when they have a sense of purpose, and they
are directly connected with hands-on users.

From the Product Owner, the teams need to know the product and mar-
ket vision, and what to create next. To the Product Owner, information
needs to flow about what the teams require and how she can help them.

Figure 8.2 five
relationships with
the Product Owner

Tips:

Guide: Overall PBR,
p. 251

> Own it together—Although one person has the title of Product
Owner, in a great business the structures and culture encourage
everyone to have an intrinsic sense of ownership and feel it’s their
product too. The Product Owner fosters that by seeking input
from Teams during overall Product Backlog Refinement and Sprint
Review and asking for help with more business-oriented tasks.

Guide: LeSS Organi-
zational Structure,
p. 97

> Peers, not peons—If teams report to the Product Owner directly
or indirectly in a hierarchical power relationship, that structure
needs to change so that the teams and the Product Owner are
peers collaborating. The Product Owner doesn’t treat teams like
peons for tasks, but fosters a collaborative relationship.

https://less.works For Gene Gendel only, id:gene-gendel

182

8. Product Owner

> Ask Teams for help—Maybe the Product Owner is feeling over-
burdened with tough product management tasks. There is a legion
of smart people—the teams—and they will help if asked.

Guide: Theory Y
Management, p. 117

> Build trust—A foundation of trust is transparency; demonstrate
that in the Product Owner’s behavior and Product Backlog.
Explain the purpose of the work and the motivation behind priori-
ties. And allow those to be challenged. Explain the pressures
faced—without shifting those to the teams. Ask teams what help
they need; that will create far more trust and goodwill than trying
to push work onto teams.

LeSS Coordination &
Integration, p. 285

> Help, except when…—Helping teams when asked solves prob-
lems and builds trust. But what if they are asking the Product
Owner to do the coordination that is their responsibility in LeSS?
(By the way, that’s common with new teams). Then, with the help
of the Scrum Masters, the Product Owner needs to decline and
explain why.

> Don’t micromanage—During the Sprint, the teams are self-man-
aging towards their goals. The Product Owner doesn’t track prog-
ress, assign tasks to people, and so on. But she may offer help.

> Retrospect—Don’t treat the Overall Retrospective as an optional
event for the Product Owner. Participate and learn from others
how the relationship can improve.

> Visit team sites—Occasionally the Product Owner visits a site and
participates in Sprint events with teams there. In addition to the
effectiveness of in-person meetings, there are more chances to
talk and increase knowledge and alignment. It can increase good-
will and trust—if the Product Owner doesn’t micromanage. She’ll
have better insight into the situation of her teams, and vice versa.
When she leaves and later does video meetings or messaging with
remote teams, there’ll be a better connection.

Product Owner–Customers/Users
Old groups: strong silos, weak feedback. We’ve worked with large
groups where the new Product Owner had never previously met
directly with users. Or if she had, rarely and not in repeating cycles
seeking in-depth feedback. As the Product Owner in LeSS, encourage
users to participate with the teams in learning cycles based on frequent
shipping, transparency, and inspection.

https://less.works For Gene Gendel only, id:gene-gendel

183

Product Owner in LeSS

From the Product Owner, customers and users need to know when and
how they will be impacted (in a good way), and perhaps the reasoning
behind priorities. Involve them, hide nothing, be transparent. To the
Product Owner, learn with the customers/users what their real goals or
problems are (or envision beyond their horizon), and information that
will help the Product Owner to prioritize.

Tips:

> Educate—As Product Owner, you need to explain how and why
the change to LeSS will benefit customers/users, and the changes
they can participate in. This includes all new requests ultimately
going to you rather than directly into development groups via
their old requester networks. Ask the Scrum Masters for help in
learning how to communicate this.

> Participate, with users too—Include paying customers and hands-
on users in Sprint Reviews, in face-to-face Product Backlog Refine-
ment sessions with teams and you, the Product Owner.

> Ship at least every Sprint—Deliver features of value every Sprint
or even sooner (unless that’s currently impossible or inappropri-
ate). With teams, remove impediments that make it bothersome
for customers to use a new product increment every Sprint.

> Increase transparency—For example, explain the Product Back-
log and the prioritization reasoning. Notify customers quickly
when a change will impact them.

Teams–Customers/Users
Traditional development teams in large groups rarely interact with pay-
ing customers and users. As a great Product Owner you want the teams
to care about creating a great product for the customer. That requires
empathy—and that requires direct connection. From customers/users,
teams need the context and detailed knowledge related to features,
without indirection and information scatter. Ideally, teams co-create
solutions directly with customers by grasping their essential (rather
than superficial) goals and problems.

To customers, teams need to confirm that they fully understand the
problem or goal and the requirements they are clarifying together.

https://less.works For Gene Gendel only, id:gene-gendel

184

8. Product Owner

Even when coaching LeSS groups, we unfortunately notice the continu-
ation of the old avoidance of teams and users directly interacting. Some-
times there’s a fake “Product Owner Team” of analysts and UI/UX
designers clarifying with the users, creating more handoff problems.
Why is that? In addition to turf protection and fear by single-specialists
to join real feature teams, sometimes the teams are uncomfortable
doing clarification with customers because of prior silo mentality and
lack of skill. Another reason is the belief “it is more efficient if one per-
son writes the specification”—the local optimization perspective. And
there can be fear of scope creep by open discussion between teams and
users. Sometimes it’s because the Product Owner has a background in
writing specifications and is unused to delegating this work.

To maximize the benefits of LeSS, it’s important to see through these
avoidance behaviors and actively connect teams and users.

Tips:2

> Be a connector—As Product Owner, you encourage and arrange
for customers/users to interact directly with teams in Product
Backlog refinement, during Sprint Review (using/teaching fea-
tures), usability studies, at-work “field studies”3, installation visits,
trainings, etc.

> Share business activities—You invite developers to participate in
business-development visits, business analytics, marketing, etc.

> Teach how to talk with customers—Someone will say, “We can’t
let developers talk to customers; they’ll say stupid things.” It’s a
valid but fixable concern. You need to give, or ask for the creation
and delivery of, a mini-course for developers: “Customer Commu-
nications 101.”

> Partner with the customer-relationship group—Sometimes
there’s a group that believe it’s their remit to “manage the cus-

2. These tips focus on how the Product Owner can foster a better Teams–customers
relationship. For independent teams-with-customers tips, see the Product Backlog
Refinement and Coordination chapters.

3. In Craig’s first job, developing software in an insurance company in the 1970s, devel-
opers were required to spend time with hands-on users at their place of work, help-
ing them with the work, to better understand their context and needs.

https://less.works For Gene Gendel only, id:gene-gendel

185

Product Owner in LeSS

tomer relationship.” Education and partnering with these to con-
nect teams and customers is a good Plan A. If that’s too slow, don’t
“wait for the org-chart to catch up.” Ignore traditional boundaries,
and as Product Owner, connect teams and customers.

> Integrate the intermediaries—Traditional business departments
used intermediate business-analysis, UX, or change-management
sub-groups that gathered and wrote requirements. These people
do have a useful role: As full-time members within feature teams
rather than intermediaries. Along with Scrum Masters and sup-
porting managers, as Product Owner your job is to ensure that the
organizational design for LeSS is changed to real feature teams,
eliminating those departments and separate functions and creat-
ing a simpler organization.

Product Owner–Higher Management

We notice that in traditional groups it’s common that no one person has
real accountability and responsibility for product success or failure.
Product Management handed over The List to Development one year
ago. Development didn’t make the too-big List, and Sales has made
unrealistic promises, and… That kinda drives higher management nuts.

In LeSS, higher management beyond the product group (portfolio man-
agers, C-level executives, …) should clearly and unequivocally view the
Product Owner as having the final accountability and responsibility.
When the relationship with higher management is working, the Product
Owner gets the support needed to focus on delivering a great product.

The Product Owner is responsible for making product development
status visible to higher management and realizing their (perhaps
implicit) mandate, to optimize desired impacts (ROI, market share, …).
The Product Owner, with support from the Scrum Masters, engages
their help to improve the organizational design so the product group
has a competitive advantage through business agility.

When higher management doesn’t view the Product Owner as being
accountable or responsible for product success, the Product Owner will
have the following problems:

https://less.works For Gene Gendel only, id:gene-gendel

186

8. Product Owner

> Not given the organizational authority to make and execute hard
product decisions

> Won’t have much influence regarding resources: money, more or
fewer teams, sites, etc.

Although these problems can exist in a single-product company, they’re
most common in a multiple-products company. Why? Suppose the
enterprise has five product groups and only one has adopted LeSS. Then
the products-portfolio group (executive management, etc.) has inter-
acted with the four traditional groups since forever. They expect certain
traditional metrics, milestones, and reports. But they’re asked to inter-
act differently—via the Product Owner, communicating outcomes and
adaptation—for the LeSS group. Plus, the adoption was probably driven
from within the LeSS group, rather than from higher management. In
essence, higher management are being asked to shift between two pro-
foundly different sets of organizational principles… and they might not even
realize that yet! It’s important for the Product Owner to grasp this
dynamic if it applies and to actively mitigate against the wrong expecta-
tions and confusion it can and will cause.

Tips:

> Self-evaluate— People considering the role of Product Owner will
be better candidates if they evaluate themselves. They (1) have a
strong, established, and respected relationship with higher man-
agement, (2) are a keen and persistent advocate for the change,
(3) are passionate about the product and customers, (4) have or
will have serious decision-making authority, and (5) are eager to
take ownership.

> Educate others and market the role—Product Owner is probably
a new role in the company. Others won’t understand it, and they
never will unless the Product Owner markets herself and the ben-
efits of this role. Teach higher managers; it’s ideal if the Product
Owner does this (to emphasize engagement), but help may be
needed from Scrum Masters.

> Communicate, “to the Product Owner”—The Product Owner
should be the default go-to person for product or status requests
from higher management. She should communicate and reinforce
that.

https://less.works For Gene Gendel only, id:gene-gendel

187

Product Owner in LeSS

Product Owner–Scrum Masters
The other relationships are directly related to “product ownership” of
the product. This one is different; it relates to Product Owner knowl-
edge and behavior. If there’s a skillful Product Owner who—along with
the teams—is continually improving, the group stands a better chance
to optimize the benefits from using LeSS. And it should be more enjoy-
able!

From the Product Owner, the Scrum Masters need to know concerns,
questions, and obstacles, so they can help. And a good Scrum Master
can be a friendly ear—or a shoulder to cry on. To the Product Owner,
Scrum Masters educate and provide feedback, for learning. And they
make requests, such as coaching for teams.

Tips:

> Just a few—A Product Owner works closely with only one or two
Scrum Masters.

> Be a student—Product Owner learns concepts by participating in
courses with the Scrum Masters, by reading what they advise, by
doing pair work with them (e.g. to learn about and set up Product
Backlog prioritization), by observing them act as facilitators at
LeSS events, etc.

> Reflect—A Product Owner asks for feedback about behavior with
the teams and others and asks them to reflect on situations.

Guide: Customer Collaborations over…
Continuous prioritization means updating “all the time” the priorities of
existing and new items in the Product Backlog in order to optimize
impacts resulting from learning. Ideally, ship at least every Sprint to
deliver early value, to increase transparency, and to get feedback. The
feedback will influence new priorities.

Continuous prioritization is often a dramatic change in mindset and
behavior for people coming from a large traditional group to LeSS,
because they previously played in the Contract Game, where it doesn’t
fit. And sometimes it’s still being played.

https://less.works For Gene Gendel only, id:gene-gendel

188

8. Product Owner

The Contract Game
In a traditional (especially big) development group, one party—often a
business unit or product management group—negotiates with the
development group to deliver an internal fixed scope “contract”4 by a
particular date (and often for a particular cost). The contract is then
handed over to the development group, who are told to “commit to it”
and become responsible for delivering it.

In product development, the inherent complexity and variability make it
a fantasy that the scope, details, or effort commitments estimates are
certain. Thus, meeting the forced commitment becomes like a blame
game played between the business or product management group and
the development group. The game leads to a slow but inexorable degra-
dation of product quality and organization capability. How come?

Briefly,5 in order to meet the forced commitment—the internal con-
tract—the game is played for an apparent short-term win. There are
quick-fix reactions and shortcuts, which have relatively long-delayed
and indirect impacts and debts. The people forcing the commitments
rarely stay around for the second game, so will never experience the
far-future consequences of these debts. Consequently, when the next
Contract Game is played, things are even a little worse, and then starts
the downward spiral. Eventually, the product joins the worst league and
is retired to “legacy development in Yemen.”

Adopting LeSS means giving up the illusion of a fixed scope, giving up
the contract game, and using Sprint-by-Sprint information to direct the
product development to deliver the most amount of value. That doesn’t
mean no long-term planning, but it means not confusing plans with real-
ity. It means learning and responding to change, not just following a
plan.

4. This contract is an internal agreement, not a commercial external contract.
5. It’s a fascinating set of system dynamics, which we dissected in the “Product Man-

agement” and “Legacy Code” chapters in Practices for Scaling Lean & Agile Develop-
ment, and “Systems Thinking” and “Organization” in Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-Scale Scrum.

https://less.works For Gene Gendel only, id:gene-gendel

189

Product Owner in LeSS

Guide: Ship at Least Every Sprint
Truly shipping to the market (or to internal users) every Sprint is a big
mindset and behavior change for big groups. We understand there are
cases where it’s currently impossible to ship every Sprint, such as with
complex hardware development. But, by and large, with pure software
products it is possible. We also appreciate there are cases where it’s not
appropriate or possible to truly ship every Sprint, such as when waiting
to make a big splash aligned with a marketing event.

But as far as possible, as Product Owner you should decide to ship
every Sprint or even more frequently. Why? The reasons include (1)
early delivery of value, (2) feedback about the effectiveness of the new
features, to adapt better in future Sprints, (3) increased responsiveness
to changing business needs, (4) deep improvements in the development
group, because the frictions preventing frequent shipping become pain-
fully obvious and require fixing, (5) improved internal motivation among
the teams from the feeling of achievement and progress, and (6)
increased trust among stakeholders, because of tangible results.

Another benefit, proportional to the organizational resistance to
change (which is heightened in large groups), is that…

The powerful tangible impact of shipping every Sprint cuts through much
of the argumentation about change in big groups, and quickly becomes
the compelling case for delivering more with LeSS.

And once you can ship every Sprint, you can explore even more fre-
quent or continuous delivery of features, towards a flow of value to cus-
tomers.

Guide: Don’t Be Nice
Suppose there’s a newly formed LeSS group. It’s not all new! People
come trained with mediocre habits. Those were tolerated and not even
visible in the old system because of long release cycles and silos.

Shipping speaks louder than words.

https://less.works For Gene Gendel only, id:gene-gendel

190

8. Product Owner

So a new LeSS product group is rarely able to have “done” items at the
end of the Sprint. It’s understandable as it takes time for the teams to be
teams and to learn to learn. It is even to be expected… yet it isn’t OK.

As Product Owner you play a key role in setting expectations for teams.
It will happen that the teams come to you and mention that a set of items
are only half done. A skillful Product Owner might empathize… but
doesn’t “accept” it. Don’t be nice. Instead make very clear that the items
are not done and that you expect the teams to improve how they work
so they deliver done items.

This does not mean to demand that all the originally planned items get
done each Sprint. That demand just leads back to the dysfunctions of
the Contract Game—reduced transparency, more padding to avoid pun-
ishment, and reduction in quality and learning. To manage the variability
of development, it is acceptable for a team to de-scope an item from the
Sprint and not even start it. Rather, this guide is about sloppy incom-
plete work on items that the team is capable of doing but that they leave
half-done because of years of not being responsible for creating end-to-
end features that are truly “done.”

We frequently see “nice” Product Owners who accept not-done items
that are due to mediocre practices and silo mindset. That acquiescence
leads to teams that endlessly under-perform. As Product Owner you
need to ensure the team knows they need to improve and expand the
Definition of Done—not weaken it.

Guide: The LeSS
Organization, p. 121

Once that message is clear, it’s critical for the organization to quickly
and effectively provide the concrete help to improve. To do otherwise
would really damage the motivation and trust of the teams.

Guide: Let Go
“Don’t be nice” doesn’t mean micromanaging. In an effective LeSS adop-
tion there are self-managing, co-located feature teams that do all the
work and coordinate with other teams. There is high transparency that
comes from delivering (or failing to deliver) a complete product in a
short cycle. So the habits of trying to control development during the
Sprint can be let go.

https://less.works For Gene Gendel only, id:gene-gendel

191

Product Owner in LeSS

Many teams aren’t skilled at self-managing, but that weakness isn’t
solved by telling them what to do! They need space and time, and a
skilled Scrum Master to help them grow.

Product Owner control in a LeSS group is lightweight and simple. For
example, as Product Owner, act like this:

1. During the Sprint, don’t inspect the teams or ask for status
reports. Nor should any other managers. Let the teams be. Focus
on your customers and preparing for future Sprints. Of course, if
teams ask for help, then help.

2. At the Sprint Review, use the product and learn what happened.
Adaptively decide a goal for the next Sprint.

3. At the Overall Retrospective, inspect and learn about the pro-
cesses, environment, and behaviors that hindered or helped. With
your group adaptively decide an improvement experiment.

If the control seems weak or ineffective, the usual countermeasures are
shorter Sprints, increased transparency by a better Definition of Done,
and more frequent shipments.

Guide: Don’t Let Undone Work
Be Your Undoing

Step 2. Discover
Which Activities
Can Be Done Each
Sprint, p. 232

In brief, the difference between the Definition of Done and Potentially
Shippable is the Undone Work. It’s especially common when LeSS is
first adopted within a big traditional group. The quick version of this
guide: Read the “Definition of Done” chapter, which explains Undone
Work and its implications.

As Product Owner you need to ensure that any Undone Work is clearly
identified, to know how it’s going to be handled, and with the teams, to
strive to eliminate it. Why? Because Undone Work represents delay and
risk.

The best way to cope with Undone Work is to not have any and to ship
every Sprint.

https://less.works For Gene Gendel only, id:gene-gendel

192

8. Product Owner

Guide: LeSS Meetings
see the major Sprint
section of the book
for meeting details

When we introduce LeSS, a frequent question is, “How is one Product
Owner going to manage all those meetings with all those teams?” Fortu-
nately, that question is based on a misunderstanding. The one Product
Owner in LeSS does not attend a different meeting with each team. For
example, there is only one common Sprint Planning One meeting, with
people from all the teams together.

What LeSS meetings does the Product Owner attend, and what is their
average actual duration in a typical two-week Sprint?

1. Sprint Planning Part One: 1 hour

2. If doing overall Product Backlog refinement: 1 hour6

3. Sprint Review: 2 hours

4. Overall Retrospective: 1.5 hours

So the total time together in meetings is less than a new Product Owner
might imagine: realistically, perhaps six hours in a two-week Sprint.

Guide: Just Talk,
p. 287

Of course, when the Product Owner needs to talk with teams, don’t
wait for these meetings. Just walk and talk!

LESS HUGE
When huge scaling, principles related to Product Owner include these
two:

Whole-product focus—There’s a deluge of details across the Area
Backlogs that can drown the Product Owner’s ability to see an over-
view. And because Area Product Owners have a lot of freedom within
their area—introducing new directions and details—it’s hard to main-
tain an overview.

6. An optional though common meeting in LeSS. See “Guide: Product Backlog Refine-
ment Types” on p. 249.

https://less.works For Gene Gendel only, id:gene-gendel

193

LeSS Huge

Customer-centric—Achieving a consistent user experience or com-
plete end-to-end solution when a large requirement spans multiple
areas requires more coordination.

The Product Owner Team
LeSS Huge, p. 101The overall Product Owner and Area Product Owners form the Prod-

uct Owner Team in LeSS.

• LeSS Huge Rules •

Guide: LeSS Huge Product Owner
The roles of Product Owner in LeSS Huge and in the smaller LeSS
framework share some overlap, such as defining a vision and under-
standing competitors. But they are also quite different.

In the smaller LeSS framework, the Product Owner spends time select-
ing items for the upcoming Sprint, meeting with the teams in Sprint
Planning One, and so on. But the LeSS Huge Product Owner doesn’t do

No analysts, specification writers, UI/UX
designers, or architects in a “Product Owner Team.” That

would maintain the status quo problems and structures under
a new label. Specialists join normal feature teams.

Each Requirement Area has one Area Product Owner.

One (overall) Product Owner is responsible for product-wide
direction and deciding which teams work in which Area. She
works closely with Area Product Owners.

Area Product Owners act as Product Owners towards their
teams.

https://less.works For Gene Gendel only, id:gene-gendel

194

8. Product Owner

that—excluding special cases such as healthy Go See behavior. Her
focus includes more coarse-grained and organizational tasks:

> identifying and prioritizing coarse-grained themes and gigantic
requirements that span the product, such as “health” or “LTE with
FDD support”, but not necessarily diving into details7

> identifying business and technology trends that should lead to
changes in Requirement Areas

> adding/removing and growing/shrinking Requirement Areas

> allocating teams to Requirement Areas

> finding, growing, and supporting Area Product Owners

> inspecting and adapting coarse-grained priority themes within
each Requirement Area

> deciding site strategy with higher management

Guide: Five Rela-
tionships, p. 180

Besides the five major relationships in the smaller LeSS framework, a
sixth is added in LeSS Huge: Product Owner and Area Product Owners.

Guide: Area Product Owners
see p. 173 Find Area Product Owners by the same criteria as in the prior guide for

finding a Product Owner in the smaller LeSS framework. For example, in
product development a product manager who is an expert on the
Requirement Area is a good choice.

An Area Product Owner doesn’t have identical authority as the overall
Product Owner. The latter has the independent authority for product-
wide direction, the decision when to ship, and the winding down and up
of Requirement Areas.

But as far as possible the Product Owner should devolve responsibility
and authority for the vision and prioritization within an area to its Area
Product Owner.

7. We aren’t recommending a disengaged Product Owner who isn’t interested in or
capable of details, but in huge products she can’t get into minutiae.

https://less.works For Gene Gendel only, id:gene-gendel

195

LeSS Huge

Tiny areas leading to “wrong” Area Product Owners—A normal
Requirement Area has 4+ teams, not less.8 What happens to the APO
role in a tiny area of one or two teams? It mutates into an item-clarifica-
tion role, a kind of analyst or specification writer, rather than someone
with a strategic and profit focus towards a major market area. And then
the Product Owner is not collaborating with a few strategy-focused
entrepreneurial APOs, but with a large number of business analysts or
project managers re-badged as “Area Product Owners.”

Agility and job safety—Requirement Areas should slowly, though per-
haps more quickly than in a traditional group, come and go over time,
reflecting changing large-scale opportunities. If the people (including
the Area Product Owner) in a declining area fear for their jobs, there
could be resistance and reduced transparency, impacting organizational
agility. Naturally, that calls for a policy of job safety.

see p. 176Temporary Fake Area Product Owner—Same advice as the LeSS
framework guide for a Temporary Fake Product Owner: Finding a great
real Area Product Owner (such as an expert Product Manager) may take
time. So to avoid a delay for a new Requirement Area, start quickly with
a pretender who can perform the motions but doesn’t have the special-
ized business insight or responsibility. Replace that person as fast as
possible.

Guide: PO Team Helped by Scrum Master
The Product Owner Team need to learn how to work together in the
LeSS Huge framework. In commercial product development, they may
already be Product Managers working in the same group and having
norms for interacting, but LeSS is a new context for them. In internal
development, it’s less likely they’ve worked together. And they need to
develop the habit of retrospectives and improving for themselves. Find
a volunteer Scrum Master to help them. He or she should attend their
Product Owner Team meetings, arrange and facilitate regular retro-
spectives, and give the PO Team feedback on how they are working.

8. A special case is when first growing what is strongly predicted to become an area of
many teams. Adoption may start with one leading team that first clears the fog and
then later coaches other incoming teams about the new area. See “Guide: Dynamics
of Requirement Areas” on p. 105.

https://less.works For Gene Gendel only, id:gene-gendel

 Product Backlog in LeSS 197
• Guide: Don’t “Manage Dependencies” but Mini-

mize Constraints 198
• Guide: Take a Bite 202
• Guide: Dealing with Parents 204
• Guide: Handling Special Items 207
• Guide: Tools for Large Product Backlogs 210
• Guide: More Outcome, less Output 213

LeSS Huge 215
• Guide: Area Backlogs 215
• Guide: Three Levels Max 222
• Guide: New Area for Giant Requirement 223
• Guide: Handling Gigantic Requirements 224

unsplitting into the Product Backlog

Contents

https://less.works For Gene Gendel only, id:gene-gendel

197

9
PRODUCT BACKLOG

How can you govern a country which has 246 varieties of cheese?
—Charles de Gaulle

ONE-TEAM SCRUM
A single Product Backlog of ordered (prioritized) items is the repository
of product requirements. The Product Owner is responsible for its con-
tent and order, and for making it visible to the Team and stakeholders.
It’s ever-changing; items are regularly added, removed, and reordered
(to maximize ROI), based on learning each Sprint. Items near the top of
the backlog are more refined and ready for implementation. Lower-
order items are more coarse-grained and fuzzy. Through Product Back-
log refinement each Sprint, items are split, clarified, and estimated.

The Scrum Guide includes a key scaling rule: there’s only one shared
Product Backlog when multiple teams are working on one product:

[They] often work together on the same product. One Product Backlog is
used to describe the upcoming work on the product.

When scaling Scrum there’s no separate per-team backlog of items.
Why? That would reduce overall transparency, reduce whole-product
focus, increase complexity, and inhibit the agility of teams to shift focus.

PRODUCT BACKLOG IN LESS
For guidance on first creating a new Product Backlog when adopting
LeSS, see the Adoption chapter.

When scaling, these principles relate to the Product Backlog:

https://less.works For Gene Gendel only, id:gene-gendel

198

9. Product Backlog

Large-Scale Scrum is Scrum—So there’s only one Product Backlog,
even when many teams working on one product.

Whole-product focus—A single common backlog increases focus and
visibility on the overall product, and seeing and optimizing the whole.

Customer-centric—Traditional large-scale development decomposes
work (and related teams) by technical, component, and single-function
tasks. In LeSS, backlog items are focused on end-to-end customer goals.

• LeSS Rules •

Guide: Don’t “Manage Dependencies” but
Minimize Constraints

the product defini-
tion affects what is
internal and what is
external, see Prod-
uct chapter

A good Product Backlog is simple and provides a great overview of the
product development work. But Product Backlogs are often compli-
cated because they are used as a tool for managing dependencies. That
doesn’t have to be.

In product development we distinguish between internal dependencies
and external dependencies. Internal dependencies are between the
teams within a product group, whereas external dependencies are
either outside the product group or to nonfeature teams within the
product group, such as in the undone department.

There is one Product Backlog (and one Product Owner) for
the whole shippable product.

https://less.works For Gene Gendel only, id:gene-gendel

199

Product Backlog in LeSS

Eliminate internal dependencies

In LeSS, there is no need to manage internal dependencies. There’s
more on this subject in the Organizing by Customer Value and the Coordi-
nation and Integration chapters.

LeSS Coordination &
Integration, p. 285

Why? Any feature team can work across the code base for their items.
And teams manage their coordination between themselves, applying
ideas such as continuous integration, communities, multi-team work-
shops, and sharing and swapping work.

It’s not complicated, but it’s a huge mindset shift for a group that previ-
ously had component teams with private code, and traditional depen-
dency management, such as via an integration team or big planning
events.

Don’t manage external dependencies but minimize constraints

Suppose completing item-A is (apparently) dependent on a delivery
external to the product group, typically for a data feed, service, interface
change, hardware component, or library. That’s common in large-scale
development. A traditional way that a Product Owner handles this:

1. adds an external dependency to item-A in the backlog,

2. predictively plans some Sprint in the future when item-A can be
done, synchronized with the delivery of the external thing, and

3. adds the planned Sprint in the Product Backlog.

Now, in big products this won’t just apply to item-A, it’ll apply to many
items. Then there’s predictive planning with synchronization points
across a range of future Sprints. The planning is messy and time con-

There are no internal dependencies and no dependency
management with feature teams that use shared code.

Teams can benefit by working together on shared work
but wouldn’t depend on the output of the other team.

https://less.works For Gene Gendel only, id:gene-gendel

200

9. Product Backlog

suming. Plus the predictions fail, so you’ll have wasted time planning
and have to repeat, wasting even more time.

Don’t do that! Rather than seeing dependencies as immutable mile-
stones you must plan around, re-frame them as constraints that can be
broken. Principles:

1. Don't let dependencies trick you into predictive planning. Don't
try to “manage dependencies” with future synchronization points,
which just leads to painful predictive planning.

2. View dependencies as constraints causing inflexibility and delay.

3. Challenge, minimize, and remove constraints, as much as possible.

Consider the word dependency: It suggests you are powerless as you
depend on others. But “minimize or remove constraints” says action,
options, empowerment as the constraint is within your control. This
affects the contents and priorities of the Product Backlog.

Ideas to Remove Constraints
How to remove or minimize constraints? For example, suppose to do
item-A our group is ostensibly dependent on external group-X to make
an interface change in their product-X. First, re-frame that: There’s a
constraint on getting item-A done: the interface change. How can that be
minimized or removed? A few ideas:

> Do “their part”—Maybe get an agreement with group-X to change
the code in product-X, combined with some quality-assurance
techniques such as a design workshop with them and/or daily code
reviews. Or just write the code (without asking group-X) and then
show them it’s working and ask permission for them to include it,
combined with some quality checks.

> Pair-work “their part”—Your people offer to join their people and
help do it together.

> Simplify or split item-A so that the other group’s change is
small—Split item-A into smaller variants, such that only small eas-
ier interface changes in product-X are needed incrementally. This
can also be viewed as reducing the batch size of external changes.

https://less.works For Gene Gendel only, id:gene-gendel

201

Product Backlog in LeSS

And combining small batches with continuous integration across
products reduces constraints and increases feedback.

> Split item-A into (1) item with a stub, and (2) fully integrate
item—Implement item with a stub (simplified simulation) of prod-
uct-X. Once the interface is done in product-X, remove the stub.

> Split item-A into (1) item using an alternative interface, and (2)
item using the final interface—Implement the item with an alter-
native (e.g. a manual) interface. Once the final interface is avail-
able, remove the alternative interface.

> Explain the constraint—Share with group-X the consequences,
costs, and benefits, to influence their prioritization.

> Bypass the constraint—Perhaps redefine item-A to work with
other existing interfaces, at least for now.

> Achieve the outcome a different way—Perhaps there’s a differ-
ent solution for realizing the goal.

Example Changes in the Product Backlog
The chosen idea will usually be reflected in the backlog. Two examples:

Splitting an item into simpler variants—For example, suppose a Finan-
cial Risk Management product uses data from a Trade Processing prod-
uct. Suppose item-A in the Risk Management product requires 30 new
data elements from Trade Processing and retrieving all those is a lot of
work. Perhaps Item-A can be split into the following items, each still
meaningful to users:

> item-A1 with 10 elements that are most important in risk analysis

> item-A2 with remaining data elements

Splitting item-A into (1) item with a stub, (2) item fully integrated—
For example, Item-A splits into two new items in the backlog:

> item-A with stub

> item-A complete (or just “item-A”)

“Item-A with stub” means that your group will use a (usually simple)
software simulation or stub for the unfinished part of product-X, as

https://less.works For Gene Gendel only, id:gene-gendel

202

9. Product Backlog

though it were complete. “Item-A complete” implies the work in prod-
uct-X is also done, the stub has been removed, and there’s full integra-
tion across the two products, with still-valid tests that were written
when the item with the stub was done.

Prioritization When Waiting on Another Group

In the undesirable case that “item-A complete” must wait for group-X to
do work, predictive planning with synchronization points still isn’t nec-
essary. Rather:

1. Raise the priority of “item-A with stub” so that it gets done very
soon and keep the priority of “item-A complete” lower. There’s no
need to predict in what Sprint this item must be done, though it’s
important that “item-A complete” be as small as possible so that
it’s easily achievable within a Sprint.

2. Add a “constraint info” column to the Product Backlog. For items
that have a temporary constraint on another group, record note-
worthy details such as speculated delivery date.

3. Educate group-X in the consequences, costs, and benefits, to influ-
ence their prioritization.

4. Later, when group-X signals that their part is done, simply adapt by
raising the priority of “item-A complete” so that it’s done in the
next Sprint. That’s what agility is for!

Guide: Take a Bite
Guide: Handling
Gigantic Require-
ments, p. 224

In the large-scale world of giant requirements, even in many so-called
scaled agile adoptions, it might take months before a requirement actu-
ally gets into the Product Backlog. Why? Well, “the development teams
won’t be able to handle such a rough, big requirement.” Therefore multiple
analysis, architecture, or system design groups consume months ana-
lyzing the giant and taking it apart, writing specifications, or doing feasi-
bility studies.

The traditional mindset and behavior is to eagerly decompose and ana-
lyze much of the giant item before starting implementation. “We can’t
start the implementation before we fully understand the requirement and its

https://less.works For Gene Gendel only, id:gene-gendel

203

Product Backlog in LeSS

impact… what if we only discover something important later?” But, unless
you can time travel, you will discover things later!

And the cost of this early over-processing? Ironically, one cost is delayed
learning precisely because of lots of early analysis and speculative
design.

On top of that, the group now lives on work-in-progress mountain, piled
high with hidden risks and defects, handoff wastes, and delayed delivery
of benefits. Occasionally a boulder rolls off and kills someone.

Don’t live like that. Don’t have separate analysis, system design, and
specification groups, and don’t start analysis so early—but do start
development so early.

Team PBR: Biting In,
p. 31

How? In short, have one Team split the giant into a few chunks and then
take a bite from one and chew it down to implementation. Split off a tiny
item from a big item, clarify all its details in refinement and start!

Figure 9.1 take a
bite, with a leading
team

Why? Because diagrams don’t crash and documents don’t run.

https://less.works For Gene Gendel only, id:gene-gendel

204

9. Product Backlog

Why do this?

> Start early! The best way to finish implementing early is to start
implementing early—take a small bite, learn, and adapt. The road
to agility and flexibility is limiting WIP and increasing learning with
stronger feedback loops.

> Involve the teams into the splitting and analysis of the big item
since they will implement the bite; that increases learning and
reduces handoff.

> The starting team carries through from beginning to end, reducing
handoff and knowledge loss.

> Increase feedback and learning to discover how many bites and
chews are optimally nutritious—maybe you don’t need all bites to
feel satisfied. And by fully implementing a small bite-sized piece
discover what’s the next-most tasty bite to take.

> Have you ever thought really hard about an idea, then you start
doing it and you go “Oops, I hadn’t thought about…” That moment
needs to be earlier rather than later.

The habitual mindset is to “fully understand” a requirement before
implementation. The irony is that avoiding early implementation pre-
vents understanding. But it’s a strong institutionalized habit—rein-
forced by having separate analysis groups that don’t also implement.
Break the habit with smaller and more frequent meals. “No analysis
group” doesn’t mean no analysis, it’s just done by the same teams that
implements items.

Guide: Dealing with Parents
Big items that have to be split smaller are common in large-scale devel-
opment. When an item is split, what happens to the original—the parent
or ancestor? For example, when settle a trade is split into settle a buy and
settle a sell, what to do with settle a trade? There are two alternatives:
remove or keep the ancestor. Let’s look at the trade offs and applicabil-
ity.

https://less.works For Gene Gendel only, id:gene-gendel

205

Product Backlog in LeSS

Remove the Ancestor
Removing the ancestor from the Product Backlog
is like cell division (cytokinesis); the ancestor is
replaced by the new items. Advantages? The first
is simplicity: The backlog structure remains sim-
ple and no extra effort is required to link a parent
with children. A second and subtler advantage:

What do we mean? In traditional large-scale development, all the sub-
requirements of a big requirement have the same priority as the parent,
and they travel as a single batch through the development processes.
Problems? This leads to spending time and money on items of lower
value along with higher-valued ones, delayed delivery of the smaller
high-value items, delayed feedback, and delayed risk mitigation.

But for agility, item independence is important. Each new item should be
independent from others and from its ancestor. Although the simple
choice of removing the ancestor doesn’t guarantee a shift to that mind-
set and behavior, it creates a backlog in which it is natural and obvious
to order items independently. For example, suppose that before split-
ting “settle a trade,” the Product Backlog order was

1. X

2. settle a trade

3. Y

After splitting and removing the ancestor, the order is defined by the
Product Owner as

1. settle a buy

2. X

3. Y

4. settle a sell

The new items are naturally or obviously prioritized
independently from each other and from their ancestor.

https://less.works For Gene Gendel only, id:gene-gendel

206

9. Product Backlog

Settle a buy and settle a sell can obviously be ordered independently.
That supports early delivery of only the most valuable parts, and flexibil-
ity, and agility. This is great, but it’s a big mindset change.

Any disadvantages with this approach? A loss of context and associa-
tions that might have been useful when refining items or when wanting
to define a theme of related items for delivery.

In a small backlog or in a domain where people are intimately familiar
with all the requirements, removing the ancestor is unlikely to cause a
problem. Since it’s a simple solution, prefer it for simple cases.

Keep Your Ancestor

When to keep ancestor information? When there’s a big Product Back-
log with a vast number of items, or lots of complexity, that makes it hard
to remember (or discover) relationships between new sub-items and
their ancestors. How might ancestor information be useful?

> for big-picture context, aiding comprehension or decisions

> as a source of inspiration for new sub-items

> to identify release themes

Guide: Area Back-
logs, p. 215

> in LeSS Huge, to help manage the Area Backlog as separate arti-
facts

Where to keep ancestor information? Add an “ancestor” column to the
Product Backlog and put the information there. For example:

Order Item noteworthy direct/indirect ancestor?

1 settle a buy settle a trade

2 X

3 Y

4 settle a sell settle a trade

https://less.works For Gene Gendel only, id:gene-gendel

207

Product Backlog in LeSS

A few pointers:

> Avoid a deep hierarchy of many ancestor levels. See “Guide: Three
Levels Max” on p. 222.

> Ancestor information is optional; use it when noteworthy.

> The recorded ancestor doesn’t have to be the direct parent of a
new sub-item, it can be a distant ancestor when an original gigantic
item spawns a world of offspring. That’s usually preferable
because it’s simpler and makes it easier to see the connection
between distant descendants.

> Notice something subtle yet key in the example table: the left-to-
right order is item->ancestor, not ancestor->item. That reflects the
mindset and prioritization change of sub-item independence.

Guide: Handling Special Items
Besides customer features, other items can go in the Product Backlog,
including defects, improvements, innovation, and special study.

Defect Items

The standard advice in Scrum is to record customer-reported defects as
Product Backlog items. Excellent advice when there are 10 or fewer
defects—as should be the case—and do that when applicable.

Big bug list—But when there are 714 defects, forget it, because all
those defects will already be in a defect-tracking tool; if they were
moved (itself a big and error-prone task) into the Product Backlog, they
would swamp it with noise. This is typical in big products that have years
of accumulated defects, and only then adopt LeSS. Therefore, when first
creating a proper Product Backlog, if there are a gazillion bugs, keep
using the defect-tracking tool until the defect count is small enough to use
just the Product Backlog. And in that case, temporarily put a “defect count
= N” item at the top of the Product Backlog to keep the problem visible,
and drive it down to zero quickly. As soon as possible, record all specific
defects in the Product Backlog, because out of sight, out of mind. Make
defects visible so people see and respond.

https://less.works For Gene Gendel only, id:gene-gendel

208

9. Product Backlog

Getting to zero—During the initial step, how to go from 714 to zero
defects? Broadly, apply the lean thinking “stop and fix” principle and
focus on the defects. Scrub the bug list and discard the noise. Dedicate
one or more feature teams to killing them off, perhaps in rotating tours
of duty. Perhaps hold a problem-solving workshop with the group and
ask the developers to generate and try bug-killing experiments.

Urgent new defects—If defects are known at Sprint Planning, get them
planned and fixed. What about urgent defects that come up during the
Sprint and need fast response? One approach is to identify a regular
feature team as the fast-response team, rotating this responsibility each
Sprint. They absorb the interruption and variability so that the other
teams remain focused. Another advantage—contrasted with interrupt-
ing whatever team “can solve it fastest”—is that they may learn about
less-familiar areas.

Improvement Items for Teams
Many improvement items can and should be done by teams. These may
be organizational improvements, but are often technical or environ-
mental improvements. Improvement items that teams should do usually
come from retrospectives (team or system level) or meetings of com-
munities (Architecture, Test, …).

Where to record improvement items that teams will do?

Big improvements in the Product Backlog—Especially if they’re big
investments, put them in the Product Backlog. This has several advan-
tages: (1) the work for teams is visible and in one place, (2) the Product
Owner can decide what big improvements to prioritize investing in, and
(3) continuous improvement is handled in the normal work flow. Here’s
an important tip when recording them:

Express big improvement items in terms of
benefit to the business and Product Owner.

https://less.works For Gene Gendel only, id:gene-gendel

209

Product Backlog in LeSS

The teams want to rewrite a major component? What’s the benefit?

Guide: Theory Y
Management, p. 117

Small improvements not there—Why? Because in a large group there
will be so many from all the teams that adding them to the Product
Backlog will swamp it with noise, making it harder to focus on its main
purpose: customer features. And myriad tiny improvement items
increase the effort of backlog management and prioritization. And that
leads to micromanagement of micro-improvements, killing the spirit of
self-management, trust, and continuous improvement.

What to do instead? For example, agree on a policy that (1) only
improvement items bigger than “X” are added to the Product Backlog,
and (2) that each team can use “20%” of their time for small improve-
ments (that are not in the Product Backlog) each Sprint. This simplifies
things and fosters self-managing and trust.

Items for Innovation or Unusual Study
Consider these common cases in big product development:

> alternative chips or third-party software components

> innovation

> competitor analysis

> future technology analysis

These are typically big tasks with lots of variability. And the Product
Owner and Teams need more information to make a decision or priori-
tize. How to handle this in LeSS?

> Add an innovation or study item to the Product Backlog.

> Bound the effort within the Sprint to prevent these open-ended
activities from using up all the time (e.g. “max 50 person hours”).

> Use a regular feature team, not a “research group.”

> Use Take a Bite whenever possible, rather than long study.

> Focus study on information or recommendations for the Product
Owner and Teams to help them make decisions.

> Share at Sprint Review, with next-step advice.

https://less.works For Gene Gendel only, id:gene-gendel

210

9. Product Backlog

> When it’s innovation, strive to quickly create some experimental
product features and get feedback from reality.

This kind of unusual study or research is not regular analysis or design
or architecture work. In contrast, beware fake study:

Beware!—Don’t create a “special people” group given the charter to go
off and figure out that big problem. You’d be better off taking a big pile of
money and lighting it on fire. At least you’d get some heat.

Guide: Tools for Large Product Backlogs
“We’re not agile. Analysts write use cases and scenarios in Word, record them
in SharePoint, and tell teams where the information is, via an email.”

“We’re now agile! Product Owners write epics and stories, record them in the
Rally backlog, and tell teams where the information is, via a notification.”

Of course, it’s a delusion that using new words and tools with new labels
means that anything meaningful has changed.

We’ve seen plenty of big and multi-site groups successfully manage sim-
ply with a (e.g. Google) spreadsheet for their Product Backlog, linked to
a wiki for details. In fact, groups are better off doing that.

Do NOT create fake “study” items for regular and
repeating analysis or design activities such as business

or UX analysis, UI design, or architecture analysis or design.

Tools aren’t agile. Agility is an organizational behavior.

What Product Backlog tool at scale?
Use nothing more complicated than a spreadsheet and wiki.

https://less.works For Gene Gendel only, id:gene-gendel

211

Product Backlog in LeSS

Why? Because of the problems with using so-called “agile” tools:

> The focus is on tools rather than the deep systemic problems, and
that diverts or avoids focusing on what’s important: changing
behavior and the system. These tools don’t solve the real prob-
lems.

> These tools contain and promote reporting features, reinforcing
traditional management-reporting and control behaviors.

> They convey a facade of improvement or agile adoption, when
nothing meaningful has changed; “agile” tools have nothing to do
with being agile.

> They often impose inflexible terminology and workflows to the
teams, taking away process ownership and restricting improve-
ment.

> The backlog is often hidden for most people as access requires an
expensive account.

> These tools enable complexifying rather than simplifying.

It is, of course, possible to gain all these problems also with spread-
sheets by maximizing their complexity. Try to avoid that.

Tracking Progress

Tracking Within a Sprint

Here are some prominent front-page marketing quotes copied verba-
tim from well-known “agile” management tools:

“Track team progress at a glance”, “Get progress reports”, “Report on your
[projects]”, “50+ prepackaged agile metrics and reports”, … ad nauseam

So-called agile-management tools focus on tracking and reporting func-
tions that display individual and team tasks and Sprint Backlogs and
“progress” to managers—the antithesis of the agile principles of trusting
people and self-managing teams. As the team researcher, Richard Hack-
man, explains, “In self-managing teams, the responsibility of tracking the
progress is delegated towards the team.”

https://less.works For Gene Gendel only, id:gene-gendel

212

9. Product Backlog

So management has no responsibility or reason for tracking team prog-
ress inside the Sprint. These tools are optimized for reporting—not for
success, improvement, a better flow of value, or teams owning and
improving their processes.

In Scrum the Product and Sprint Backlogs are separate, and they have
different purposes. Whereas the Product Backlog is for managing cus-
tomer-centric items, the Sprint Backlog is for a Team to manage them-
selves and their tasks during the Sprint. It’s not for the Product Owner
or for external tracking. The Scrum Guide puts it simply: [The Sprint Back-
log] belongs solely to the Development Team. So each Team needs to
choose their own Sprint Backlog tool and be able to change their choice.
And different Teams may use different tools. Therefore:

Tip: Although any tool for the Sprint Backlog is possible, we consistently
notice that teams that just use “cards on a wall” are much more likely real
teams, working together and actively improving.

Tracking Across Sprints

Guide: Don’t Be
Nice, p. 189

Understanding overall progress of customer-centric items across the
Sprints is useful. Do groups need a special “agile tool” for that? No.

Transparency and ease of tracking dramatically increases when the
focus is on done items. At the end of every Sprint, mark items as done or
not done. Don’t track “almost done” or “90% done.” Just track progress
of done items in the Product Backlog. Simple tools will suffice.

If a progress chart is requested, first explore and challenge why it’s being
requested. Why aren’t the interested parties at the Sprint Review? Is
the so-called Product Owner just a program or project manager under a
new label? If a chart is really desired, use the charting feature in the sim-
ple spreadsheet-like tool that records the Product Backlog.

Don’t use same tool for Product Backlog and Sprint Backlogs

https://less.works For Gene Gendel only, id:gene-gendel

213

Product Backlog in LeSS

Guide: More Outcome, less Output
We once worked with a large product group where a senior manager
made an announcement: “In the last 12 months we’ve spent 1.3 million
person hours on the product. Great job everyone!”

Ouch! “Progress” is being measured by the amount of activity and how
many deliverables (e.g. done items) are pumped out. Even the popular
velocity measure is for effort of output of features—and that’s a problem.
What problem? All that activity and deliverables can have little or nothing
to do with outcomes. When someone asks for a “new workflow manage-
ment tool with features A to Z”, what are the goals? Will those features
reduce median cycle time by 25%?

So what? Especially in large groups the focus is on outputs rather than
outcomes because

> there’s a seductive attraction to managing outputs since they’re
easier to measure;

> the traditional annual budget process demands a list of cost-esti-
mated features (outputs, not outcomes); and

> the big Product Backlog becomes a dumping ground for hundreds
of feature requests with no clear connection to outcomes.

One of the LeSS principles is More with LeSS. In this context, that means:

What are some techniques to shift the focus to outcomes?

Technique: Write Items as Outcomes or Goals, not Solutions

A large package-shipping service in Norway had complaints about
usability at their website, and considered writing a new item like this:

Show all the shipping option details on one webpage.

More outcome, less output.

https://less.works For Gene Gendel only, id:gene-gendel

214

9. Product Backlog

This is a solution-oriented item that presumes a solution to the problem.
It might not be a great solution, and the purpose isn’t clear. Prefer out-
come- or goal-oriented items, such as this:

Shippers can find all top-quartile shipping options in less than 1 second.

This outcome-oriented item invites more options and ideas, and
enhances motivation because of the creative challenge for the team.

Technique: Do Impact Mapping
Impact mapping1 is a collaborative, fast, and visual technique for a group
to (1) identify an outcome (e.g. reduce trade errors), (2) define a measure
of success, and (3) generate alternate ideas to impact the outcome.

Figure 9.2 impact
mapping encourages
a focus on an
outcome rather than
outputs, and
alternate impacts
that could achieve it

How does impact mapping help? (1) It fosters collaboration with a focus
on outcomes, (2) it focuses on multiple and alternate impact ideas, and (3)
it links impacts to outcome.

1. See impactmapping.org and the book Impact Mapping.

https://less.works For Gene Gendel only, id:gene-gendel

http://www.impactmapping.org

215

LeSS Huge

LESS HUGE
When huge, principles related to the Product Backlog include this one:

Whole-product focus; Transparency—When the Product Backlog is
decomposed into Area Backlogs, how to keep a view on and focus on
overall goals and priorities without drowning in details?

• LeSS Huge Rules •

Guide: Area Backlogs
First, to review, a Requirement Area is a big grouping of items that logi-
cally belong together from the customer perspective.

Some key points:

There is one Product Backlog; every item in it belongs to
exactly one Requirement Area.

There is one Area Product Backlog (“Area Backlog”) per
Requirement Area. This backlog is conceptually a more gran-
ular view into the one Product Backlog.

Each Requirement Area is a grouping from customer
perspective, not a grouping from technical perspective.

Requirement Areas are a scaling technique for huge groups.
A Requirement Area is expected to be for 4+ teams.

https://less.works For Gene Gendel only, id:gene-gendel

216

9. Product Backlog

Conceptually in the one Product Backlog, a “requirement area” attribute
is added, and each item is classified into one and only one area:

An Area Backlog is conceptually a view into the one Product Backlog,
for one Requirement Area, such as the market onboarding area:

see Product Owner
chapter for more on
the Product Owner
and Area Product
Owner role

For the Area Product Owner (APO) and teams dedicated to this area,
their Area Backlog looks and functions like a regular Product Backlog.
The highest priority in an Area Backlog might not be the highest priority
in the Product Backlog. When this happens the Product Owner will
determine whether the priority difference is large enough to warrant
moving teams to other areas.

There are two ways to realize Area Backlogs: views or separate artifacts.

Item Requirement Area

B market onboarding

C trade processing

D asset servicing

F market onboarding

…

Item Requirement Area

B market onboarding

F market onboarding

An Area Backlog is NOT for 1 or 2 teams;
it is for a Requirement Area, which usually has 4+ teams.

https://less.works For Gene Gendel only, id:gene-gendel

217

LeSS Huge

Area Backlogs via Filtered Views
The simplest way to realize Area Backlogs is with a filter on one Product
Backlog, to create a view. With a spreadsheet it’s easy as pie. When to
use a view approach? When there are only a few (e.g. three) Require-
ment Areas2 and not too much depth in split items. We know those are
vague guidelines; the tipping point to moving to separate artifacts is sit-
uational, but you’ll probably know it when you see it.

Start with this simple approach: filtered views.

Area-specific prioritization—Area Product Owners prioritize their
Area Backlog more or less independently. So each area has a different
first item, second item, and so forth. For example:

Area Backlogs via Separate Artifacts
When there are lots of Requirement Areas3 and myriad split items, the
simple view approach will start to hurt. The one Product Backlog will
feel overwhelmingly large and detailed, filled with myriad fine-grained
items from all the areas as splitting happens.

Then an alternative is to have separate artifacts (e.g. separate spread-
sheets) for the Area Backlogs and for the overall Product Backlog. As
will be explained, this approach has some drawbacks different from
those of the simple filtered-view approach.

2. Also called a less huge LeSS Huge product group;)

Item Requirement Area …

B market onboarding

F market onboarding

C trade processing

M trade processing

…

3. Also called huge LeSS Huge!

first in area

https://less.works For Gene Gendel only, id:gene-gendel

218

9. Product Backlog

Area-Specific Splitting

Suppose backlogs start out as shown in Table 9.1. Now suppose that in
Market Onboarding, B is split into B-1 and B-2, as shown in Table 9.2. In
the separate-artifact approach the overall Product Backlog remains
unchanged. But the Market Onboarding Area Backlog does change.

Table 9.1 Area
Backlog before split

Table 9.2 Area
Backlog after B is
split; Product
Backlog unchanged

Overall
PB

Market Onboard-
ing Area Backlog

Item Area Item Ancestor

B market
onboarding

B

C trade
processing

F

F market
onboarding

Overall
PB

Market Onboard-
ing Area Backlog

Item Area Item Ancestor

B market
onboarding

B-1 B

C trade
processing

B-2 B

F market
onboarding

F

https://less.works For Gene Gendel only, id:gene-gendel

219

LeSS Huge

Area-Specific Prioritization

Having separate artifacts allows the Product Owner to work on a higher
level of granularity than do the Area Product Owners but also causes
less transparency for the Product Owner. That’s because the priority in
the Area Backlog is the decision of the APO, and the priority of the split
items need not follow priorities in the overall Product Backlog. In this
next example, parts of B are a higher priority than D and parts of B are a
lower priority than D:

Usually the priority difference isn’t big and then this is not really a prob-
lem... but sometimes it is. For example, this is a problem:

Overall
PB

Market Onboard-
ing Area Backlog

Item Area Item Ancestor

B market
onboarding

B-1 B

C trade
processing

D

D market
onboarding

B-2 B

Overall
PB

Market Onboard-
ing Area Backlog

Item Area Item Ancestor

B market
onboarding

B-1 B

C trade
processing

B-2 B

D market
onboarding

D

https://less.works For Gene Gendel only, id:gene-gendel

220

9. Product Backlog

In this scenario parts of B are high priority (B-1 and B-2), whereas other
parts of B aren’t (B-3 and B-4). That case is reflected in the Area Back-
log but is invisible to the Product Owner. And that causes misunder-
standing and subsequent problems; for example the Product Owner
might conclude that B isn’t done until all items of B are done, though
that doesn’t reflect the priorities of the Area Product Owner.

To correctly reflect a big difference in priority—small ones can be
ignored as they won’t create meaningful problems—the APO needs to
unsplit items back into the overall Product Backlog. Unsplit means to
create a new generalized bigger item from a set of smaller ones. For
example, see Table 9.3.

In that way a major priority difference is correctly reflected in the over-
all Product Backlog. And because items B1 and B2 were generalized as
one item BX, the overall Product Owner doesn’t drown in detail.

E market
onboarding

E

F market
onboarding

F

... B-3 B

B-4 B

Overall
PB

Market Onboard-
ing Area Backlog

Item Area Item Ancestor

https://less.works For Gene Gendel only, id:gene-gendel

221

LeSS Huge

Table 9.3 unsplit
(generalization) of
several items

Pros and Cons of Filtered Views versus Separate Artifacts

Filtered Views—Advantages: (1) simple, (2) no synchronization issues,
(3) easy to keep overview. Drawbacks: (1) filters make prioritization
harder, (2) Product Owner sees all details of all areas, which at first
might seem an advantage but drowns her in details and can lead to the
temptation of “micromanaging” priorities in an area, creating conflict in
responsibility between the PO and APOs.

Separate Artifacts—Advantages: (1) Overall Backlog stays at higher
level and then the PO doesn’t drown in details, (2) APO can easily prior-
itize his backlog, (3) Supports clear separation of responsibilities
between PO and APOs. Drawbacks: (1) Synchronization between dif-
ferent backlogs, (2) Priority differences not visible in overall Product

Overall
PB

Market Onboard-
ing Area Backlog

Item Area Item Ancestor

BX (general-
ization of
B1, B2)

market
onboarding

BX-1 (old B-1) BX

C trade
processing

BX-2 (old B-2) BX

D market
onboarding

D

E market
onboarding

E

F market
onboarding

F

BY (general-
ization of
B3, B4)

market
onboarding

BY-1 (old B-3) BY

BY-1 (old B4) BY

https://less.works For Gene Gendel only, id:gene-gendel

222

9. Product Backlog

Backlog, (3) Increased chance of silo mentality in each area rather than
APOs caring about whole-product focus.

Guide: Three Levels Max
Guide: Splitting,
p. 260

The Splitting guide advised the use of an Ancestor column. Naturally, this
also applies to the overall Product Backlog in LeSS Huge when the sepa-
rate-artifact approach is used. For example:

Key point: Creates two levels.

And consistently, the Trade Processing Area Backlog will also have an
Ancestor column:

Notice that the ancestor XA not only conveys ancestor information, it
also provides a link between the overall Product Backlog and Area Backlogs.

Key point: Creates three levels total across the backlogs. For example,
XA-1 to XA to X.

One can introduce more levels. But don’t. Stop at three levels maximum.

Item Ancestor Area

XA X trade processing

XB X trade processing

…

Item Ancestor

XA-1 XA

XA-2 XA

…

https://less.works For Gene Gendel only, id:gene-gendel

223

LeSS Huge

Why? We’ve noticed that groups that record many nested levels of split
items fall into the trap of not defining customer-centric requirements.
Instead they start defining fake requirements that are actually technical
activities or tasks. And/or they keep information that they are not using,
which increases complexity with no benefit.

Keeping a maximum of three levels of split items helps keep the Product
Backlog simple and customer focused.

Guide: New Area for Giant Requirement
A common problem in huge LeSS Huge product groups is dealing with
gigantic multi-person-year requirements. The normal LeSS Huge way to
deal with these is to just add them to a Requirement Area and let them
be split by the teams. When the requirement is really big, new teams will
be needed, so the area grows. Eventually, the Requirement Area is too
big and it needs to be split.

An alternative to this is to speculatively create a new area when the
gigantic requirement arrives. We never put it in an existing area, but
instead we immediately identify that more than four teams are going to
work on it. So, we create a new Requirement Area and a new Area Back-
log with only one item in it. We then move only one team to this area,
temporarily breaking the rules related to the size of areas but knowing
that the area will grow.

Why do this? Having a gigantic requirement in another area and gradu-
ally splitting it will make the Area Backlog messy—it will contain many
split items of the gigantic one mixed up with the other ones. Creating
the area early, on the other hand, creates an early focus on this gigantic
requirement from the Area Product Owner and the initial Team.

Sometimes your speculation was wrong and the area never grows
beyond a couple of teams as the requirement turned out to be less
impressive than initially speculated. In that case, merge the area with
another one so that you don’t keep small areas around.

https://less.works For Gene Gendel only, id:gene-gendel

224

9. Product Backlog

Guide: Handling Gigantic Requirements
In this chapter and the Product Backlog Refinement chapter we’ve intro-
duced several techniques for dealing with gigantic requirements. In the
early LeSS chapter we told the story of a group dealing with gigantic reg-
ulatory requirements. In this guide we share a scenario to illustrate sev-
eral techniques working together to deal with giants.

Traditional Handling
Before the new story, for compare and contrast context, we share our
experience on how these are traditionally dealt with in giant groups.

Giant requirement BigReq enters the giant enterprise somewhere and
someone (a senior analyst, product manager, systems architect, sys-
tems engineer) analyzes the requirements for months and writes a hun-
dred-page specification. He hands it over to more analysts and
architects, who each pick a part of the specification and work it out in
more detail, and each writes a hundred-page specification for their
area. Eventually, the downstream development group gets these speci-
fications as input and extracts backlog items out of them and creates a
Product Backlog. The items arrive at the backlog about six months to
two years (yes, we have seen this) after they entered the enterprise, with
myriad handoffs and lots of information scatter and loss.

LeSS Handling

Guide: Dynamics of
Requirement Areas,
p. 105

BigReq arrives at the door of the enterprise and the Product Owner
immediately puts it in the Product Backlog. She figures out it’s a multi-
year requirement. She decides this is or will be important, and creates a
new Requirement Area for the giant requirement, and looks for a suitable
Area Product Owner who is familiar with this particular requirement.
The Area Product Owner creates an Area Backlog with exactly one item
in it. See Figure 9.3.

Guide: Splitting,
p. 260

Guide: Take a Bite,
p. 202

The Product Owner Team looks for an existing Team that has the most
experience and knowledge related to BigReq and moves the team to the
new area. Before their first Sprint in the new area, the team has a Prod-
uct Backlog Refinement session where they partially split the item and
Take a Bite out of it. See Figure 9.4.

https://less.works For Gene Gendel only, id:gene-gendel

225

LeSS Huge

Figure 9.3 new area
with only one item

Figure 9.4 before
first Sprint, partial
splitting and taking a
bite during Product
Backlog Refinement

https://less.works For Gene Gendel only, id:gene-gendel

226

9. Product Backlog

The first Sprint, the team implements the small bite. And they also spend
up to 50% of their time in Product Backlog Refinement for upcoming
Sprints, where they gradually split the item further. See Figure 9.5.

Figure 9.5 build the
bite, while spending
perhaps 50% in
Product Backlog
Refinement

Notice that they have delivered the first bite as working software, so
within one month of the arrival of BigReq into the enterprise something
got delivered—some meaningful progress was made.

The Team carries on in more Sprints, clearing the fog of analysis and
implementation by a focus on learning through delivering and feedback.

https://less.works For Gene Gendel only, id:gene-gendel

227

LeSS Huge

Guide: Multi-Team
PBR, p. 252

Guide: Leading
Team, p. 308

Once the fog is sufficiently cleared and there’s a strong need to start
sharing the gigantic work, the Product Owner Team decides to gradually
move more teams into the area. The new teams join the initial Team in
multi-team Product Backlog Refinement where they refine together and
learn more about the BigReq. When the new teams join, the initial Team
takes on the special role of leading team, to teach and mentor new teams
and to keep an overview of BigReq, especially related to the consistent
integration of all its parts. The initial Team stays in the area until BigReq
is done, so there is no handoff of information, and the same Team sees
BigReq from the beginning until the end. See Figure 9.6.

Figure 9.6 new
team joined Product
Backlog Refinement
before joining area;
original team
becomes leading
team

A summary of the techniques used in this scenario:

> Create new Requirement Area for gigantic requirement.

> Not all teams are equal, so start with more experienced team.

> Partial splitting; Take a Bite.

> Spend up to 50% of Sprint on refinement, while building the bite.

> Gradually grow a new Requirement Area.

> Use multi-team PBR for learning.

> Initial team becomes leading team with additional mentoring and
overview responsibilities.

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Done 230
• Guide: Creating the Definition of Done 231
• Guide: Evolve the Definition of Done 240

LeSS Huge 243

Done!

Contents

https://less.works For Gene Gendel only, id:gene-gendel

229

10
DEFINITION OF DONE

People who say it cannot be done should not interrupt those who are doing it.
—George Bernard Shaw

ONE-TEAM SCRUM
A developer we met defined “done” as finished typing. He caused consid-
erable confusion. Most developers suffer from the “I’m almost done”
disorder. “Almost” means you have no idea about your progress towards
“done”—itself an undefined end state.

Scrum requires and creates transparency. One technique for increasing
transparency is formally defining the meaning of “done”—the Definition
of Done. Product progress is measured binary—an item is “done” or not
“done.”

A perfect Definition of Done includes everything a team has to do inside
the Sprint for an item so that the product is still shippable to end-users
and with the new “done” item in it. Shipping your product every Sprint or
more frequently is relatively easy for one-team Scrum. When teams
aren’t yet able to achieve this perfect Definition of Done, they define
“done” as a subset of the perfect set. The goal then becomes: Improve
the Definition of Done until it is perfect and they can ship each Sprint…
or more often.

The Definition of Done1 is an agreed list of activities the Team performs
for each and every Product Backlog Item. When all relevant activities
are completed, the item is done.

1. Alternative ways of expressing the Definition of Done is (1) the state of the Product
Backlog Item, or (2) the state of the Product Increment with the Items in it. A Defini-
tion of Done expressed per Item promotes Continuous Delivery.

https://less.works For Gene Gendel only, id:gene-gendel

230

10. Definition of Done

Don’t confuse the Definition of Done with acceptance criteria; the lat-
ter are conditions a specific item has to fulfill to be shipped. “Fulfilling all
acceptance criteria” is usually included in the Definition of Done.

LESS DONE
These days, a one-team product group should be able to have a perfect
Definition of Done and might even be able to continuously deliver
during the Sprint. But for many large product groups, a perfect Defini-
tion of Done feels impossible while they still measure stabilization peri-
ods in months. Bas remembers being surprised when he received a
bonus for some code he had written two years earlier. The product had
finally shipped.

When scaling, these principles are related to Definition of Done:

Transparency—In traditional large groups, visibility is often attempted
by installing additional management control and reporting. LeSS groups
have a clear, shared Definition of Done and an integrated product at
least at the end of each Sprint. This creates real, painfully clear trans-
parency.

Continuous Improvement towards Perfection—What to improve?
The gradual expansion of the Definition of Done gives direction to
improvements and their measures.

https://less.works For Gene Gendel only, id:gene-gendel

231

LeSS Done

• LeSS Rules •

Guide: Creating the Definition of Done
Initial Product Back-
log Refinement: See
Product Backlog
Refinement chapter.

The initial Definition of Done must be agreed on before the first Sprint
starts, usually in the initial Product Backlog Refinement workshop.

Try this to create the Definition of Done:

1. Define the activities needed to ship to end customers.

2. Discover which activities can now be done each Sprint.

3. Explore what to do with the Undone work.

4. Create first improvements for expanding Done.

Let’s explore these steps in more detail.

1. Define the Activities Needed to Ship to End-Customers
The key question is “What activities are currently required to ship our
product?” Remind everyone…

> Shipping means “delivering to end-customers” and not “send out of
the development department.” Everybody must understand the
whole picture of what is required to ship products.

> Challenge the need for intermediate artifacts or auxiliary tasks. Do
we really need that specification document? Do we really need to

One Definition of Done for the whole product
common for all teams

Each team can have its own stronger Definition of Done by
expanding the common one.

The perfection goal is to improve the Definition of Done so
that it results in a shippable product each Sprint

(or even more frequently).

https://less.works For Gene Gendel only, id:gene-gendel

232

10. Definition of Done

update all technical documentation? How is the technical docu-
mentation used? Such artifacts and tasks are a legacy from tradi-
tional ways of working where they were handed over between
specialized groups.

See Evolve the Defini-
tion of Done guide.

This step requires diverse roles so people see the whole picture—more
roles than just the Teams and the Product Owner. Managers involved
with the LeSS adoption are required to participate as the Definition of
Done is an important tool for driving organizational improvements.

The Teams, Product Owner, and other stakeholders brainstorm the
required activities and write them on sticky notes, a mindmap, or list
them on a flip chart. The activities typically include coding, testing, and
customer documentation but may also include setting up customer sup-
port, building the hardware, or even legal work. The testing activity is
usually divided into different levels such as unit test, system test, or sys-
tem verification. We refer to this list of activities as Potentially Shippa-
ble, and it’s the perfect Definition of Done.

In our experience, although the list can be long, participants are often
surprised that the list is shorter than they expected. That’s because few
of them had an overview of what had to be done to deliver the product.

See guide “Organi-
zational Perfection
Vision” in Adoption
chapter

The result is often included in an organizational perfection vision for the
product group. In huge product groups with hardware and software,
making a perfect Definition of Done a reality could take years or even
decades of improvements; in small, co-located pure software groups,
maybe just a few Sprints.

2. Discover Which Activities Can Be Done Each Sprint
The key question is, “Considering our current context and capability,
what activities can be completed each Sprint.” That subset is the initial
Definition of Done. We call a Definition of Done weak when it is only a
small subset, and we consider it a strong Definition of Done when it is
almost equal to Potentially Shippable.

The Definition of Done is created either by grouping the sticky notes or
by underlining the activities that are part of it (as shown in Figure 10.1).

https://less.works For Gene Gendel only, id:gene-gendel

233

LeSS Done

Figure 10.1
Potentially
Shippable and Initial
Definition of Done

.

The difference between the Definition of Done and Potentially Shippa-
ble is referred to as Undone Work. The Sprint is planned according to
the Definition of Done and thus the Undone Work is excluded—it is
planned to be left undone. These terms can cause confusion. To clarify:

Potentially Shippable—All activities that must be performed before
the product can be shipped to end-customers. This list does not depend
on the skills of the teams or the organizational structure, but depends
only on the product.

Mathematics of Done

Potentially Shippable = Definition of Done + Undone Work

Work in Sprint = Product Backlog Items × Definition of Done

https://less.works For Gene Gendel only, id:gene-gendel

234

10. Definition of Done

Definition of Done—An agreement between the teams, the Product
Owner, and managers on which activities are performed during the
Sprint. A Definition of Done is said to be perfect when it is equal to
Potentially Shippable.

Undone Work—The difference between the Definition of Done and
Potentially Shippable. When the Definition of Done is perfect, then
there is no Undone Work. When this isn’t the case, then the organiza-
tion has to decide (1) How do we deal with the Undone Work? and (2)
How do we improve so that there is less Undone Work in the future?

Items not done yet or not finished—A Product Backlog Item that was
started during a Sprint but wasn’t completed. This is often confused
with Undone Work. “Not done yet” is a Product Backlog Item that was
started but not “done” before the end of the Sprint, whereas Undone
Work was never even planned for. When a team has an item that was
not finished—partially done—then they ought to feel concerned and dis-
cuss improvement actions during their Retrospective.

Not started—A Product Backlog Item that was planned for during the
Sprint but was never started. It just goes back to the Product Backlog.
The team should still find out why and discuss this during their Retro-
spective.

3. Explore What To Do with the Undone Work
The key question to answer in this step is “Who will do the Undone
Work and when?” There are several approaches to performing the
Undone Work but let’s first explore the effects of Undone Work by run-
ning through a scenario.

https://less.works For Gene Gendel only, id:gene-gendel

235

LeSS Done

Figure 10.2 Undone
Work resulting from
an imperfect
Definition of Done

In Figure 10.2, the teams completed—according to their Definition of
Done—twenty Product Backlog Items. But there is a lot of Undone
Work (e.g. stability test and customer documentation) due to their weak
Definition of Done. The teams continue working on items for another
two Sprints.

Figure 10.3 Undone
Work piling up

In Figure 10.3, the teams completed—according to their weak Defini-
tion of Done—sixty Product Backlog Items in three Sprints. The amount
of Undone Work has grown enormously, causing a false sense of prog-
ress. The Product Owner gets excited about the product’s market
potential and decides that there are enough features. Now is the right
time to ship the product.

https://less.works For Gene Gendel only, id:gene-gendel

236

10. Definition of Done

Figure 10.4 Undone
Work causes risk
and delay

But… they can’t ship the product. Though the teams are “done,” their
weak Definition of Done resulted in vast amounts of accumulated
Undone Work. This Undone Work causes delay and a lack of transpar-
ency, with major risks hiding in it.

Delay—Undone Work causes a lack of flexibility for the Product
Owner—you can’t directly respond to market needs and changes due to
the inflexible pile of Undone Work-in-progress. The pain caused is
aggravated by the fact that the effort to complete the Undone Work is
hard to predict.

Risk—Undone Work causes a lack of transparency. It delays realization of
risks. For example, if performance testing is left Undone, then the risk of
a non-performing system stays hidden until close to release… where it
hurts most if the risk becomes reality.

Dealing with Undone Work

The best way and only good way to cope with Undone Work is to prevent
it by having a strong Definition of Done. When this isn’t yet possible,
then the following are three temporarily-needed ways of dealing with
Undone Work.

https://less.works For Gene Gendel only, id:gene-gendel

237

LeSS Done

Release Sprints—One or several Sprints before the release where the
Teams do not work on new features but instead perform the Undone
Work.

Figure 10.5 bad
idea: doing Undone
Work in release
Sprints

Release Sprints are a terrible idea but are sometimes a necessary evil
until the Teams expand their Definition of Done. The most common
usage of release Sprints is to deal with corporate bureaucracy around
deploying. The deployment bureaucracy will eventually need to be
resolved but it might take time to change that.

Don’t do testing or bug fixing in release Sprints. If the teams have the
ability to do these in release Sprints, then they should also be able to do
them during normal Sprints. So, instead expand the Definition of Done.

Undone Department Finalizes—A department with specialized people
who perform the Undone Work after the Teams are “done” with all the
items for a release.

https://less.works For Gene Gendel only, id:gene-gendel

238

10. Definition of Done

Figure 10.6 bad
idea: doing Undone
Work via an Undone
Department

Most Undone departments are relics from ancient times, a temporary
band-aid until the Teams expand their Definition of Done. The most
common usage of Undone departments is to do testing that hasn’t yet
been automated or cannot yet be performed by the Teams due to their
limited scope. Undone departments are frequently managed with tradi-
tional project management techniques or Kanban, inasmuch as Scrum
in an Undone department doesn’t make sense.

The goal of every LeSS adoption is for the teams to ship every Sprint or
more often. To that end, eliminate all Undone departments—they cause
additional hand-off, delay, interruptions, risk, and reduced learning. The
perceived benefits of specialized functional groups aren’t worth it.

Pipelining to Undone Department—At the end of each Sprint, the
Teams hand off the Undone work to an Undone department so that the
Undone Work doesn’t accumulate.

https://less.works For Gene Gendel only, id:gene-gendel

239

LeSS Done

Figure 10.7 bad
idea: pipelining the
Undone Work

Pipelining might seem like a good idea, but it’s another terrible one and
is usually a short-term quick fix for limited-scope teams; remove it by
expanding the Definition of Done and having true product-wide feature
teams. Pipelining is most commonly used when (1) the Teams still have a
component-scope and thus some testing is hard to fit inside the Teams,
and (2) the testing requires special equipment that is hard to share
across teams. The latter is more often than not an excuse by the special-
ized department so they need not think about how the teams could
share the equipment.

Pipelining never works well. The Undone department will require work
from the Teams when performing the Undone Work. That will interrupt
the Teams in their next Sprint, causing continuous conflict between the
Undone department and the Teams.

In our experience, pipelining is always an excuse for not breaking up
specialized functional groups or expanding Teams’ scope. As product
groups improve, pipelining should disappear.

https://less.works For Gene Gendel only, id:gene-gendel

240

10. Definition of Done

4. Create First Improvements for Expanding the Definition of
Done
The key question to answer in this step is “What prevents us from
expanding the Definition of Done?” The Definition of Done defines the
product group’s current agility and the Undone Work highlights the
improvement opportunities. What improvements can we do?

Consider these common improvements:

> Automation—Much Undone Work was traditionally manual work
and must be automated.

> Harmonization—Product groups have often solved the same
problem many ways (e.g. four similar testing frameworks). Having
all teams maintain tests in many similar but different technologies
is rarely useful, and thus Teams need to agree on a standard.

> Environment—Some environments are hard to use or share (e.g.
test equipment). Use might need to be improved and sharing must
be agreed within the Teams. Alternatively, reduce dependency on
environments by increasing virtualization.

> Parallelization—Sometimes Teams assume that certain work
must be done in sequence (e.g. start testing after all code is done).
This assumption is frequently incorrect and work can be paral-
lelized by being done differently.

> Cross-functionality—Some Undone Work requires skills that
aren’t yet in the Teams (e.g. technical writing). Increasing cross-
functionality is done either by cross-training or by adding people
with the needed skills. One common action is to move people from
the Undone department into the Teams.

Review the Undone Work and brainstorm improvements for expanding
the Definition of Done. When the teams will work on these improve-
ments, then these items go in the Product Backlog.

Guide: Evolve the Definition of Done
The Definition of Done is multi-faceted and requires close monitoring
and needs to evolve. The perfection goal of the Definition of Done is for

https://less.works For Gene Gendel only, id:gene-gendel

241

LeSS Done

the organization to be capable of shipping the product every Sprint or
more often.

Different roles view the Definition of Done from different perspectives:

Managers—While there is an imperfect Definition of Done, the Defini-
tion of Done is the major tool for monitoring and managing organiza-
tional change. Expanding the Definition of Done leads to organizational
changes and strategic decisions and are usually the responsibility of
managers.

For example, imagine a product group that consists of five development
sites, of which two have a specialized system-validation group because
of the high cost of test equipment. Expanding the Definition of Done
could lead to building system-validation skills in all sites, abandoning the
separate system-validation groups, and figuring out how to share the
test equipment across multiple geographic locations. Far from a simple
change!

Managers need to encourage teams to improve and expand their team
Definition of Done. Having teams expand their own Definition of Done
makes it easier to expand the product Definition of Done later.

Guide: Go See,
p. 125

Avoid unilaterally expanding the Definition of Done, especially not with-
out insight from Go See. The result won’t be pretty.

Teams—Every Sprint is an inspect–adapt improvement cycle, and the
Definition of Done provides a source for finding improvements in a
Team’s working methods. Every team can expand their Definition of
Done independently beyond the product-level Definition of Done.

For example, in the previously mentioned system-validation example,
one Team can improve by learning about system validation or by explor-
ing different ways of sharing the expensive test equipment.

Product Owner—A weak Definition of Done causes risk and delay,
which hampers the Product Owner from maximizing the value and from
deciding when to ship. A good Product Owner invests in improvements
so that the organization’s agility increases.

https://less.works For Gene Gendel only, id:gene-gendel

242

10. Definition of Done

For example, in the previous system-validation example, the Product
Owner probably painfully experiences the delays caused by system vali-
dations and can improve the situation by investing in test equipment or
discussing with teams what Product Backlog Items they need in order
to improve their Definition of Done.

Scrum Masters—Not expanding the Definition of Done is a sign of not
improving. Scrum Masters are responsible for building teams that are
self-managing and continuously improving, and Scrum Masters are
responsible for helping the organization to improve.

For example, in the previous system-validation example, when the
Teams aren’t discussing how to improve their Definition of Done, you
would ask questions such as “What is preventing my teams from
improving their system validation skills?”

The Definition of Done and how well the Team can achieve that are vital
information to gauge the health of the Scrum implementation.

Expansion of the Definition of Done is often decided in:

Management discussions and meetings—The key question for manag-
ers to ask themselves is “How to expand the Definition of Done?”
Improving the organization’s capability to deliver is the main responsi-
bility of managers and the Definition of Done is a key tool for that.

Retrospectives—Both team-level and Overall Retrospectives result in
improvement items. These might improve the lives of the team mem-
bers, or improve the output and its quality, or work towards expanding
the Definition of Done. The product-level Definition of Done is shared
across all Teams but each Team is encouraged to improve on that.

Guide: Communi-
ties, p. 295

Communities—Community discussions are a perfect place for analyz-
ing organizational behavior and systemic problems. This also makes
them great for figuring out ways to expand the Definition of Done.
Especially the community of Scrum Masters is a good place for this as
they have the responsibility to change the organization together with
managers by ensuring the discovered problems are removed…
together.

https://less.works For Gene Gendel only, id:gene-gendel

243

LeSS Huge

Is an organization with a perfect Definition of Done done with improv-
ing? No, improvements won’t ever be done. They never stop. Further
improvement can be made:

> Have shorter Sprints.

> Release many times during a Sprint.

> Expand the Definition of Done beyond potentially shippable, and
include market success in the Definition of Done. In this case, an
item is not done until you have a measurement about how custom-
ers are using it. The Lean Startup framework refers to this as vali-
dated learning.

LESS HUGE
There are no Huge-specific rules or guides. One shared Definition of
Done is applicable for the whole product, across all Requirement Areas.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

LeSS Sprint

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Product Backlog Refine-
ment 248

• Guide: Product Backlog Refinement Types 249
• Guide: Overall PBR 251
• Guide: Multi-Team PBR 252
• Guide: Multi-Site PBR 254
• Guide: Initial PBR 255
• Guide: Splitting 260
• Guide: Scaling Estimation 269

LeSS Huge 272

representatives from each team

"free" & easy video technology

a multi-site overall PBR workshop in LeSS

Contents

https://less.works For Gene Gendel only, id:gene-gendel

247

11
PRODUCT BACKLOG

REFINEMENT
I don't necessarily agree with everything I say.

—Marshall McLuhan

ONE-TEAM SCRUM
First, notice the chapter order: Product Backlog Refinement (PBR) is
before Sprint Planning. But PBR does not happen just before Sprint Plan-
ning, but rather well before—usually “mid-Sprint” in some prior Sprint.
The chapters are organized this way because from the viewpoint of the
flow of requirements, the ball starts rolling with PBR.

For a Product Backlog item to be chosen during Sprint Planning, it
needs to be small enough and understood enough by the Team for the
Team to judge that the item can realistically be “done” in the Sprint.
Therefore, ongoing PBR is needed each Sprint to prepare and refine
items to be ready for future Sprints. Activities include clarifying and
detailing, splitting, and estimating. In the true spirit of empirical process
control, Scrum doesn’t say how to do PBR though suggests the Team
spend no more than 10% of their Sprint capacity on it. It usually hap-
pens mid-Sprint.

Refinement of items is not done separately by the Product Owner or a
“Product Owner team” or a separate group of business analysts or
product managers or UX/UI designers—doing so would increase the
wastes of handoff, inventory/WIP, and more. And it would reduce empa-
thy and understanding by the Team of the customers and users. Rather,
the whole Team does this work—and not a subset of the Team (such “our
BA experts” or “our UX experts”), as in Scrum there are no sub-groups
dedicated to a particular domain such as analysis or UX. The Scrum
Guide explains:

https://less.works For Gene Gendel only, id:gene-gendel

248

11. Product Backlog Refinement

[PBR] is an ongoing process in which the Product Owner and the Develop-
ment Team collaborate on the details of Product Backlog items. … Scrum
recognizes no sub-teams in the Development Team, regardless of particu-
lar domains that need to be addressed like testing or business analysis;
there are no exceptions to this rule.

LESS PRODUCT BACKLOG REFINEMENT
When scaling, these principles relate to Product Backlog refinement:

Whole-product focus—If each team only separately refined different
items (a local optimization), the effects would be to limit domain knowl-
edge, reduce agility, and make coordination difficult. Ways to combat
this are key.

Customer-centric—In a traditional organization, so-called require-
ments are often technical or functional tasks for siloed groups, rather
than true customer goals. Therefore, during adoption of LeSS, many
developers will be unfamiliar with the full customer requirements and
their language and domain—let alone working together with them to
solve their problems rather than extracting their preconceived solu-
tions.

Lean thinking & queuing theory—In the old organization several func-
tional groups are often involved in understanding and defining require-
ments, and handing them off—business and UX analysts, UI designers,
product managers, etc. That generates many wastes and many queues
stuffed with intermediate WIP documents. But it looks locally efficient
and the true costs and problems are not grasped. Then a so-called
Scrum or agile adoption is done in which these dynamics remain, but
under new labels such as “Product Owner team,” “story writing team,”
and so on. But the wastes and queues remain.

https://less.works For Gene Gendel only, id:gene-gendel

249

LeSS Product Backlog Refinement

• LeSS Rules •

Guide: Product Backlog Refinement Types
Product Backlog Refinement (PBR) in LeSS is a workshop where teams
clarify upcoming items with users and stakeholders, split big items, and
(re)estimate items. The precise pattern of Product Backlog Refinement
depends on the following forces:

> Items are not preassigned to specific teams, since that would
reduce agility and learning, and increase key-team fragility. And it’s
often desirable for a group of teams to refine a set of items together
without yet deciding which team will implement which item,
because that broadens knowledge, enhances coordination, and
increases agility.

> Having all teams refine all items might take too much effort and
can lead to boring refinement meetings. It is also hard to keep
everyone interested in the clarification when a team knows they
aren’t the team who will implement the item.

These forces are resolved by having different types of PBR in different
situations. There are four types of PBR meetings:

Product Backlog refinement is done per team for the items
they are likely going to implement in the future. Do multi-
team PBR to increase shared understanding and exploit coor-
dination opportunities when having closely related items or a
need for broader input/learning.

The Product Owner shouldn’t work alone on Product Backlog
refinement; she is supported by the multiple Teams working
directly with customers/users and other stakeholders.

All prioritization goes through the Product Owner, but clarifi-
cation is as much as possible directly between the Teams and
customer/users and other stakeholders.

https://less.works For Gene Gendel only, id:gene-gendel

250

11. Product Backlog Refinement

Overall PBR—Whole-product-focused PBR that is held before multi-
team or single-team PBR. The overall PBR is to explore which teams
might refine which items, and also to increase learning and alignment.

Multi-team PBR—PBR where all members of two or more teams are
refining a set of items together without yet deciding which of these
teams will implement which item.

Single-team PBR—PBR where all members of one team refine items
they are likely to implement. This is the same as in Scrum.

Initial PBR—PBR done when adopting LeSS and held only once in the
life of a product. In initial PBR, all teams together create the first Prod-
uct Backlog and refine enough items to start the first Sprint.

The table below clarifies the different refinement meetings.

It’s common for a product group with 2–3 teams to have only one PBR
meeting where the Product Owner, users, and all members of all teams
together do in-depth refinement on all items: effectively, an overall and
multi-team PBR meeting combined.

Overall PBR Multi-team
PBR

Single-team
PBR

Initial PBR

members from all teams 2+ teams 1 team all teams

includes Product Owner? definitely depends rarely definitely

includes customers/users? rarely probably probably definitely

select which teams
work on which items?

yes (prefer set
of items with
group of teams)

no done already no

level of clarification lightweight in-depth in-depth in-depth

length shortish 0.5–1 day 0.5–1 day at least 2 days

typical frequency every Sprint most Sprints most Sprints once

https://less.works For Gene Gendel only, id:gene-gendel

251

LeSS Product Backlog Refinement

For a product group with three or more teams, there is usually a combi-
nation of overall PBR followed up with multi-team and single-team PBR.
Avoid single-team PBR unless it is absolutely certain that a specific
team will implement specific items. In general, prefer multi-team PBR
with a group of teams to refining a set of items. Figure 11.1 shows a com-
mon PBR pattern.

Figure 11.1 types of
PBR in LeSS

Guide: Overall PBR
In overall PBR it’s decided whether further in-depth refinement is done
by (1) ideally, a group of teams that refine a set of items, or (2) single
teams. Sometimes it’s obvious which teams will best refine the items
from their past work or their latest interests, and then overall PBR
could perhaps be skipped.

Overall PBR is “short and sweet.” e.g. an hour if a two-week Sprint.
Attendees include the Product Owner and either representatives from

https://less.works For Gene Gendel only, id:gene-gendel

252

11. Product Backlog Refinement

all teams or entire teams—representatives are more likely in larger
groups. Basic activities:

> discuss direction and vision with the Product Owner

> discuss items to be refined

> identify the teams and items for later in-depth team PBR

> to increase learning and agility and to reduce “key team” fragil-
ity, prefer a set of items with a group of teams rather than “team-A
handles [X, Y, Z]”: also leads to multi-team PBR

> identify strongly related items that suggest opportunities to coop-
erate and coordinate; also leads to multi-team PBR

Guide: Scaling Esti-
mation, p. 269

In overall PBR the group may also:

> split a big item, which generates discussion and learning

> estimate items, which likewise generates discussion and learning,
and also helps synchronize estimates across teams

> clarify an item, though not in-depth

> for example, the clarification may be timeboxed (“10 minutes”)
or “content boxed” (“two examples”)

Representatives? Recurring advice in LeSS is that when there are rep-
resentatives at any meeting, rotate those over time. This increases per-
spectives, strengthens multiple skills in team members, and reduces the
“special people” weaknesses.

Items chooser? During overall PBR let the teams (not the Product
Owner) decide which items they will take onward to multi-team or sin-
gle-team PBR. This fosters self-organizing and reduces work for the
Product Owner. And as mentioned, prefer a set of items with a group of
teams rather than “team-A handles [X, Y, Z].”

Guide: Multi-Team PBR
In multi-team PBR, all members of two or more teams refine a set of
items together without yet deciding which team will implement which
item. Thereby they defer the decision of team-to-item until some future

https://less.works For Gene Gendel only, id:gene-gendel

253

LeSS Product Backlog Refinement

Sprint Planning. Organizational agility—easily responding to change—
increases, and the broader whole-product knowledge fosters self-orga-
nized coordination. Who’s there? In addition to all the team members,
important attendees include customers/users and related stakeholders.
When done, multi-team PBR usually replaces single-team PBR.

Naturally, simply having two or three teams refine items in the same
room doesn’t magically increase shared understanding and so on. So
multi-team PBR must include a set of “mix it up” techniques, such as:

1. Team mixing—Start by forming temporary mixed groups with
people from each team. For example, two teams re-form into two
mixed groups.

> After all following steps, consider forming new mixed groups for
the next cycle, to increase diversity and interactions.

2. Rotation refinement—Start with each mixed group refining dif-
ferent (or identical!) items separately at different work areas in
the same room. For example, at different whiteboards, tables, or
around different computer projectors. After a “30-minute” time-
box, all groups rotate to the next work area (and its related item
under refinement), leaving one or two people behind to bring the
incoming group up to speed on understanding the current refine-
ment. Those left behind will typically include the customers/users
or other stakeholders best able to help the group refine an item.

3. Diverge–merge cycles—Groups spend some time working sepa-
rately in different areas of the room for refinement on different
(or identical) items, and then spend time all together to share
insights, ask questions, and seek other coordination opportunities.

Why multi-team PBR?

> Increased organizational agility
Multi-team PBR increases the number of teams that can imple-
ment a set of items. Looked at another way, it delays the decision of
which team will implement which item. Consequently, the Product
Owner can change the order of items in more ways—in response
to forces of change—without the rigid constraint that “only team-
A can implement X.” Increased agility!

https://less.works For Gene Gendel only, id:gene-gendel

254

11. Product Backlog Refinement

> Increased whole-product focus and knowledge
The teams doing multi-team PBR together gain broader domain
knowledge from (1) exposure to more varied items and (2) expo-
sure to the people and knowledge in other teams. This increases
their ability to understand, see, and focus on the whole.

> Improved coordination
Multi-team PBR educates teams in detail about what other teams
know and are doing. That enhances coordination and the ability to
share work.

Guide: Multi-Site PBR
Overall or multi-team PBR might be multi-site. General multi-site tips
are in “Guide: Cross-Team Meetings” on page 299. This guide focuses
on tips related to PBR.

Guide: Splitting,
p. 260

Splitting
When splitting a big item, it often helps to sketch a tree-like diagram on
a whiteboard. Similarly, in a multi-site meeting use a shared-space mind-
map drawing tool (e.g. in a browser), since these are optimized for creat-
ing tree-like structures. People at different sites can simultaneously
both see and modify the mindmap.

Clarifying
Specification by example1 (SbE) is a great technique for a group to
clarify and learn about an item by discussing examples. SbE has long
been encouraged in LeSS. How to do this in a multi-site PBR? Use a
shared-space spreadsheet (e.g. in a browser) because many examples
naturally fit a table format. And people at all sites can modify it easily.

Guide: Scaling Esti-
mation, p. 269

Guide: Tools for
Large Product Back-
logs, p. 210

Estimating
First, avoid so-called “agile” planning tools, because they tend to focus
people’s attention on the tool rather than on one another, and because
physical tools such as cards tend to energize and engage people better.
Second, any estimation technique is possible in LeSS, but this tip
assumes a “planning poker” technique, since it’s so popular.

1. See the books Bridging the Communication Gap, and Specification by Example.

https://less.works For Gene Gendel only, id:gene-gendel

255

LeSS Product Backlog Refinement

Webcams with physical planning-poker cards or hands—In the multi-
site meeting, people use big cards with big numbers on them so they’re
visible through the webcam. A variation is to use fist-and-fingers signals
to represent different estimation values.

Shared chat—Everyone has a device with a shared chat tool. When the
moderator says “show your number,” then everyone enters a number.

Guide: Initial PBR
A product group adopting LeSS needs, before their first Sprint, a Prod-
uct Backlog with enough understood items for the teams to get going.
This initial PBR preparation in LeSS is called—cleverly—initial PBR.
Aside: This guide could have been in the Adoption chapter, but much is
relevant to general PBR, so it’s here.

Why Bother?

An existing product group adopting LeSS might ask, “Why bother to do
this? We already have a backlog, and our people already understand the
requirements.” Actually, those two assumptions may not be true, and
there are other reasons for initial PBR:

> Existing “backlog” isn’t a useful LeSS Product Backlog.
When we coach a group starting a LeSS adoption we ask, “Do you
have an existing backlog?” Invariably the answer is, “Oh yes, we
have our JIRA/Rally/… list!” Caution! We worked with a group that
had an original JIRA “backlog” of 508 items. After a two-hour
activity, it distilled into a LeSS Product Backlog of 23 items from
those 508 inputs! Why? Most of the old “items” were functional
tasks assuming single-function teams (analyze, design, test, …),
component tasks assuming component teams, and so on, all predi-
cated on the assumption of the old organization. They didn’t make
sense in the new feature-team structure of LeSS.

> People don’t understand re-formed items.
Building on the prior point, the items need to be expressed in a
true customer-centric end-to-end manner, and understood this
way. Due to prior siloed teams, there’s a lot of learning the nascent
feature teams need for these newly cast items.

https://less.works For Gene Gendel only, id:gene-gendel

256

11. Product Backlog Refinement

> Limited knowledge of customer-centric view.
Even if the old items were previously expressed in a customer-
centric way, the prior siloed-specialists focus on narrow tasks, and
so don’t understand the full customer-centric view.

> No estimates for re-formed items, poor or insufficient esti-
mates.
Newly cast items need new estimates. And even if the items didn’t
need reformation, the estimates often came from some other
group rather than from the newly formed feature teams. And the
Product Owner may need estimates for most or all items to sup-
port longer-term planning.

> New broader production definition.
The What is Your Product guide (p. 157) explains that in a LeSS
adoption the product scope may become broader. So several exist-
ing backlogs may need to be transformed into a new broader one.
And this change implies creating and communicating a new
broader product vision, lots of knowledge gaps, and many people
unfamiliar to each other who will soon be delivering together.

> No shared product vision.
Whether it’s a new broader product or not, it’s common—due to
the traditional siloed groups—that few people know the product
vision, if there even is one! Initial PBR is an opportunity to form,
communicate, and start aligning on a common vision.

Basics

Preconditions? (1) The Product Owner is identified. (2) The feature
teams and their members have been decided. (3) There’s enough
detailed information that can be “brought into the room” to sufficiently
refine many items ready for Sprint #1. That “bringing in” is ideally users/
customers and related stakeholders, but can also include existing docu-
ments or backlogs.

Duration? Often two days or longer.

Attendees? “Everybody”! Product Owner, all team members of all
teams, customers, users, domain experts, product managers, Scrum
Masters, and supporting managers.

https://less.works For Gene Gendel only, id:gene-gendel

257

LeSS Product Backlog Refinement

Location? Even for a multi-site group, hold initial PBR at one site all
together in a large workshop room.

Objectives
The basic objective of initial PBR is to sufficiently refine enough items
so all teams can be productive in the first Sprint, implementing items
until “done” and creating a shippable product.

Other objectives: (1) establish shared vision and understanding, (2)
generate ideas for innovation, (3) identify early major goals, and (4) plan
longer term. These objectives are more or less important depending on
the current state of the group and product. For example, in a long-sta-
ble, single-site, small group working on a mature product, those objec-
tives could already have been met. Quite the opposite of a two-year-old
product experiencing explosive growth in a hot market, with three
young sites.

Basic Objective: Sufficiently Refine Enough Items
Meeting this objective usually consumes most of the time in initial PBR.

How? Because all the teams are together, study the Multi-Team PBR
guide for ideas of how they can work together. In the spirit of empirical
process control, LeSS doesn’t dictate how to refine items, though popu-
lar techniques include agile modeling and specification by example.

How many? What about the number of items to get ready for the first
Sprint? As explained in the Splitting guide (p. 260), aim for items small
enough that one team can do about four items per Sprint. So if there are
five teams, that means preparing at least 20 (4 x 5) items in initial PBR.
But wait!… in most situations we observe that it takes on average two
Sprints for items to go from vague and unexamined to clearly ready for
implementation. In that case, then during initial PBR, the group needs to
get about 40 items ready: enough to prime the pump for early Sprints,
while in Sprint #1 the teams are starting to refine items for later Sprints.

Objective: Establish Shared Vision and Understanding
Every PBR meeting is an opportunity to establish vision and increase
shared understanding. But initial PBR is the first time the entire group

https://less.works For Gene Gendel only, id:gene-gendel

258

11. Product Backlog Refinement

may be focused on this. For example, in the prior traditional organiza-
tion, vision may have been the sole domain of product managers, while
programmers/testers/etc. were just expected to implement according
to marching orders. Not so in the new LeSS group.

How? First, for these kinds of activities, a skilled workshop facilitator is
invaluable! Any technique is possible, but we suggest the collaborative,
fun, and fast techniques described in the books Innovation Games and
Gamestorming.

Objective: Generate Ideas for Innovation

As with visioning, any and every PBR meeting is an opportunity to ide-
ate—to generate innovative ideas. But initial PBR is the ideal first step to
set the tone of engaging everyone in innovation.

How? Once again, any technique is possible; we suggest starting with
Innovation Games and Gamestorming.

Figure 11.2 impact
mapping in initial
PBR

Objective: Identify Early Major Goals

As with innovation, every kind of PBR meeting is a time to consider new
or alternate goals. But initial PBR is the natural time and place to start
doing so and to practice new techniques.

https://less.works For Gene Gendel only, id:gene-gendel

259

LeSS Product Backlog Refinement

How? Two techniques that we often recommend are related to under-
standing or creating goals are impact mapping and story mapping. Not
surprisingly, they both have excellent books that we suggest you study
and apply: Impact Mapping and User Story Mapping.

Objective: Plan Longer Term—Repeatedly
First and foremost, there’s a good reason why Scrum does not formally
include the notion of “release planning.” Why? Because a key perfection
goal is to ship at least every Sprint. It’s a big idea in agile development and
confers many benefits. And so it’s also stressed in LeSS: aim to ship at
least every Sprint. Then all the complexities of big-batch planning fall
away, and there’s powerful agility to respond to change.

But of course there are circumstances—most common in large-scale
development—when planning longer term is important, usually to syn-
chronize dates with (1) internal groups (e.g. a campaign with Marketing),
(2) customers (e.g. organize deployment of new radio towers), and (3)
events (e.g. a trade show). Then, initial PBR is the time and place to start.

Here’s a key point about agile planning in the longer term:

How? Crucially, regardless of technique, a related question is, “How
often?” Every Sprint is a chance to learn and adapt. Initial PBR is just the
first time to plan longer term; at every subsequent PBR meeting, every
Sprint can and probably should be used to re-plan longer term if it’s
important.

A key element in planning longer term to synchronize dates will be some
kind of estimation done during initial PBR. The upcoming “Guide: Scaling

Planning the scope of items for a date is sometimes necessary.
But don’t plan items to specific Sprints. That kills agility.

https://less.works For Gene Gendel only, id:gene-gendel

260

11. Product Backlog Refinement

Estimation” on page 269 expands the topic, but here’s a key point:

A second key element of planning longer term is order, often of larger
goals or themes. Naturally, LeSS doesn’t prescribe the technique, though
the techniques of Identify Early Major Goals are suggested, including
impact mapping and story mapping.

Architectural Design & Initial PBR

Guide: Multi-Team
Design Workshop,
p. 301

The results of initial PBR could imply some significant architectural
change that should be considered by the teams before Sprint #1. Is this
discussed and resolved during initial PBR? No. PBR is for the customer-
perspective understanding and learning, it isn’t for technical design.
Instead, after initial PBR organize one or more design workshops for
teams to explore the design.

Guide: Splitting
Large-scale is a world of gigantic requirements, so we always hear this:
“Our group can’t possibly fit our requirements into two-week Sprints.
There is no way they can be made smaller while still being customer-
centric.” We’ll invite the person to tell us their largest and most impossi-
ble item that could never be split into small customer-oriented items,
and together at a whiteboard we’ll start splitting. It usually takes about
five minutes. So it’s not actually that difficult, though it’s different; with
a little learning you too can become a Certified Split Master!

Why split big items?

> Delivering high-value or high-risk elements early increases bene-
fits and feedback and reduces risks. Related is that small items
increase visibility and control for the Product Owner about what’s
really important and what’s next.

Choose the simplest technique that matches the
purpose and that fosters discussion and learning.

https://less.works For Gene Gendel only, id:gene-gendel

261

LeSS Product Backlog Refinement

> Customer-centric “vertical” splitting helps divide and parallelize
valuable work over the multiple teams—teams that can still do all
the activities in the Definition of Done.

> An item has to be completely doable well within a Sprint so that
some increment is done each Sprint and WIP is lowered.

In this guide you’ll start learning to split requirements.

How to Learn?

Seeing fully explained examples of splitting helps learning. Telling sto-
ries helps. So the upcoming example tells the true story of splitting an
item. Many more examples—worth learning for mastery of this art—are
available. Use these resources to become a Certified Split Master:

> The LeSS book Practices for Scaling Lean & Agile Development has a
20-page section (p. 247) called Try… Split Product Backlog Items,
with many detailed examples.

> That section is also online at the less.works website in the guide
also named Splitting Big Items.

> The book Fifty Quick Ideas to Improve Your User Stories has a 30-
page guide on learning to split.

> Richard Lawrence’s online “Patterns for Splitting User Stories” and
“How to Split a User Story poster”

How to Split?

One key to learning how to split is to understand splitting perspectives,
and then learn how to split by them. The table below describes some of
them.

use case the major work flows or
cases of use; CRUD use
cases

configura-
tion

a varying configuration,
such as type of operat-
ing system

scenario a specific sequence of
steps within a use case

user role,
persona

Attacker, Defender,
power user, novice

type varying types or kinds
of things, such as types
of trades

data
format

XML, comma delimited,
…

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works

262

11. Product Backlog Refinement

The following example will help you learn to split with perspectives.

Splitting Example: Process Kenya-Market Custody Transactions
This example is from a large securities trading product for the item
“Process Kenya-Market Custody Transactions.” The context was that
this work was previously being done semi-manually, but as the volume
in this market grew, the trading group wanted to fully automate it.

The setting was a PBR session that included team members and some
hands-on users who knew a lot about the requirements because they’d
been involved in the semi-manual processing.

“At Least Four Items
per Sprint” on
page 268

Can we stop splitting?—Of course, if the item is already estimated as
small enough so that 4-ish similar items would fit in one Sprint for one
team, no need to split further. And as new split items are defined, they
need estimation to decide if further splitting is warranted. In this exam-
ple, the original item was estimated as very big.

Perspective: Split by use cases—On talking with users in the PBR ses-
sion it became clear that this requirement involved “handling a transac-
tion.” Transactional requirements usually split into major use cases,2 and
so did this one: (1) settle a trade, (2) handle a corporate action (such
as a stock split) on an unsettled trade, and (3) some others.

external
integra-
tion

with several external
elements, such as trad-
ing exchanges

data
part

a subset of the many
elements of the data:
may be useful

opera-
tion/mes-
sage

a system operation/
message, e.g. HTTP
GET, SWIFT MT304

non-func-
tionals

moderate vs. high
throughput, with or
without recovery, …

I/O
channel

an input or output chan-
nel, such as GUI or com-
mand line

stub a fake simple implemen-
tation of something

2. “Use cases” is the term and model the users knew and used.

https://less.works For Gene Gendel only, id:gene-gendel

263

LeSS Product Backlog Refinement

The users wanted to talk about and elaborate
all the use cases. We asked them to pause and
said, “Let’s do gradual clarification. Which of
these use cases is performed most often?” They
said, “Settling a trade is by far the most common
case and we should do it first, since that will
quickly reduce costs and errors.” So we decided
to focus on “settle a trade” first. We didn’t bother to discover all the pos-
sible use cases. Instead we sketched a tree on a whiteboard to show the
split’s major sub-items:

> settle a trade

> handle a corporate action on an unsettled trade

> everything else for handling Kenya-market transactions

This partial splitting with an “everything else” placeholder is important
when splitting. It reduces over-processing and WIP, and focuses the
group on small-batch development. This big item will be in the Product
Backlog as a placeholder for future discovery.

Where to focus next? Splitting direction—What led us to the choice of
focusing on “settle a trade”? What’s the next direction to focus on?
Guides for choosing:

> split for value or impact—e.g. to increase revenue or market
share or to reduce costs.

> split for learning about

> domain—e.g. unfamiliar derivative

> technology—e.g. unfamiliar protocol

> size of the overall item

> split for risk mitigation—e.g. split to clarify and deliver an item
that prevents a fine, or split to create or evaluate new technology

> split for progress—sometimes just getting something developed
builds confidence that the requirement can be tackled

Can we stop?—People were immediately sure it was still a big item, so
we carried on.

https://less.works For Gene Gendel only, id:gene-gendel

264

11. Product Backlog Refinement

Split by type—We asked, “Are there different types of trades to settle?”
Answer, “Yes, buys and sells.” That suggests buy/sell might be a good
way to split further, but we first had to ask an important question when
splitting…

Does the splitting reduce the
effort?—Just because one can the-
oretically split a requirement into
“settle a buy” and “settle a sell,” that
doesn’t mean that it splits the effort
or work involved. Sometimes the
exact same code handles these
variations identically. So then it
isn’t useful to split that way because
it doesn’t reduce the effort. There-
fore we asked, “Are the logic, business rules, handling, and so forth the
same for settling a buy versus a sell?” The experts replied, “Oh no,
they’re quite different.” Good! Then we know that splitting by type of
trade is useful. Now we had:

> settle a trade

> settle a buy

> settle a sell

> handle a corporate action on an unsettled trade

> everything else for handling Kenya-market transactions

Where to focus next?—Automating this requirement was motivated by
the goal of reducing the cost and errors of manual handling. If the costs
are equal for different types of transactions, then the frequency of a
transaction type points to where the most benefit is.

We asked, “What’s the percentage of buy trades?” Answer, “80%.” So we
focused further on “settle a buy”.

Can we stop?—“Settle a buy is small?” Answer, “No, it’s still big.”

Open questions and discovery of variations—Up to this point we
were using our experience during the splitting discussion, such as, “Now

https://less.works For Gene Gendel only, id:gene-gendel

265

LeSS Product Backlog Refinement

that we guess there are use cases, is that true and if so, what are some?”
But it’s also important to ask open questions because experience
doesn’t always guide you to a skillful next step.

When asking open questions during a splitting discussion, we were
especially trying to learn about the variations within the requirement.
That’s because finding variations or alternatives is the key to discover a
splitting and deeper understanding.

So we asked, “Tell us about settle a buy.” We discovered there were two
major types of settlement processes: Free of Payment and Delivery versus
Payment, each with different requirements. Therefore, the split was:

> …settle a buy

> settle a buy with Free of Payment

> settle a buy with Delivery versus Payment

We then discovered that settle a buy with Free of Payment was more ben-
eficial to deliver first, because of high frequency. And it was still big.

Time for more open questions: “Tell us about settle a buy with Free of Pay-
ment?” We then discovered that what initiates this use case is an incom-
ing SWIFT message, and depending on the characteristics of the
message, there were varying processing steps. This can be considered
splitting on types of (or characteristics of) messages. In conversation we
then discovered these sub-items:

> …settle a buy with Free of Payment

> settle a buy with Free of Payment; all party details already
embedded in the incoming SWIFT message (“complete”)

> settle a buy with Free of Payment; some party details not in the
incoming SWIFT message (“incomplete”)

For the latter incomplete variation, it would be necessary to write lots of
code to retrieve and fill in the missing party details. But in the complete
case, there wasn’t much to do. And at that point the group felt that settle

https://less.works For Gene Gendel only, id:gene-gendel

266

11. Product Backlog Refinement

a buy with Free of Payment; all party details was probably small enough to
not require further splitting.

Now, what was actually recorded in the Product Backlog?

> settle a buy with Free of Payment; complete SWIFT message

> settle a buy with Free of Payment; incomplete SWIFT message

> settle a buy with Delivery versus Payment

> settle a sell

> handle a corporate action on an unsettled trade

> everything else for handling Kenya-market transactions

Ancestors—Notice that all the intermediate “ancestors” are expunged
from the backlog. That’s a nice and simple approach, but sometimes you
want to keep some ancestor information. In that case, see “Guide: Deal-
ing with Parents” on page 204.

Done for now!

Split into Thin End-to-End Items
Consider this new sub-item we discovered: settle a buy with Free of Pay-
ment; complete SWIFT message. It’s a complete end-to-end “vertical” cus-

https://less.works For Gene Gendel only, id:gene-gendel

267

LeSS Product Backlog Refinement

tomer-centric feature, but thin. It can be connected to just a few
acceptance tests. This illustrates a critical key point about splitting:

What’s that about steps? Developers think of development in terms of
internal-design logical algorithm steps. For example, for settle a buy:

1. identify the SWIFT message type

2. parse the message

3. retrieve the trade associated with the message from a database

4. …

Don’t split by internal-design-algorithm processing steps; e.g. don’t
define an item for the step “identify the SWIFT message type.” Why not?

> You can’t add customer-centric automated acceptance tests since
no customer-centric end-to-end functionality is implemented.

> Since it can’t be used in production, it’s WIP with its classic prob-
lems: no usable value, hidden defects and risks, and no feedback.

> It introduces component-team-like dynamics and problems. What
do we mean?

Frequently—especially in architectures created when there are or
were component teams—one processing step is associated with one
software component, such as the step “identify message” associated
with a component MessageIdentifier. When that’s true the follow-
ing can happen…

Suppose each processing step is defined as a separate item; e.g. an
item for “identify the SWIFT message type”, and so forth. Then
there’s a tendency to define and do “all” the changes for “all” the
variations of a customer requirement that involve the component
associated with the step. For example, “Do all the work in the Mes-

Split into thin end-to-end “vertical” requirements.

DO NOT SPLIT ITEMS INTO INTERNAL DESIGN STEPS!

https://less.works For Gene Gendel only, id:gene-gendel

268

11. Product Backlog Refinement

sageIdentifier component to identify all the message types, so we
only need to touch it once.”

This leads back to component-team dynamics and problems in the
organization, even if there are apparently feature teams, since
they are working on single-component tasks hidden under the
label of “processing step” requirements.

In contrast, “settle a buy with Free of Payment; complete SWIFT mes-
sage” is complete. It’s very thin and it isn’t all possible variations of “set-
tle a buy,” but it’s one complete flow. It can be integrated, delivered,
used, provide value, and give feedback. And the automated acceptance
tests never need to be changed.

A Last and First Resort? Fail First
Sometimes the surprising place to split is with error (failure) scenarios.
Once, we were involved in implementing the 3G telecom standard
HSDPA for a product. The team started the splitting by trying to sim-
plify a success scenario. They discussed:

Make an HSDPA call in the simplest possible network configuration, ignor-
ing all error cases.

But they discovered that even this was too big. Thus, instead of looking
at success scenarios, they started splitting from a failure perspective—
there are many in a telecom network. They first split for the simplest
possible failure scenario and then gradually worked down the stack,
implementing more failure scenarios. After two Sprints, the cumulative
failure scenarios had put enough stuff in place for them to work on the
simplest success scenario.

Why was this useful? By splitting on failure cases they gradually built up
functionality while still focusing on a customer perspective. Plus, they
were addressing some risks early and increasing learning. Of course,
having only failure cases does not (usually) deliver usable value.

At Least Four Items per Sprint
How small to split items? Naturally, they need to be smaller than a
Sprint so that there’s an increment. But “almost as big as an entire

https://less.works For Gene Gendel only, id:gene-gendel

269

LeSS Product Backlog Refinement

Sprint” also isn’t desirable. Why is that? Owing to the high variability
inherent in R&D, it’s quite likely that one big item won’t get fully done.
Then, nothing will be delivered “done” by the team. And then there is no
benefit delivered, weak feedback, and less learning and adaptation.

So here’s a guideline that influences splitting size: In a Sprint, one team
should select at least four items.

Why four? It strikes a balance between too big or small. Why not two?

> With big items there’s an increased chance one won’t get done,
because of variability or availability of a constrained resource
(such as lab equipment).

> Following on from the last point: If there are lots of half-done
(WIP) items at the end of Sprint, the Product Owner has—realisti-
cally—fewer choices in the next Sprint since wrapping up the WIP
items is almost always compelled.

> Big items tend to promote sloppy waterfall-like practices, and they
tend to overwhelm teams with myriad details.

Why not ten? In the large-scale world, “10 items per team” might be
OK, but can lead to these disadvantages: (1) the overhead of so much
splitting, (2) the overhead of managing and understanding an exploding
large Product Backlog with myriad teeny-weeny items, (3) difficulty of
remaining end-to-end centric, and (4) reinforcement of the old ten-
dency for an item to be done by one person rather than “whole team
together” with a shared responsibility.

Guide: Scaling Estimation
In big groups, estimation issues include the straightforward problem of
synchronizing the units of estimation across teams and the more perni-
cious problem of disconnection between the purpose of estimates and
the effort and techniques used.

https://less.works For Gene Gendel only, id:gene-gendel

270

11. Product Backlog Refinement

Match Estimation Effort with Purpose
Big traditional groups push Taylorist “best estimation practices” onto
groups, ignoring context and assuming “better” estimates are always
better regardless of cost and drawbacks.

For example, the most frequent reason to try improving estimation
“accuracy” (reducing variation to actual effort) is increased predictabil-
ity. But let’s reconsider predictability in an agile world. Even with impos-
sible-to-achieve 100% “accurate” estimates (a contradiction of terms),
predictability can’t be assured, because new items must emerge. We
sometimes remind our clients, “the only products that might be without
change are those without customers.” Thus we want responding to
change over following a plan.

So why estimate?

ROI prioritization—If you want to get more bang for your bucks, you
need estimates of bang and bucks.

Synchronizing dates—with…

> internal groups—e.g. for a roll-out campaign with Marketing

> customers—e.g. when delivering new equipment to a telecom
operator, they need to organize a deployment project

> events—e.g. a trade show

Guide: Customer
Collaborations
over…, p. 187

Evaluate risks when there are “release promises”—In the unfortunate
case that (apparently) fixed-scope and date release promises are still
being made, estimation (and re-estimation) helps determine risks and
the need for adaptation. A variant of big release promises is playing
chicken in the market of constrained or fixed-price outsourcing proj-
ects, especially with fixed-scope projects. Estimates are used for profit
feasibility and to evaluate on-going risks to profit and delivery.

Estimates don’t need to be “accurate” or “precise”;
they need to be useful, and usefulness depends on purpose.

https://less.works For Gene Gendel only, id:gene-gendel

271

LeSS Product Backlog Refinement

Learn by exploring or by exposing differences—Estimating together
increases learning about items, including where to focus attention for
further clarification or splitting. And when people disagree about esti-
mates, there’s more learning. Notice that in this case it’s the estimating,
not the estimate, that’s beneficial.

The Relative Effort of Specific Techniques

LeSS is driven by empirical process control, so no specific estimation
technique is prescribed. Use anything from Planning Poker to Paramet-
ric Models. Most importantly:

Synchronizing Relative-Point Estimation Units Across Teams

Naturally, LeSS doesn’t say what estimation unit to use, but relative
(story) points are hugely popular. Why use them in a large-scale con-
text? One reason is that they’re relatively fast and easy to create, while
simultaneously revealing differences and opportunities for learning.
And all that increases the chance of updating estimates—something
rarely done in large groups with many items if the estimation unit or
technique is burdensome. Why update? That’s valuable input to more
learning and to empirical process control of product and processes.

Why not use relative points? Using a non-relative unit such as person-
days eliminates the synchronization problem explored next. And a dif-
ferent unit may be widely understood or used, meaning less re-educa-
tion or unit transformation. Also, some groups abuse and distort relative
estimates (e.g. linking them to person days, using them to naively com-
pare teams, linking them to targets and bonuses) and then they become
meaningless and dysfunctional.

There’s a problem scaling when points are used: They are relative—“5”
has no absolute independent meaning. Two teams can define “5” differ-
ently. If estimates are used for decision-making or progress evaluation,
then there are problems due to inconsistency. In contrast, if the group

Choose the simplest technique that matches the
purpose and that fosters discussion and learning.

https://less.works For Gene Gendel only, id:gene-gendel

272

11. Product Backlog Refinement

has a common agreement or synchronization on the size of points, then
there are benefits:

> a consistent estimate of size—aids prioritization for ROI and
increases flexibility of distributing items across teams; and

> a product-level velocity—aids forecasting.

How to synchronize?

Calibrate against done items—One simple approach is for teams to
calibrate or compare against a set of already done items in the Product
Backlog. For this to work well, there should be many such items, to
increase the chance that some or many will be familiar to people.

Synchronize in multi-team or overall PBR—When two or more teams
do PBR together and do estimation with points together, there’s align-
ment across teams for a common meaning of relative points. Similarly, in
overall PBR (with a couple of representatives from all teams), when esti-
mation is done together, then points are synchronized.

LESS HUGE
In LeSS Huge, PBR is handled for each Requirement Area just as in the
smaller LeSS framework. So, for example, an “overall” PBR session is for
one requirement area, not the entire product.

There are no PBR rules specific to LeSS Huge.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Sprint Planning 275
• Guide: Sprint Planning One 276
• Guide: Multi-Team Sprint Planning Two 280
• Guide: No Software Tools for Sprint Backlog 281

LeSS Huge 283
• Guide: Product Owner Team Meeting 283

representatives
from each team

Product OwnerScrum Master

Product Manager
(& domain expert)

 Sprint Planning One in LeSS

Contents

https://less.works For Gene Gendel only, id:gene-gendel

275

12
SPRINT PLANNING

The only place that work and motion are the same thing
is the zoo where people pay to see the animals move around.

—Taiichi Ohno

ONE-TEAM SCRUM
Sprint Planning covers two distinct topics that boil down to what and
how. Topic one focuses on selection of items and discussion of lingering
questions, which should be short due to prior Product Backlog refine-
ment to clarify items. Topic two focuses on initial design and a plan of
work for items to get “done.” The items and tasks make up the Sprint
Backlog. Although the Product Owner decides the order of items, solely
the Team decides how much to select. Selected items aren’t a scope
commitment or promise—they’re a forecast the Team deems realistic.

LESS SPRINT PLANNING
When scaling, these principles relate to Sprint Planning:

Whole-product focus—When there are multiple teams there’s an
increased chance of each going in a different direction and not working
together. And that’s reinforced or reduced in how planning is done.

Empirical process control & continuous improvement—Especially at
scale with myriad different contexts and the need to improve, how
Sprint Planning meetings are done in LeSS must be left up to the teams.

More with less—The traditional view of planning at scale is that it
involves lots of complexity and dependency management. But planning
in LeSS is simple, because feature teams handle the coordination.

https://less.works For Gene Gendel only, id:gene-gendel

276

12. Sprint Planning

• LeSS Rules •

Guide: Sprint Planning One

Guide: Overall PBR,
p. 251

What else happens in Sprint Planning One (SP1) in LeSS, besides a focus
on what? Before answering, a reminder: In earlier Product Backlog
refinement, a guideline is a group of teams with a set of items. This
increases the shared understanding and agility of the teams, and implies
that during SP1 it’s not obvious or constrained which Team will do what.

So the Teams and Product Owner need to decide the division of items.
The Teams also need to identify opportunities to work together, and dis-
cuss how. And because this is complex work with many teams and items,
SP1 is a time for the Product Owner and Teams to talk and on-the-spot
adapt their decisions about priorities and division.

Duration? In a two-week Sprint, a maximum of two hours for SP1 and
two hours for SP2. Use proportional durations for other Sprint lengths.

Sprint Planning consists of two parts: Sprint Planning One is
common for all teams; Sprint Planning Two is usually done
separately for each team. Do multi-team Sprint Planning Two
in a shared space for closely related items.

Sprint Planning One is attended by the Product Owner and
Teams or Team representatives. They together tentatively
select the items that each team will work on during the next
Sprint. The Teams identify opportunities to work together
and final questions are clarified.

Each Team has its own Sprint Backlog.

Sprint Planning Two is for Teams to decide how they will do
the selected items. This usually involves design and the cre-
ation of their Sprint Backlogs.

https://less.works For Gene Gendel only, id:gene-gendel

277

LeSS Sprint Planning

Who Goes?

By Sprint Planning One (SP1) there should be virtually no more ques-
tions about coming items, as they were previously clarified in Product
Backlog refinement. Then who is needed? Just the Product Owner and
the Teams or their representatives. But especially if it’s early in the
adoption of LeSS, there are frequently unresolved minor questions
during SP1 owing to the many knowledge gaps in the young teams.
Then consider inviting other experts who can help answer on-the-spot
for small questions, e.g. product managers, users/customers, and so on.
Aim to improve so this stop-gap measure isn’t needed.

How many Team members? The range is from everyone down to one
representative from each Team. Note that the Scrum Master is not a
Team member and not a representative. Balance the number of Team
members against the number of potential handoff problems if there are
only a few representatives; consider also the need to create a sense of
inclusion, and meeting room size. If there are representatives, rotate
them over time.

Include at least one Scrum Master to coach for ideas on how do Sprint
Planning in LeSS and to help improve it.

Picking Items

Pre-meeting division? Should the group decide before or during SP1
about the division of items to teams? Probably during. Why? This “decide
as late as possible” approach defers the decision until there’s the most
information, which leads to the most informed choice. It also increases
organizational agility because more options are kept open, and encour-
ages whole-product focus since teams will need a broader view.

Product Owner decides? Should the Product Owner decide division of
items to teams? Probably not; prefer to let the teams decide. Why? It
reduces the Product Owner’s effort, supports self-organization,
increases agility and learning when a team chooses less familiar items,
and invites a greater sense of ownership by teams in the product. Espe-
cially for newly formed teams, the freedom and encouragement to
decide for themselves reinforces the messages of self-managing, trust

https://less.works For Gene Gendel only, id:gene-gendel

278

12. Sprint Planning

rather than micro-management, putting decision making where the
knowledge is, and valuing learning.

Competing for an item? What if different teams are competing for an
interesting item? What a great problem! The teams are engaged. Then,
a skilled Scrum Master offers decision-making ideas to the teams, rang-
ing from arm wrestling to the Product Owner breaking a tie. That said,
we recommend that the Product Owner can ultimately override which
teams work on which items (probably in the context of some critical or
risky item choices). And of course, the Product Owner can’t decide the
amount of items a team selects. All that said, if she feels the need to direct
teams to items, it probably signals deeper problems.

Scenario

Here’s an example SP1, pointing to techniques and purpose.

1. Put cards on table—The Product Owner uses cards for the com-
ing items and puts them on the table in Product Backlog order.
Team members discuss, decide, pick, and perhaps swap items.

2. Spread high-order items?—Consider this case: Assume team-A
takes items with order [1, 2, 3, 4] and team-B takes [5, 6, 7, 8].
During the Sprint, team-A drops item-4 (the reason isn’t relevant).
Result? The high-order item-4 hasn’t been done, even though
(perhaps) team-B could have done it. If that’s a meaningful prob-
lem, then try spreading high-priority items across teams. It’s not a
neat solution because it can compete with the goal of a team want-
ing to pick related items.

3. Diverge to clarify?—Ideally, items are ready for implementation
without lingering questions. But sometimes there are some. If
there are only two teams, then talking together is workable. If
there are seven teams, answering serially in one big group can get
slow. Then an alternative is for teams to “diverge”—people in each
team go to a different area and write questions to clarify. The
Product Owner, people from other teams (especially those
involved in multi-team Product Backlog Refinement for the items), or
others move around and help. Write answers to clarify and so any
absent team members can read later.

https://less.works For Gene Gendel only, id:gene-gendel

279

LeSS Sprint Planning

4. Find opportunities to work together—Because the teams have
shared work, have shared code, need to create one integrated
product, and some may be working on strongly related items, SP1
and SP2 are times to discuss and identify opportunities for shared
work and coordination. Prefer handling this in a multi-team SP2
(see next guide). A complement or alternative is this: Near the end
of SP1 discuss together.

Multi-site—Use video, and offer items, using a virtual shared space. If
questions, the simplest solution is to just talk together. If there are many
teams and lots of items to discuss, try a diverging technique such as a
chat tool with one window per item.

Sync up after all of Sprint Planning?—After SP1 and all SP2 meetings,
some groups like to hold a short sync-up session with people from all
teams, to learn and adapt regarding new issues—for example, that a
team dropped an item during SP2.

https://less.works For Gene Gendel only, id:gene-gendel

280

12. Sprint Planning

Guide: Multi-Team Sprint Planning Two
The simple case for Sprint Planning Two (SP2) is doing it separately and
more-or-less in parallel by each team, with all team members. Key topics
include design discussions, and creating a plan expressed in the Sprint
Backlog. In a two-week Sprint, use a maximum duration of two hours.

Guide: Multi-Team
PBR, p. 252

An often preferable alternative is multi-team Sprint Planning Two with
two or more teams in the same room. This will be of interest to the same
group that previously did together multi-team Product Backlog Refine-
ment (PBR) for related items. Generally, do multi-team SP2 with teams
with strongly related—in requirements or designs—items and, being
together, can enhance discussion, design, coordination, and handling of
shared work.

Multi-team SP2 dovetails with but is different from multi-team PBR.
The latter is the teams together in mixed groups clarifying items,
whereas multi-team SP2 is the teams doing their separate SP2 in a
shared space so they can coordinate instantly.

Scenario—Here’s an example multi-team SP2.

1. Whole-group Q&A—Clear some fog and create some paths.

2. Whole-group design & shared work session—For common
designs, discuss and sketch together, or with merge-diverge work-
shop patterns. Identify tasks common to multiple teams, and
decide how to cooperate. Note! All of SP2 is only (for example)
two hours, so keep this short and timeboxed.

Guide: Just Talk,
p. 287

3. Diverge for single-team design & planning—Teams move to dif-
ferent areas of the room for their own SP2. Instantly coordinate
with other teams via the “just scream” technique, an advanced vari-
ation of “just talk.” This phase should be the majority of SP2.

4. When needed, merge again—For issues that concern all teams.

“Opportunity for Shared Work” versus “Dependencies between
Teams”
What is shared work? Suppose two or more teams have items that all
require a common task. That’s common or shared work.

https://less.works For Gene Gendel only, id:gene-gendel

281

LeSS Sprint Planning

A group still with a traditional mindset will speak of “dependencies
between teams” and “managing the team dependencies.” But LeSS cuts
the Gordian Knot on this problem and perspective.

How is shared work handled? In multi-team SP2, suppose that Teams A
and B discover they have a shared task X. In discussion, it’s decided that
Team A plans to do it, and they add the task to their Sprint Backlog. Sim-
ple! If later in the Sprint it’s discovered that Team B needs X first, then
Team B will do task X instead and will just talk with team A to inform
them, adapting with simple agility.

See or finding opportunities for shared work is easy for a self-organizing
group of feature teams in multi-team SP2. But it’s a big mindset and
practice change for groups used to dealing with “dependencies between
teams” arising from strict task ownership—as is common with individual
code ownership, component teams, tasks assigned by project managers,
or a separate “team” that manages the dependencies and coordinates.

Guide: No Software Tools for Sprint Backlog
Guide: Tools for
Large Product Back-
logs, p. 210

The Product and Sprint Backlogs are
separate, with different purposes. The
Product Backlog is for managing
items, while the Sprint Backlog is for
a Team to manage themselves. It’s
not for the Product Owner or for
external tracking. The Scrum Guide
emphasizes that the Sprint Backlog
belongs solely to the Team. So each
Team needs to be able to choose their own unique tool and change it.
Therefore, don’t use the same tool for Product Backlog and Sprint Backlogs.

The are no dependencies between teams.
There are only opportunities for shared work.

https://less.works For Gene Gendel only, id:gene-gendel

282

12. Sprint Planning

And although it’s likely that a digital tool will be used for the Product
Backlog, for the Sprint Backlogs we recommend this:

Why? For these reasons:

> Increased interaction with team and information—If one
watches closely—as we have many times—the behavior of teams,
comparing and contrasting teams that use “cards on a wall” for
their Sprint Backlog versus a software tool, it is easy to see a night-
and-day difference in the amount of interaction and collaboration
of a Team acting as a team, rather than as a group of individuals.
Cards on walls encourage teams, cards in computers encourage indi-
viduals. Also, the simplicity, ease of use and change, and panoramic
visualization lead to teams that actively and eagerly work with the
information in their Sprint Backlog on a wall. We see the opposite
in practice when teams use a software tool.

> Increased interaction during SP2—Only using “cards on a wall”
implies—and we recommend—that no computers are used during
SP2. We observe that computers kill collaboration during SP2.

> Prevention of tracking and micro-management—Watch what
happens if teams put their Sprint Backlog information in a soft-
ware tool: Habituated temptations return for managers to start
tracking teams, comparing teams, and micro-managing. Even the
Product Owner may start micro-managing Sprint Backlogs. We’ve
seen this dysfunction in almost every case where tools were used,
and bet many of you have as well.

Don’t use any software tool for Sprint Backlogs;
just use physical visual management, probably cards on a wall.

https://less.works For Gene Gendel only, id:gene-gendel

283

LeSS Huge

LESS HUGE
Sprint Planning is held per Requirement Area. No special rules.

Guide: Product Owner Team Meeting
Each Area Product Owner is relatively autonomous in decision making,
so there’s the risk of losing whole-product focus or alignment between
areas in the choice of themes and items. A countermeasure is to hold—
before the next Sprint—a Product Owner Team meeting. Area Product
Owners share their particular situation and upcoming goals, and they
discuss opportunities to align. Also, the one Product Owner can provide
high-level guidance.

This meeting can also be used to discuss the results of the previous
Sprint Review meetings in each Requirement Area, as input to planning.

Include some team representatives for more learning and feedback, and
at least one Scrum Master to support reflection and improvement.

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Coordination & Integra-
tion 285

• Guide: Just Talk 287
• Guide: Coordination-Friendly Environment 288
• Guide: Communicate in Code 292
• Guide: Integrate Continuously 293
• Guide: Communities 295
• Guide: Cross-Team Meetings 299
• Guide: Multi-Team Design Workshop 301
• Guide: Current-Architecture Workshop 303
• Guide: Component Mentors 304
• Guide: Open Space 305
• Guide: Travelers 306
• Guide: Scouts 307
• Guide: Maybe Don’t Do Scrum of Scrums 308
• Guide: Leading Team 308
• Guide: Mix and Match Techniques 309

LeSS Huge 310

Open Space for coordination in LeSS

Contents

https://less.works For Gene Gendel only, id:gene-gendel

285

13
COORDINATION &

INTEGRATION
1. Write down the problem. 2. Think really hard. 3. Write down the solution.

—The Feynman algorithm, described by Murray Gell-Mann

ONE-TEAM SCRUM
Spontaneous and instant interaction by team members towards their
shared goal. Continuous integration of all work as the product gradually
grows during the Sprint. Those are the essential characteristics of coor-
dination and integration of a good one-team Scrum. You can hear a good
team by the continuous buzz that the collaboration creates. You can
almost hear their integration!

How does Scrum support this? The core elements are critical: self man-
agement, shared responsibility, shared goal, and empirical process con-
trol. And the secondary practices help: Sprint Planning, Sprint Backlog,
and the Daily Scrum. These help create the buzz of great teams.

How to create this same spontaneous self-organized coordination and
integration with multiple teams? That’s the challenge in LeSS adoptions.

LESS COORDINATION & INTEGRATION
Why coordination and integration? Because when you are integrating
continuously, the coordination and integration channels strongly over-
lap: integration requires coordination, and coordination results in inte-
gration.

When scaling, principles related to coordination include:

https://less.works For Gene Gendel only, id:gene-gendel

286

13. Coordination & Integration

Large-Scale Scrum is Scrum—In a one-team product group, the Team
handles its own internal coordination. With multiple teams, the “inter-
nal” coordination responsibility extends across the teams since they all
share a common goal to create a shippable increment. But most teams
are unfamiliar with how to coordinate and integrate with others—they
only know how to do it within their team, and previously a separate
management group handled larger coordination.

Systems Thinking & Whole-product focus—Traditional silo teams are
not responsible for the whole product, neither coordinating to ship it
nor thinking about the system as a whole working together. Teams new
to LeSS will be challenged to see the whole.

Empirical process control & Continuous improvement towards per-
fection—Coordination techniques need to be especially situational and
customizable in large groups. Why? Because organizational and product
contexts are quite complex and variable. And to increase a sense of
ownership and engagement by the teams in coordination techniques,
they need to define and refine them.

• LeSS Rules •

Cross-team coordination is decided by the teams. Prefer
decentralized and informal coordination over centralized
coordination.

Each Team has its own Daily Scrum.

https://less.works For Gene Gendel only, id:gene-gendel

287

LeSS Coordination & Integration

Guide: Just Talk
After working in big groups for years, and
observing tons of techniques for coordina-
tion across multiple teams, we’ve discov-
ered the one technique that by far seems
to work best. Here are the steps:

1. You realize a need to coordinate with
team B;

2. stand up;

3. walk to team B;

4. say, “Hey! We need to talk.”

We call it just talk.

This might sound like just a silly joke but we mean it. Why? A pattern
we’ve seen is that the more formal coordination methods in place, the less
coordination happening, because people feel it’s important to use the
“correct” channel for coordination. For example, you realize there’s a
coordination issue and then recall that tomorrow afternoon is a Scrum-
of-Scrums meeting. So rather than just dealing with the coordination
issue now, you decide to wait and bring it up then.

Accepting that the best way to coordinate between teams is to just talk
leads to reframing the problem of coordination. The problem isn’t “what
coordination methods should we use?” but instead “how do the teams
know they need to coordinate and talk?” How do they discover a need
to talk now, and with whom?

The upcoming guides each cover a coordination experiment that has a
primary specific purpose and a secondary effect of creating a web of
informal coordination links and information sharing. It is that informal

The problem with large-scale coordination isn’t
what coordination technique to use, but realizing

that you need to coordinate and whom to talk with.

https://less.works For Gene Gendel only, id:gene-gendel

288

13. Coordination & Integration

web of information sharing that lets team members realize that they
need to coordinate and just talk.

For example, a traveler is a person who travels between teams every
Sprint to be at the place where he is most needed. The primary purpose
is to share and teach his specific knowledge, but the secondary effect is
that he brings practices from team to team and creates informal links
between teams.

The main coordination guides:

> just talk

> communicate in code

> communities

> cross-team meetings

> open space

> component mentors

> travelers

> scouts

> leading teams

Before exploring how to communicate in code, we first explore what
foundation is needed for a coordination-friendly environment.

Guide: Coordination-Friendly Environment
How to broadly and informally allow information to flow so teams real-
ize this need? What’s a coordination-friendly environment?

> teams owning coordination

> prefer decentralized and informal coordination

> feature teams with common aim

> whole-product focus

> friendly physical and technical environments

https://less.works For Gene Gendel only, id:gene-gendel

289

LeSS Coordination & Integration

Teams Own the Coordination
In LeSS, the coordination and integration is owned by the teams, rather
than by a separate group such as the “project management team” or
“integration team.” Meaning? Each team is responsible to coordinate
with other teams to ensure one integrated product increment that can
ship at least once per Sprint. Why is this important?

> puts responsibility for coordination & integration decisions and
actions with the people doing the hands-on work

> supports the teams owning their processes—and then improving

> reduces delays and handoff

> reduces organizational complexity—no special roles needed

Prefer Decentralized over Centralized Coordination
Centralized coordination techniques are scheduled meetings with peo-
ple from all teams together, such as Scrum of Scrums, Town Hall meet-
ings, or a project status meeting (often re-badged with an agile label, but
no different). Some weaknesses? They increase bottlenecking of infor-
mation, handoff, delay, “it’s not my problem” behaviors, and… can be
incredibly boring!

Decentralized coordination techniques don’t require a central meeting
or group, and encompass networks of people interacting. For example,
teams working in a shared space and talking, or multi-site teams dis-
cussing through a chat tool. They avoid bottlenecks, handoff, delay. But
a few drawbacks: getting an overview—to see if issues are falling
through the cracks—is more difficult; and information about the overall
system is less broad and less consistently shared.
In favor of decentralized methods, they underpin more emergent behav-
ior for coordination, and in LeSS this emergence is encouraged. Why? In
large systems centralized and prescribed methods of coordination can
inhibit (1) empirical process control and continuous improvement, and
(2) teams having a sense of owning these processes.

https://less.works For Gene Gendel only, id:gene-gendel

290

13. Coordination & Integration

No false dichotomies: Both approaches help, but prefer decentralized.

Feature Teams with Common Aim

With component teams, the dependencies between teams are asyn-
chronous, and the teams don’t have a common aim. Feature F might
require the work from component teams A and B. This Sprint team A
works on their part of F, as it’s the highest priority work for them. But
team B works on their part a few Sprints later and then tries to inte-
grate their work with team A. That won’t work, so team B attempts to
coordinate with team A. That causes a conflict as team A now has a dif-
ferent focus, so the coordination attempt is an interruption for them.
This frames the situation between teams as “a bothersome interruption
due to a dependency” and makes it difficult.

With feature teams and shared code, there will be team interactions all
related to common aims. For example, in the same Sprint, feature teams
working on different items modify common code and have some com-
mon or shared work. All this common work and its coordination is
related and synchronized within the same Sprint. The feature teams keenly
care about working together because coordination benefits all teams
working towards a common increment.

Whole-Product Focus

Teams cooperating need a common aim. In contrast, teams planning
their own separate Sprints into the future, each with its own “team
backlog” leads to the teams focusing on their separate part rather than
the whole product. This makes coordination between teams harder.
Don’t do that. Increase whole-product focus so that teams share aims
for a common product increment at the end of a common Sprint.

Many elements of LeSS promote a whole-product focus: one Product
Owner, one Product Backlog, one Sprint, one Sprint Planning One, one
Sprint Review, and one integrated product increment.

Promote bottom-up emergent behaviors for
coordination. Decentralized techniques support this.

https://less.works For Gene Gendel only, id:gene-gendel

291

LeSS Coordination & Integration

Environments: Physical & Technical

Physical:

> The best for teams cooperating is when all teams are physically
together—no separate cubicles or offices. Each team works at a
table together in their own space, with lots of flat surfaces for
visual management around them.

> To achieve as much co-location as possible, reduce the number of
floors, buildings, and sites.

> For larger multi-team meetings in LeSS, and for design workshops
with vast whiteboard areas, some large minimal-furniture meeting
rooms are needed; we especially like those with floor-to-ceiling
whiteboard panels or whiteboard paint.

> Regular travel by team members between sites (or buildings) is
important for high-bandwidth interaction, learning, and real
friendships or partnerships that have high levels of trust and
understanding.

> Share cross-team spaces for relaxing, learning, and serendipitous
sharing. Coffee area, lunch spaces with big shared tables, libraries
with lazy chairs and lots of books that everyone can freely take.

> Provide collaboration goodies. Stools for pairing. Post-it notes for
reminding. A4-size whiteboards for pair-session sketching. White-
board cling sheets for instant team discussion anywhere. Anything
physical and throwable that encourages cooperation.

https://less.works For Gene Gendel only, id:gene-gendel

292

13. Coordination & Integration

Technical:

> Shared information spaces, such as a wiki, Google docs, and so on.
Especially because of the flood of information in a large group, the
best-utilized we’ve seen have someone playing the (part-time) role
of librarian who cares about and works on the discoverability:
organizing, highlighting, and tagging information.

> Shared communication spaces, such as discussion groups, mailing
lists, notification tools, video tools, and chat—especially group
chat (e.g. Slack).

> Shared and social coding spaces, so that people can code together
when apart in time or space, such as Screenhero (screen sharing),
and “social coding” tools (e.g. GitHub/GitLab) that make it easier
to communicate about code.

Guide: Communicate in Code
What do teams need to coordinate about?
Often, integration. For example, teams might
have shared work in a component. Tradi-
tionally, they would try to discover this
before making changes so that they can man-
age their dependency, avoid code duplica-
tion, and avoid merge conflicts.

This leads to a key insight: Coordination channels reflect integration lines!
But when continuously integrating, we can turn this around and we can
discover coordination needs via the integration lines.

The practice of discovering coordination needs through continuously
integrating code is called communicate in code. How to do that? Here’s
an example. As a team member, I pull others’ changes into my local copy
many times a day. Each time, I quickly check all changes and when I dis-
cover another team working on the same component at the same time,

Traditionally coordination supported integration,
but we can also have integration support coordination.

https://less.works For Gene Gendel only, id:gene-gendel

293

LeSS Coordination & Integration

I’ll just talk to them about how we can work together to benefit from one
another’s work.

A related simple practice is to add notifications in the version control
system so that I can subscribe to changes in a particular component or
file that interests me.

Warning: Avoid Branching!
Communicate in code makes branching even more evil than it already was.
Why? Because especially at scale…

You can’t communicate in code without continuously integrating.

Guide: Integrate Continuously
At every group we visit, we ask “Are you doing continuous integration?”
And the answer invariably is “Oh yes! We’ve installed Jenkins!” (or
equivalent build tool). But in that very same group, how are developers
behaving? We see

> developers waiting days before checking in code;

> developers working on separate branches (or local Git reposito-
ries).

You can have Jenkins build systems out the wazoo, but if developers delay
pushing their code together, they aren’t integrating continuously.

When you branch, not only are you delaying integration, you
are impeding coordination and cooperation between teams.

Continuous integration implies integrating continuously!
Continuous integration is a developer behavior, not a tool.

https://less.works For Gene Gendel only, id:gene-gendel

294

13. Coordination & Integration

That’s why this guide is called integrate continuously and not “continuous
integration” (CI), to emphasize the big idea: CI is a developer behavior,
not a build system.

So what does CI really imply?

Some elaboration:

A developer behavior—CI is a practice that developers do “all the time.”
But since basic-behavior change is hard, there’s endemic fake CI. And CI
behavior is also inhibited by policies: Many large groups establish the
policy “thou shalt not break the build” and even shame people who
break it. What’s the consequence? Delay integrating, of course! Then
there’s the illusion of a passing build. The CI policies and CI police end up
hurting developers rather than helping them. Solution? Drive out fear
by eliminating blaming and shaming, do test-driven development with
constant refactoring for clean code, encourage frequent integration,
and a stop-and-fix culture when a build breaks. Then CI becomes a prac-
tice that quickly informs developers about problems and the need to
coordinate. If developers say that CI is hurting them rather than helping
them, there’s something wrong.

By small changes—Large changes to a stable system will destabilize and
break it in large ways. The larger the change, the more time it takes—
often superlinearly more—to get the system stable again. So avoid large
changes. Instead, split each change into small changes—the lean think-
ing concept of small batches. Each micro-change integrates in the sys-
tem easily.

Growing the system—Growing a system implies nurturing it and evolv-
ing it. With CI behavior, a developer continuously integrates his work.
He does not wait for the whole feature to be complete. Rather, when-

Continuous integration is…
a developer behavior to keep a working system by small

changes growing the system by integrating very frequently on
a “mainline” supported by a CI system with automated tests.

https://less.works For Gene Gendel only, id:gene-gendel

295

LeSS Coordination & Integration

ever a small amount of work can be integrated without breaking the
system, he integrates it.

Very frequently—How frequent is “continuous”? Um… continuously.
How close can a large group get to integrating everything every second,
as a perfection vision? Maybe that’s not achievable, but that’s the direc-
tion, and it’s limited by these variables:

> People’s skill to split large changes—An expert in test-driven
development (TDD) can usually split down to a five-minute cycle of
change to the next stable state. Really!

> Speed of integration—Faster if (1) micro-small batch size (such as
one five-minute TDD cycle), (2) modern fast version-control tools,
and (3) elimination of delay policies such as “review the code
before checking in.”

> Duration of feedback cycle—Shorter requires (1) fast tests run-
ning on fast computers, (2) parallelization, and (3) multi-step
staged execution of test subsets that fail fast.

> Ability to work on the “mainline”—Not on branches.

Guide: Communities
In a cross-functional-team organization, the
group still has to attend to cross-team con-
cerns including functional and other skills,
standards, tools, and designs. The go-to
solution is to create communities.

A community is a group of volunteers from
the teams who share an interest or topic
and have the passion to deepen their knowledge or take action through
discussion and interaction with peers. Participation in communities is
completely voluntary.

A community isn’t a team and doesn’t implement items. Typically, a com-
munity is for a functional practice (e.g. design and architecture) but can
exist for any interest, such as infrastructure tooling, communication,
Scrum Masters, and so forth. The scope of a community may be just a

https://less.works For Gene Gendel only, id:gene-gendel

296

13. Coordination & Integration

few teams (e.g. in one LeSS Huge Requirement Area), a product, a site,
or the enterprise.

Communities ought to be dynamic. Anyone can start a community. And
when there is no more passion in the community or it is working dys-
functionally, then it will die—sometimes a slow lingering death!

Aims and Authority of Communities
There are roughly two major aims for a community:

> Learning
Communities focus on sharing knowledge, learning, and improv-
ing skills. Communities of Practice, such as clean-code community
and test community, fall into this category.

> Cross-team agreements
There are product-level or enterprise-level cross-team concerns
that must be taken care of. Examples are architectural guidelines,
UI standards, or test automation practices. Another less obvious
example of a cross-team agreement is the architecture commu-
nity’s speculation about architectural evolution that should guide
the individual teams’ design decisions.

Many communities fulfill both aims, and often will. For example, a test
community might propose a recommendation for test automation
agreement.

On communities that produce agreements: Can communities make deci-
sions that the teams must adopt? No.

Thus, if a community wants its output to be adopted, then it had better
ensure a broad participation from all the teams.

Communities cannot make decisions for the teams, but they
can produce something that the teams decide to adopt.

https://less.works For Gene Gendel only, id:gene-gendel

297

LeSS Coordination & Integration

Tips for Communities
A flourishing community benefits from proactive organization and
attention. Good communities

> have a community coordinator with passion for the concern and
desire to cultivate a strong community that cares; preferably
someone who is an active hands-on practitioner;

> actively try to recruit participation from most teams;

> are visible and easily discoverable so that everyone knows the cur-
rent communities and knows how to join;

> preferably focus on concrete problem-solving goals— they make
learning practical and concrete;

> have agreed how they work and make decisions;

> might have a Scrum Master who helps them work and improve,
and who facilitates community meetings or workshops;

> use wiki, discussion groups, group chat;

> meet regularly; and

> are strongly encouraged within the organization; everyone knows
that it is OK and indeed expected for them to join communities and
spend effort in community activities.

Here are a few ways to drive a stake through the heart of a community
and destroy it:

> Forgo a community coordinator or the coordinator doesn’t care
(this often happens if the person was assigned).

> Hold frequent meetings just for the sake of meeting.

> Have mostly members that are not in feature teams.

> Regard the community as secondary so that participation is down-
graded because “we’re too busy to participate.”

Recommended communities—We notice that certain communities
almost always need to exist and flourish for a successful group. These
include human interface, design/architecture, and test.

https://less.works For Gene Gendel only, id:gene-gendel

298

13. Coordination & Integration

Activities and outputs—A community is not a team and doesn’t imple-
ment items. What do they do or produce?

> Teaching—e.g. returning to their feature teams and teaching their
team members about the framework design ideas.

> Organizing education or coaching—e.g. organizing a course on
modern human interface (HI) design.

> Proposing guidelines or standards—e.g. proposing HI guidelines.

> Identifying work—e.g. “we need a much faster message bus.”

> Investigating—e.g. holding a spike to learn something.

> Learning & sharing—e.g. organizing a lightning talk session where
community members share information with each other.

> Design workshopping—e.g. getting together at a whiteboard to
discuss and sketch ideas for a framework design.

Guide: Handling
Special Items, p. 207

A community can identify the need to investigate something. Big inves-
tigations should go through the product backlog, but smaller ones can
go directly through the community. Investigation and other activities
might also generate follow-on work, such as “make the new framework.”
This is not done by a community—they aren’t a team. When the follow-
on work can be handled by a regular feature team, record it in the Prod-
uct Backlog so that work flows to feature teams in one consistent way.

Company-wide communities—In addition to communities within one
group, there’s often a need for communities that span the company—for
example, for cross-product consistent user experience. The traditional
organizational structure for handling that concern is a separate single-
function group, but in a cross-functional organization the alternative is
a company community of feature-team members from different prod-
uct communities, such as the various community coordinators.

Guide: Culture Fol-
lows Structure, p. 64

Fake communities—Traditional large groups are structured as single-
function teams, such as architecture, test, and so forth. Most organiza-
tions are implicitly optimized to avoid changing the status quo manager
and specialist positions and power structures. Consequently, we’ve see
fake communities that are just the old single-function teams relabeled

https://less.works For Gene Gendel only, id:gene-gendel

299

LeSS Coordination & Integration

the “architecture community” and so on, giving the superficial impres-
sion that something has changed when nothing has changed. Sad.

Guide: Cross-Team Meetings
Naturally, by cross-team meeting we
mean an event with people from at least
two teams, either all team members or rep-
resentatives. In LeSS, cross-team meetings
are further classified as multi-team, overall,
and other. There are guides (or sub-guides)
for most specific cases of them in LeSS; this
guide summarizes them, with examples
and a few tips.

Large Meetings
Facilitator—Most meetings are more effective with a skilled facilitator,
but especially big meetings or workshops. A Scrum Master is a good
candidate facilitator, but don’t just ask her to “facilitate the meeting,” as
skillful facilitation needs education and preparation—especially in the
case of large-group facilitation skills.

multi-team meeting overall meeting other

all members from at
least two teams

people from all teams,
representatives, or all

participants vary

multi-team Product Back-
log Refinementp. 252

multi-team Sprint Plan-
ning Two p. 280

multi-team design work-
shop p. 301

Sprint Planning One
p. 276

overall Product Backlog
Refinement p. 249

Sprint Review p. 316

Overall Retrospective
p. 317

community meetings

Open Space p. 305

architecture learning
workshops p. 303

https://less.works For Gene Gendel only, id:gene-gendel

300

13. Coordination & Integration

Diverge–merge cycles—Being all together in a meeting or workshop
can increase common understanding, alignment, and reduce informa-
tion scatter. That’s good. But especially in a big group, drawbacks
include many people not engaged or drowned out, and less diversity
and quantity of ideas. So use a cyclic diverge–merge meeting pattern
whereby teams or mixed groups are sometimes (e.g. for 30 minutes)
diverged in separate areas of the room, and sometimes all together in
common activity or discussion. Merging is important, but remember:

Multi-Site Meetings
Many LeSS groups have multi-site development, so we’ve coached and
observed too many multi-site cross-team meetings.

Tips:

> Seeing, a precondition for empathy—Cooperation is connected
to trust and empathy. To cultivate that, we need to engage our
senses—we need to see our colleagues. And to make that happen…

> Free ubiquitous video tools—We’ve seen clients in these con-
trasting cases: (1) Required to use an expensive video conferenc-
ing system in a special room. (2) Use a free and ubiquitous video
tool and a cheap video projector. The results of ubiquitous video
tools are night-and-day in terms of use and engagement.

> “Cloud” shared-document tools—Observe, “I’ll update the Excel
sheet and put it in the shared folder” versus “Here’s a link to the
shared Google Sheet we can all see and edit while we talk.” Second
case is much better.

> Diverge–merge—See the previous section on this technique. In
this case, the natural diverged-phase groups are each separate
site, which sucks but is the art of the possible in this case.

Centralization destroys energy; decentralization creates it.

https://less.works For Gene Gendel only, id:gene-gendel

301

LeSS Coordination & Integration

Guide: Multi-Team Design Workshop

When several teams want to collaborate on the speculative design of
features, components, or large-scale architectural elements, hold a
multi-team design workshop with agile modeling.

Guide: Multi-Team
Sprint Planning Two,
p. 280

Guide: Take a Bite,
p. 202

When?—A multi-team design workshop can and often should happen in
multi-team Sprint Planning Two for items that are about to be imple-
mented. But when the novelty or complexity of the upcoming items is
high, or to leisurely generate more alternatives when options and cre-
ativity are important then hold a design workshop in a prior Sprint. This
is less desirable since there is more potential for waste but might be
needed because Sprint Planning Two is short and timeboxed. A prior-
Sprint multi-team design workshop is likely when applying Take a Bite.

What?—For everything! A design workshop can be for speculative
design of human interfaces (HI), data models, algorithms, objects, or
large-scale components, services, interactions, and “architecture.”

Who?—Per definition, a multi-team design workshop is all members
from two or more teams. An important and common variation is an
Architecture Community design workshop, a community meeting that
is likely to include representatives from many teams.

How?—With agile modeling, which implies a group together creating
simple “barely good enough” models that foster creativity, conversation,
visualization, and quick change. The agile modeling credo?

We model to have a conversation.

https://less.works For Gene Gendel only, id:gene-gendel

302

13. Coordination & Integration

The tools of agile modeling? First and foremost, avoid software tools.
Those tend to kill collaboration, flow, and idea generation. Focus on sim-
ple physical tools, including sticky notes and whiteboards.

Tips for a design workshop:

> Vast “whiteboard” spaces—Workshop success is proportional to the
amount of whiteboard space! And instead of standard whiteboards,
cover all wall space with sheets of special plastic “whiteboard like”
material, such as “Wizard Wall” sheets.

> Multi-site modeling—In this case, software tools are hard to
avoid. Combined with video conferencing, one technology is col-
laborative-sketching “whiteboard” apps on tablets or browsers.
Another approach we’ve used for two-site design workshops is
physical whiteboards, each viewable with a webcam, combined
with diverge–merge cycles.

> Recording—The important aspects of agile modeling are the con-
versations, creativity, and growing alignment, not the sticky notes
or whiteboard sketches. If the group wants to remember or share
their results from a design workshop, they can take photos or vid-
eos.

Models are not documen-
tation—Agile modeling is for
speculative “barely good
enough” models to inspire
next steps (such as coding),
not long-lived documenta-
tion, so keep it simple. If the
group wants to create some
documentation, then apply
the next guide…

this is for conversation & speculation,
not for documentation

https://less.works For Gene Gendel only, id:gene-gendel

303

LeSS Coordination & Integration

Guide: Current-Architecture Workshop

A cross-team current-architecture learning workshop is for educating
about the existing in-the-code architecture. That learning is especially
important to groups recently adopting LeSS and moving from compo-
nent teams to feature teams and shared code. How come? Because in
the former case most people know little about the overall architecture
or the more granular architecture of other components. That knowl-
edge is important for feature teams to work together. These workshops
are often initiated by the Architecture Community or by component
mentors.

Tips:

> Learn as-is architecture—Ensure participants grasp that this
workshop is to educate people about current as-is architecture;
the focus is on learning and teaching. Use design workshops for
might-be.

> Sketch different architectural views—Visualize multiple views by
using the 4+1 architectural view model, including a logical view of
the large components, a deployment view of hardware, networking,
and processes, and so on.

> Play-act scenarios—Help people learn and remember—in a fun
energetic way—key scenarios of execution by people playing com-
ponent roles and “tossing the ball” of control between them.

> Create technical memos—Sketch out summaries of unusual or
noteworthy architectural elements or design decisions, such as
“our use of the Drools rules engine, and why” or “FSMs: our domi-
nant theme—what and why.”

> Hold Q&A sessions, video recorded—In addition to diverging for
creating the 4+1 architectural views and technical memos, also
regularly merge all together and hold Q&A sessions for each view
and memo, discussing both what and why. Video record these.

https://less.works For Gene Gendel only, id:gene-gendel

304

13. Coordination & Integration

Most importantly, people learn while together, and secondarily, an
effortless digital record is created for others to watch later on.

Guide: Component Mentors
Feature teams have to work in unfamiliar
areas of code. How to help them learn these
areas?… especially in cases where a soft-
ware component is delicate or fragile. Help
them with a component mentor who…

> is a regular feature-team member, but
reserves mentoring time,

> holds current-architecture learning workshops to teach others
about the component,

> finds and mentors targeted developers in many teams to learn
more about the component,

> teaches while pair- or mob-programming,

> creates a component community,

> organizes or participates in design workshops when there will be a
major impact on the component,

> does code reviews and gives improvement feedback,

> evangelizes for people to improve the code and add tests,

> monitors the long-term health of the component, and

> finds and mentors other mentors.

Guide: Integrate
Continuously, p. 293

Does NOT approve code commits—Component mentors do NOT do
approval. They are teachers and mentors of the component. They are
not a quality gate, as that would introduce dramatically delayed integra-
tion—and hence impede coordination and cooperation. In a feature-
team shared-code organization there is an optimistic policy of people
committing code and integrating it without delay. That said, there are
two common code-contribution cases:

> Direct commit—People commit and push to the central shared
repository (or “head of trunk”) without delay. This is the default

https://less.works For Gene Gendel only, id:gene-gendel

305

LeSS Coordination & Integration

optimistic behavior. And when wacky code is discovered, a mentor
teaches, which will be less and less frequent as the mentor’s teach-
ing and improving takes hold.

> Pull request—The component mentor is not a gate, but there are
times—such as when someone is changing unfamiliar code—when
a developer will voluntarily create a “pull request” for code for the
mentor to review and provide feedback on it before merging it.

Naturally, people don't only do direct commits or pull requests; they'll
use direct commits for more familiar code, and pull requests for the
unfamiliar. Best of both worlds.

Does NOT handle component bugs—A seductive local optimization is
to route component bugs to a component mentor. They’ll get done so
fast and skillfully! … And then you have no component mentors.

Share the mentoring—Especially in the early phase of transitioning to
shared code and feature teams, a mentor can become overburdened.
Add more mentors and share the work.

Guide: Open Space
Institute regular Open Space1 meetings
for learning, coordination, and more.
Open Space is a meeting technique with
self-organization baked in. Steps:

1.Together create an agenda of parallel
sessions on burning-issue topics.

2.Conveners host the sessions and people
participate as desired. The Law of Two Feet is mandated: If you’re
not learning or contributing, move somewhere else.

Some uses of Open Space in LeSS:

> as a regular (e.g. bi-weekly) meeting for learning and cooperation
Tip: Have food and coffee while opening the space

1. For more on Open Space, check out Harrison Owen’s book Open Space Technology.

https://less.works For Gene Gendel only, id:gene-gendel

306

13. Coordination & Integration

> as the format for an Overall Retrospective to analyze situations
and design improvement experiments

> as a “quarterly” one-day meeting for deeper learning and strength-
ening social networks

> as the format for a community meeting

Meetings Similar to Open Space?
Open Space is part of a family of popular collaborative meeting pro-
cesses worth trying. These include World Café, Lean Coffee, and its much
more fun cousin… Lean Beer.

Guide: Travelers
We worked with a product group that had a
couple of experienced technical experts. This
group created feature teams with dedicated
members but could not decide in which team
to add the most scarce experts whose knowl-
edge was critical to all teams. (Aside: This
siloed knowledge was a weakness exposed
by the LeSS adoption.) So the two key
experts temporarily became travelers.

Travelers work as a normal team member in the team for one Sprint.
They have a shared responsibility for all of the work of the team. Impor-
tantly, they have a secondary goal of reducing the dependency on them,
usually by teaching. Note that the teams who do not have a traveler
with them this Sprint are on their own and need to figure out how to
achieve their goals without the constant support of the expert.

To underline this last point: a traveler avoids helping other teams during
the Sprint. That’s an important behavior to spur the dynamic of a team
focusing on learning from the traveler visiting for the Sprint, as well as
eliminating the need for scarce expertise.

Having a “bottleneck” expert as traveler during the early stage of a LeSS
adoption is an obvious case. But anyone can be a traveler; some people
love to work that way. Larger groups, especially can benefit from travel-

https://less.works For Gene Gendel only, id:gene-gendel

307

LeSS Coordination & Integration

ers because they bring lots of informal information and create relation-
ships between teams—elements that tend to get weaker and weaker in
larger and larger groups. Travelers can strengthen a network of infor-
mal coordination channels and increase the consistency of some knowl-
edge or practice across teams.

Caution: In LeSS a dominant quality of each team is long-lived and stable
membership, because of the long time it takes for a team to jell and move
towards high performance. The idea of some travelers in LeSS is not
meant to be used to mutate an organization into a matrix-management
structure with short-lived “project teams.” Ow!

When and how do travelers decide what team to visit for the Sprint?
Probably in Sprint Planning One. And this is a self-organizing group, so
the traveler and the teams make the decision, not the Product Owner.

Travelers could be temporary or “permanent,” but note: To be a traveler
requires that there’s a team willing to accept an incoming visitor for a
Sprint. Travelers can’t force themselves on a team. So the overall group
will self-regulate the degree of travelers, and one can’t be a “perma-
nent” traveler if teams aren’t accepting visitors any longer. And there-
fore either then, or really at any time, a traveler can find a home.

Guide: Scouts
A simple technique for teams working
together is to send a scout—not the Scrum
Master—to other teams to learn something,
and then to report back. It’s a simple way to
learn when there’s a need to just talk, and
whom to talk with.

The most likely time and place for a scout to
roam is to the Daily Scrum of other teams, as a silent observer. What
teams? Probably the ones with whom they did multi-team Sprint Plan-
ning Two or multi-team Product Backlog Refinement.

https://less.works For Gene Gendel only, id:gene-gendel

308

13. Coordination & Integration

Guide: Maybe Don’t Do Scrum of Scrums
A Scrum of Scrums meeting is a Daily-Scrum-like meeting between
team representatives—not Scrum Masters or managers—that’s com-
monly held three times per week.

Scrum of Scrums is a formal centralized meeting and thus not preferred.

That said, sometimes Scrum of Scrums works really well and then…
keep it! But most often teams new to scaling feel they must do it owing
to misinformation about scaling, and they keep doing it, even though it
isn’t really useful. If so, drop it and focus on other coordination methods.

Guide: Leading Team
A leading team is a team that has additional responsibilities in the deliv-
ery of a feature or a set of related features. The team refines and imple-
ments feature items, but additionally focuses on the big picture of the
set of features together. Usually the leading team’s responsibility focus
is on (1) education, and (2) coordination (often with external groups).

Guide: New Area for
Giant Requirement,
p. 223

Education—A leading team is more connected to a set of features than
are the other teams, perhaps because of their background expertise or
because they were the first team to work in this area. As other teams
eventually join their effort on a large set of related features, these
incoming teams need education (e.g. about the domain and evolving
solution), and the leading team plays that teaching role. For example,
during multi-team Product Backlog Refinement they explain the back-
ground or details of items they’ve worked on, to help teams understand
new ones. Or they hold a current-architecture learning workshop
related to major new elements.

Coordination—For the big feature or set of features, the leading team
often takes up coordination responsibilities with external groups such as
(1) an external group creating a component or (2) undone departments.
In contrast, coordination between internal teams is as much as possible
left to the teams themselves. A closer look:

> coordination with external component groups—Big products
often have some components created—at least when first adopt-

https://less.works For Gene Gendel only, id:gene-gendel

309

LeSS Coordination & Integration

ing LeSS—by another group. So some work needs to be coordi-
nated. Instead of many teams doing it ad hoc or a separate
management group doing it, the leading team does it. Although
coordination is handled by the leading team, clarification should go
directly between a specific team and the external group, to avoid
more handover waste.

> coordination with Undone department—Leading teams take fea-
ture responsibility end-to-end until the feature is shippable in the
product. With a weak Definition of Done, coordination and sup-
port to the Undone department during the final activities is
needed, to make the feature truly shippable. Notice that the lead-
ing team is taking on a responsibility traditionally handled by proj-
ect or release managers.

Guide: Mix and Match Techniques
Many of the techniques covered in this chapter can reinforce each other,
used together. Some examples:

Component Community—The component mentor becomes the com-
munity coordinator for a component community. The community has a
discussion list for build failures, code reviews, etc. They meet regularly
and every now and then have…

https://less.works For Gene Gendel only, id:gene-gendel

310

13. Coordination & Integration

Component-Community Open Space—The component community
discovered a lot of discussion and training needs and decides to orga-
nize an Open Space. Of course, not just the community is invited but
everyone is welcome. Topics are raised, discussions held. They discover
the need for a…

Multi-Team Design Workshop with Component Mentor—Compo-
nent mentors anticipate lots of changes in the component and organize
a design workshop. During this session a component mentor identifies
what teams to offer joining as he is a…

Component Mentor Traveler—The component mentor’s specialized
knowledge limits the ability of many new feature teams to make
changes in the component. He became a traveler to help the teams that
need him most. Traveling can get lonely, so he also decided to join the…

Traveler Community—All the travelers form their own community to
share their experiences joining a team for one Sprint, share gossip, and
learn from each other. Eventually they decide to organize a…

Traveler Community Open Space—Which of course also welcomes
non-travelers! Several people from the Communities community also
join so they can learn about the practice of community open spaces and
share that information with other teams.

LESS HUGE
Guide: Integrate
Continuously, p. 293

Most previous guides apply to LeSS Huge. Some, such as Integrating
Continuously, are intrinsically cross-Requirement-Area practices. There
are no special LeSS Huge rules.

Building on the previous Just Talk guide, take inspiration from its motiva-
tion and approach to encourage informal decentralized communication
across Requirement Areas.

The more combined, the more powerful they become.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

 LeSS Sprint Review & Retro-
spectives 313

• Guide: Adapt the Product Early and Often 315
• Guide: Review Bazaar 316
• Guide: Overall Retrospective 317
• Guide: Improve the System 320

LeSS Huge 325
• Guide: Multi-Area Reviews & Retrospectives 325

 Sprint Review Bazaar in LeSS

Contents

https://less.works For Gene Gendel only, id:gene-gendel

313

14
REVIEW & RETROSPECTIVE

A constitution should be short and obscure.
—Napoléon Bonaparte

ONE-TEAM SCRUM
At the heart of Scrum is empirical process control for both the product
and how it’s created. Create a small shippable slice of the product, then
inspect what and how, and adapt both. In essence, that’s the purpose of
the Sprint Review and Retrospective.

In the Sprint Review the users/customers and other stakeholders learn
with the Product Owner and Team. Users hands-on explore the new
items. Everyone explores what’s going on in the market and with users.
And last but not least, they discuss what to do in the future. In the Sprint
Retrospective the Team reflects on their experience and explores how
to easily deliver an amazing product increment that improves the envi-
ronment, and makes lives better—including their lives. They create an
experiment to try in the next Sprint, aiming towards this impossible per-
fection.

LESS SPRINT REVIEW & RETROSPECTIVES
The upcoming guides cover Review and Overall Retrospective, but not
single-team Retrospectives. Related principles when scaling:

Customer-centric—“Why would we want to include users/customers in
every Sprint Review?” Old groups aren’t used to learning together across
silos. We’ve met far too many teams that never met a user and were
afraid to include users in reviews, as that would mean real transparency.

Transparency—Executives espouse the salutary benefit of transpar-
ency, but watch what happens when painfully true transparency is

https://less.works For Gene Gendel only, id:gene-gendel

314

14. Review & Retrospective

enabled in a group new to LeSS. Ouch! Many groups are opaque and
afraid to reveal the actual messy state of affairs. It’s hard to get over
that.

Continuous improvement towards perfection—We’ve had clients
that once a year held a postmortem to create heavenly improvements for
next year’s fantasy. And worked in many big groups that said “Things are
basically good enough.” There’s no intrinsic desire for improvement.

Empirical process control—Many large-scale organizations have a cen-
tralized process or PMO group tasked with improvement, based on a
Taylorist culture of pushing “improvements” onto teams. There’s no
sense of empowerment or engagement. The notion of empirical process
control for the product and how it’s created every Sprint is a million miles
away from their habits.

Whole-product focus and Systems thinking—Big groups with silo
teams don’t have the attitude and behavior of looking at the whole,
being responsible for the whole, and thinking about the system.

• LeSS Rules •

There is one product Sprint Review; it’s common for all teams.
Ensure that suitable stakeholders join to contribute the infor-
mation needed for effective inspection and adaptation.

Each Team has its own Sprint Retrospective.

An Overall Retrospective is held after Team Retrospectives to
discuss cross-team and systemwide issues and to create
improvement experiments. Attended by Product Owner,
Scrum Masters, Team representatives, and managers (if any).

https://less.works For Gene Gendel only, id:gene-gendel

315

LeSS Sprint Review & Retrospectives

Guide: Adapt the Product Early and Often
If your entire company is nine people, we hope you won’t do something
as dumb as creating an annual plan of scope and schedule, and trying to
march on-plan towards a big-batch end-date for user acceptance test-
ing. But the bigger the product group, the more likely that institutional-
ized dumbness exists, for reasons packed in a can of worms that we
won’t open. The upshot is that when a large group transitions to LeSS,
there’s a chance they’ll carry the baggage of predictive planning and
inspection for acceptance into the Sprint Review, which becomes an
event to see if the group is on schedule and if the items will be accepted.

Don’t do that. Instead, try agility and learning together. In the Sprint
Review seek new information about profit drivers, strategic customers,
business risks, competitors, new problems and opportunities, in order
to adapt and decide the product direction for next Sprint. And discuss
together about the new items—everyone learning something. Repeat
forever. This is a major mindset and behavior change for large groups.

Sprint Review & Ret-
rospectives in LeSS

https://less.works For Gene Gendel only, id:gene-gendel

316

14. Review & Retrospective

Guide: Review Bazaar
A Sprint Review bazaar is analogous to a science fair: A large room has
multiple areas, each staffed by team representatives, where the items
developed are explored and discussed together with users, teams, etc.
The opening photo in this chapter shows an example.

Note! The bazaar is not the whole Review. There’s also the critically
important post-bazaar discussing and deciding what to do next.

For a bazaar, the macro-level steps for the Sprint Review are (1) diverge
for a bazaar-style exploration of items, and (2) merge for all-together
discussion with the Product Owner towards next steps. Reserve lots of
time for the critical second step.

Example bazaar-phase steps:

1. Prepare different areas for exploring different sets of items.
Include devices that are running the product. Team members are
at each area to discuss with users, people from other teams, and
other stakeholders. Learning happens both ways! Include paper
feedback cards to record noteworthy points and questions.

2. Invite people—including other team members—to visit any area.

3. Start a short-duration timer (e.g. 15 minutes) during the explora-
tion. The timer creates a cadence move-on to another area.

4. While people hands-on explore the items and discuss together,
record noteworthy points on cards.

> Tip: Avoid demos, as they don’t engage users and don’t provoke
deep feedback. Rather, encourage hands-on use by users. Team
members can answer questions or guide.

5. At the end of the short cycle, invite people to rotate or remain for
another cycle. These mini-cycles help a more broad and diverse
exploration of all items.

After the bazaar come the major all-together discussion steps:

1. People sort their feedback and question cards so that the Product
Owner sees important ones first.

https://less.works For Gene Gendel only, id:gene-gendel

317

LeSS Sprint Review & Retrospectives

2. While all together, the Product Owner leads discussion of the
feedback cards, as shown in Figure 14.1.

3. The Product Owner leads discussion on the market and custom-
ers, upcoming business, market feedback about the product, and
broadly, what’s going on outside.

4. Most importantly for the entire Review, there’s a discussion—and
perhaps a decision—about the direction for the next Sprint.

Figure 14.1 Product
Owner leading
feedback-cards
discussion

Multi-site—How to hold a bazaar when multiple sites are involved?
One approach is to replicate it at each site (time zones permitting), but
ensure that all feedback and questions get to the Product Owner. For
the all-together discussions after the bazaar, try video conferencing
tools.

Another or complementary option for the bazaar is for people to play
with features on devices wherever they are. To record feedback, rather
than using cards, consider digital tools such as a chat window for each
item.

Guide: Overall Retrospective
“We can’t do continuous delivery because of the deployment policies.” “We
have too many sites.” “Our code is crap.” “Requests from government regula-
tors take ages before we hear about them.” “We’re going too slow.” “The users
aren’t participating.” “HR won’t let us.” “The vendors aren’t involved.”

https://less.works For Gene Gendel only, id:gene-gendel

318

14. Review & Retrospective

These, and many more, are statements we’ve heard over the years in
groups adopting LeSS. One thing they all have in common is they relate
to all-team concerns and/or the overall system—spanning everyone and
everything from concept to cash.

The time and place to deal with these systemic concerns—and to think
about improving the system towards perfection—is the Overall Retro-
spective. Who’s there? The Product Owner, team representatives,
Scrum Masters, and managers. Why? They’re all part of the system, with
interest in improving it. They (1) discuss and learn about some aspects
of the system, (2) create a systemic improvement experiment for the
next Sprint, and (3) reflect on the results of the last retrospective exper-
iment and use that to learn and adapt.

One of the LeSS principles is continuous improvement towards perfection.
We once visited a huge group that was considering a LeSS adoption and
a manager said, “We’re making a profit and have a stable customer base.
Why should we bother to improve?” Ow! We’ve learned that dealing
with this attitude is one of the harder challenges with early adoptions,
because in the prior system so many people have been so disconnected
from the customers and business results. Connecting teams with real
customers and users, and engaging them in product ownership, are key
steps to cultivating an intrinsic desire to improve towards perfection.
And what is that? Well, there isn’t one answer, but there are examples:

Guide: Organiza-
tional Perfection
Vision, p. 66

> The product is awesomely popular and profitable, defect-free, and
features are created with ease.

> The organization has agility; it can easily change direction with
almost no friction or cost—it can turn on a dime for a dime.

> Everyone has great breadth and depth of knowledge, cares deeply
about the customers and product, and are happy in the work.

That should keep the group improving for awhile!

Some Overall Retrospective tips:

> Reflect on the results of the last experiment.

> As emphasized in the following guide, focus on the system.

https://less.works For Gene Gendel only, id:gene-gendel

319

LeSS Sprint Review & Retrospectives

> Hold the Overall Retrospective early in the next Sprint, since the
last day of the Sprint includes the Review and Team Retrospective
meetings, and so people can be bored or burned out for meetings
on that day.

> Include at least two major steps: (1) the analysis of something sys-
temic, and (2) the design of a systemic improvement experiment.

> Create only one new experiment; be focused, and follow through.

> Remember that, especially in large-scale systems, an experiment
can involve many weeks or months of support and activity, so the
new experiment may be strongly related to a prior one.

Multi-site—Try a multi-site Overall Retrospective with video and
diverge–merge cycles. For example, (1) each site separately does 5-
Whys analysis or systems modeling for a concern, (2) each site shares
results, (3) sites separately brainstorm countermeasures, (4) sites
together share these and pick an experiment. Also, as some issues are
site specific (e.g. environment and culture), try site-level retrospectives.
Figure 14.2 shows an example.

Figure 14.2 multi-
site Overall
Retrospective,
during a diverge
phase

Multi-team Retrospectives—A Retrospective involving all team mem-
bers from two or more Teams is another option in LeSS. Some teams
might want to do that when, for example, they’ve been working closely
together. But this doesn’t replace an Overall Retrospective, where the
focus is on the system.

https://less.works For Gene Gendel only, id:gene-gendel

320

14. Review & Retrospective

Guide: Improve the System
It’s instinctive for all of us to fall into the thinking mistake of local con-
cerns and optimization. In an Overall Retrospective signs of that
include—perhaps this will be a surprise—collecting results of the Team-
level Retrospectives as the starting point of “overall” analysis. But this
bottom-up approach misses an important insight of systems thinking: the
system is not the sum of its parts. So beware of bottom-up. Of course, this
doesn’t literally mean ignoring an important escalated issue coming
from all the teams. Those need attention. We mean something subtler:

What’s the system? Everyone and everything from concept to cash, and
all its dynamics in time and space. People, organizational design, physi-
cal and technical environments, and more are part of the system—and
all related and interacting.

The first step of systems thinking is “simply” recognizing that there is a
whole system, with elements that influence one another within a whole.
These influences can have delays, create reinforcing cycles, and have unin-
tended or hidden consequences, with a cascade of new influences.

In a way, “recognize there’s a system” seems a trivial idea without use.
But that’s not true, because we Homo sapiens haven’t evolved brains
for “What’s the nonlinear delay dynamics in our organization?” We evolved
for “I’ll have chocolate, now.” And this local perspective is reinforced in
big old organizations with single-specialized groups, as this causes the
loss of system perspective. The Business Analysis group is concerned
with their tasks and being locally efficient, and they don’t know—nor are
expected to know—other perspectives. In short, there’s biology, struc-
ture, culture, and conditioning to see the part, not to see the whole.

Understand—How to apply systems thinking? How to understand the
system, or more correctly, how to discuss and think about a model of the
system? With a systems model, also known as a causal loop diagram.
Now, superficially a systems model uses a specific visual-modeling lan-

Understand & improve the system by focusing on the system.

https://less.works For Gene Gendel only, id:gene-gendel

321

LeSS Sprint Review & Retrospectives

guage or notation, but first let’s step back and consider what’s going on
in this session:

At a surface level they’re drawing a diagram in some notation, though
that’s not very important. But the content and focus is. They’re thinking
about and discussing the system and its dynamics, they are system think-
ing. Furthermore—and not to be underestimated—they are demon-
strating the credo of good modeling:

While the group is in an Overall Retrospective sketching a systems
model together, they’re exploring each other’s understanding of the as-
is system and their beliefs. They’re taking complex and invisible notions
in each other’s minds, and making them visible… “Oh! Now I see what
you are thinking about the current system. Is that true?”

Guide: Getting
Started, p. 59

Understand More During Early Adoption—This guide has emphasized
using systems modeling during retrospectives, but it’s also useful during
“Step 0: Educate Everyone” when getting started with a LeSS adoption.

Action—The Overall Retrospective includes a second major step to
design a systemic improvement experiment: action! Systems modeling
can be used in this step too. For example, the group can speculate about
a future to-be system model and discuss and explore its consequences.
And they can discuss and model the dynamics of introducing a particu-
lar change experiment into the as-is system. What might happen? We

We model to have a conversation.
The output is shared understanding, not the model.

https://less.works For Gene Gendel only, id:gene-gendel

322

14. Review & Retrospective

can’t predict the future, but we can think about its scenarios. Besides
the obvious action experiment, notice that something subtler can and
will happen: people’s minds have changed as they learn a better model
of the system, and that itself can “organically” lead to improved behav-
iors or decisions in the future, unrelated to any specific action.

First Steps in Learning to Systems Model
There’s a non-trivial language for systems modeling, since systems are
non-trivial. But the basics aren’t complicated, and good enough for lots
of useful discussion. The basics:

> variable—A thing expressed as a measurable quantity, such as
velocity (rate of delivery) of features, and code quality.

> causal link—Influence between variables, such as saying if number
of features increases then waste increases, and vice versa.

> Note! Thinking about interactions and causal relationships is
the critical focus needed in systems thinking. And doubly so for
large-scale systems, because the time and space are vast, and
the interaction dynamics between the myriad parties are usu-
ally full of hidden but crucial facts and forces.

> opposite effect—A causal link can have an opposite effect, such as
if the percentage of weak developers goes up, then code quality
goes down, and vice versa

The sketch in Figure 14.3 shows notation for variables, and direct and
opposite causal links.

Tip: Sketch a systems model on a whiteboard with sticky notes for the
variables—to make moving them easy.

https://less.works For Gene Gendel only, id:gene-gendel

323

LeSS Sprint Review & Retrospectives

Figure 14.3 causal
links, variables, and
opposite effects

Some other useful concepts and related notation:

> delay—One key reason for flawed beliefs of how a system behaves
is that influences can have delays. Causes and effects are not close
in time—nor close in space in large-scale development. And
delayed consequences, such as information loss, can be hidden in
the interaction effects between groups. So people have trouble
seeing and learning these dynamics. For example, managers are
pushed to increase velocity, and do the quick fix of hiring many low-
cost (and it turns out in this case, weak) developers. In the short
run this quick fix gives the appearance of increasing velocity. But
there is a long-term delayed consequence of reduced code quality,
leading to a slower velocity eleven months later.

> belief—Another key practice in systems modeling is to discuss
beliefs. It’s one thing to sketch, claim, imply, or assume “managers
can evaluate developers without looking in depth at their code,”
but it’s another to recognize that could be belief, not fact. We
model to have a conversation, so systems modeling is a time to dis-
cuss and become conscious of our beliefs, make them visible, and
critique them.

Almost every causal link or variable is an opportunity to examine and dis-
cuss beliefs. Is Velocity a good variable to include? What does measuring
it lead to? Do weak developers create bad code? What do you mean by
“more features means more waste?”

The sketch in Figure 14.4 includes notation for delays, which are visual-
ized with double lines through a causal link, and some informal notes

https://less.works For Gene Gendel only, id:gene-gendel

324

14. Review & Retrospective

capturing discussions. Of course, the notation doesn’t really matter as
long as the group has a common understanding.

This example model isn’t meant to be “insightful,” it’s meant to illustrate
that we model to have a conversation!

Figure 14.4 delays
and informal notes
to clarify the
discussion

Learn—Learn more about systems thinking and modeling here:

> Systems Thinking chapter in the first LeSS book, Scaling Lean & Agile
Development: Thinking & Organizational Tools for Large-Scale Scrum,
by Larman & Vodde. This chapter is also online at less.works.

> The Fifth Discipline by Senge, an important classic.

> Thinking in Systems, by Meadows & Wright

> Systemantics, by Gall.

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works

325

LeSS Huge

LESS HUGE

• LeSS Huge Rules •
There are no LeSS Huge rules for reviews and retrospectives. The
catch-all statement “All Sprint LeSS rules apply for each Requirement Area”
implies a Sprint Review and Overall Retrospective for each separate
Requirement Area. But there’s no requirement for meetings that span
the entire product.

Guide: Multi-Area Reviews & Retrospectives
Review—Although not required, a multi-area Review spanning from
two up to all areas (full product) is certainly possible when the group
feels the need.

Why isn’t a product-level Sprint Review mandated in LeSS Huge? After
all, avoiding one can reduce focusing on and seeing the whole. First, a
group can hold a product-level review. But each area is often different
enough that no great insights come from one—at least not every Sprint.
And especially at Huge scale, in addition to gathering the entire Product
Owner Team and representatives from many teams, the complexity of a
product-level review could involve people at 10 sites worldwide, so can
be a real pain to set up and run. There needs to be a compelling reason,
and if there is, it’s probably not compelling for every Sprint.

Retrospective—Similarly, there’s no rule requiring a product-level Ret-
rospective, but there may indeed be a good reason to hold a multi-area
Retrospective since improving the system is key, and the organizational
system spans the areas. A multi-area Retrospective is more likely when
areas aren’t working well together, or several areas have similar prob-
lems. It’s also useful for teams from different Requirement Areas work-
ing together at the same physical site, to improve relationships and
knowledge sharing.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

More or LeSS

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

329

15
WHAT’S NEXT?

Now this is not the end. It is not even the beginning of the end.
But it is, perhaps, the end of the beginning.

—Winston Churchill

Congratulations, you’ve made it to the end of the beginning. What’s
next? We hope it’s hands-on practice to solidify the ideas in this book.

Don’t forget to experiment. The other two LeSS books—Scaling Lean &
Agile Development and Practices for Scaling Lean & Agile Development—
are catalogs of experiments to try out.

While writing this book, we created the 3-day Certified LeSS Practitioner
course, which covers this book and additional experiments, stories, case
studies, and examples. These courses are taught by Certified LeSS
Trainers based on their hands-on LeSS experience. In addition, every
year there is a LeSS Conference for sharing experiences.

We keep updating the LeSS site at less.works. You can test your LeSS
understanding by trying the online test. We’ll keep adding more content,
videos, case studies, and other learning material.

The LeSS site also has a growing collection of experience reports. Each
has interesting knowledge and ideas to try: a wealth of learning.

If you want to write up your experience and share it, let us know! We
are constantly looking for experiences to learn from and new ideas to
try out. If you’ve been involved with an existing case study, the site
allows for Certified LeSS Practitioners to share their perspective in an
experience report. There are always perspectives to learn from.

With these learning resources, we sincerely hope to maximize your joy
for creating products that have a impact. To achieve more with LeSS.

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

331

RECOMMENDED READINGS
In this book, we decided not to include an extensive bibliography. Instead we list all
the recommended readings that we mentioned throughout the book. In the previ-
ous two LeSS books, Scaling Lean & Agile Development and Practices for Scaling Lean &
Agile Development, you can find more extensive bibliographies.

Adzic, G., 2011. Specification by Example: How Successful Teams Deliver the Right Soft-
ware, Manning Publications

Adzic, G., 2012. Impact Mapping: Making a Big Impact with Software Products and Proj-
ects, Provoking Thoughts

Adzic, G., Evans, D., 2014. Fifty Quick Ideas to Improve Your User Stories, Neuri Con-
sulting

Balle, M., Balle F., 2009. The Lean Manager: A Novel of Lean Transformation, Lean
Enterprise Institute

Deemer, P., Benefield, G., Larman, C., Vodde, B., 2012. The Scrum Primer, at scrum-
primer.org and at less.works.

Gall, J., 2003. Systemantics, The Systems Bible: The Beginner’s Guide to Systems Large
and Small, General Systemantics

Gray, D., Brown, S., Maconufo, J., 2010. Gamestorming: A Playbook for Innovators,
Rulebreakers, and Changemakers, O’Reilly Media

Hackman, R., 2002. Leading Teams, Harvard Business Press

Hamel, G., 2007. The Future of Management, Harvard Business Review Press

Hohmann, L. 2006. Innovation Games: Creating Breakthrough Products Through Collab-
orative Play, Addison-Wesley

James, M., 2010, The Scrum Master Checklist, at scrummasterchecklist.org

Kimsey-House, H., Kimsey-House, K., 2011. Co-active Coaching: Changing Business,
Transforming Lives, Nicholas Brealey America

Laloux, F. 2014. Reinventing Organizations, Nelson Parker

Larman, C., Vodde, B., 2008. Scaling Lean & Agile Development: Thinking and Organiza-
tional Tools for Large-Scale Scrum, Addison-Wesley

Larman, C., Vodde, B., 2010. Practices for Scaling Lean & Agile Development: Large,
Multisite, and Offshore Product Development with Large-Scale Scrum, Addison-Wesley

Larman, C., Vodde, B., 2011, Feature Team Primer, at featureteams.org

https://less.works For Gene Gendel only, id:gene-gendel

http://www.scrumprimer.org
http://www.scrumprimer.org
https://less.works
http://www.scrummasterchecklist.org
http://www.featureteams.org

332

Larman, C., Fahmy, A., 2013, How to Form Teams in Large-Scale Scrum? A Story of Self-
Designing Teams, at http://www.scrumalliance.org/community/articles/2013/2013-
april/how-to-form-teams-in-large-scale-scrum-a-story-of

Lawrence, R. 2009. Patterns for Splitting User Stories, at http://agileforall.com/patterns-
for-splitting-user-stories/

Lencioni, P., 2002. The Five Dysfunctions of a Team: A Leadership Fable, Jossey-Bass

LeSS site, at https://less.works

McGregor, D., 1960. The Human Side of Enterprise, McGraw-Hill Education

Meadows, D., Wright, D. [editor], 2008, Thinking in Systems: A Primer, Chelsea Green
Publishing

Ohno, T., 1988. Workplace Management, Productivity Press

Owen, H., 2008. Open Space Technology: A User’s Guide, Berret-Koehler Publishers

Patton, J., 2014. User Story Mapping: Discover the Whole Story, Build the Right Product,
O’Reilly Media

Pfeffer, J., Sutton, R., 2006. Hard Facts, Dangerous Half-Truths and Total Nonsense:
Profiting from Evidence-Based Management, Harvard Business Review Press

Schein, E., 2013. Humble Inquiry: The Gentle Art of Asking Instead of Telling, Berret-
Koehler Publishers

Schwaber, K., 2013. The Scrum Guide, at scrumguides.org

Schwarz, R., 2002. The Skilled Facilitator: A Comprehensive Resource for Consultants,
Facilitators, Managers, Trainers, and Coaches, Jossey-Bass

Senge, P. 2006. The Fifth Discipline: The Art & Practice of the Learning Organization,
Doubleday

Vodde, B., 2011. Specialization and Generalization in Teams, at http://www.scrumalli-
ance.org/community/articles/2011/january/specialization-and-generalization-in-teams

https://less.works For Gene Gendel only, id:gene-gendel

http://www.scrumalliance.org/community/articles/2013/2013-april/how-to-form-teams-in-large-scale-scrum-a-story-of
http://www.scrumalliance.org/community/articles/2013/2013-april/how-to-form-teams-in-large-scale-scrum-a-story-of
http://www.scrumalliance.org/community/articles/2011/january/specialization-and-generalization-in-teams
http://www.scrumalliance.org/community/articles/2011/january/specialization-and-generalization-in-teams
http://www.agileforall.com/patterns-for-splitting-user-stories/
http://www.agileforall.com/patterns-for-splitting-user-stories/
https://less.works
http://www.scrumguides.org

333

APPENDIX A: RULES
The LeSS Rules are the definition of the LeSS Framework. They are
things we consider a must. Why? This is explained in the Why LeSS
description on less.works.

LESS FRAMEWORK RULES
The LeSS framework applies to products with 2–“8” teams.

• LeSS Structure •
> Structure the organization using real teams as the basic organiza-

tional building block.

> Each team is (1) self-managing, (2) cross-functional, (3) co-located,
and (4) long-lived.

> The majority of the teams are customer-focused feature teams.

> Scrum Masters are responsible for a well-working LeSS adoption.
Their focus is towards the Teams, Product Owner, organization,
and development practices. A Scrum Master does not focus on
just one team but on the overall organizational system.

> A Scrum Master is a dedicated full-time role.

> One Scrum Master can serve 1–3 teams.

> In LeSS, managers are optional, but if managers do exist, their role
is likely to change. Their focus shifts from managing the day-to-
day product work to improving the value-delivering capability of
the product development system.

> Managers’ role is to improve the product development system by
practicing Go See, encouraging Stop & Fix, and “experiments over
conformance.”

> For the product group, establish the complete LeSS structure “at
the start”; this is vital for a LeSS adoption.

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works
Focus is on Team, LeSS Product Group, SM role, PM role

334

> For the larger organization beyond the product group, adopt LeSS
evolutionally by using Go and See to create an organization where
experimentation and improvement is the norm.

• LeSS Product •
> There is one Product Owner and one Product Backlog for the

complete shippable product.

> The Product Owner shouldn’t work alone on Product Backlog
refinement; he is supported by the multiple Teams working
directly with customers/users and other stakeholders.

> All prioritization goes through the Product Owner, but clarifica-
tion is as much as possible directly between the Teams and cus-
tomer/users and other stakeholders.

> The definition of product should be as broad and end-user-/cus-
tomer- centric as is practical. Over time, the definition of product
might expand. Broader definitions are preferred.

> There is one Definition of Done for the whole product, common
for all teams.

> Each team can have its own stronger Definition of Done by
expanding the common one.

> The perfection goal is to improve the Definition of Done so that it
results in a shippable product each Sprint (or even more fre-
quently).

• LeSS Sprint •
> There is one product-level Sprint, not a different Sprint for each

Team. Each Team starts and ends the Sprint at the same time. Each
Sprint results in an integrated whole product.

> Sprint Planning consists of two parts: Sprint Planning One is com-
mon for all teams, whereas Sprint Planning Two is usually done
separately for each team. Do multi-team Sprint Planning Two in a
shared space for closely related items.

> Sprint Planning One is attended by the Product Owner and Teams
or Team representatives. Together, they tentatively select the

https://less.works For Gene Gendel only, id:gene-gendel

Focus on PO and DoD

335

items that each team will work on during that Sprint. The Teams
identify opportunities to work together, and final questions are
clarified.

> Each Team has its own Sprint Backlog.

> Sprint Planning Two is for Teams to decide how they will do the
selected items. That usually involves design and the creation of
their Sprint Backlogs.

> Each Team has its own Daily Scrum.

> Cross-team coordination is decided by the teams. Prefer decen-
tralized and informal coordination over centralized coordination.
Emphasize Just Talk and informal networks through communicat-
ing in code, cross-team meetings, component mentors, travelers,
scouts, and open spaces.

> Product Backlog Refinement (PBR) is done per team for the items
they will likely do in the future. Do multi-team and/or overall PBR
to increase shared understanding, and exploit coordination oppor-
tunities when having closely related items or a need for broader
input/learning.

> There is one product Sprint Review; it is common for all teams.
Ensure that suitable stakeholders join to contribute the informa-
tion needed for effective inspection and adaptation.

> Each Team has its own Sprint Retrospective.

> An Overall Retrospective is held after the Team Retrospectives to
discuss cross-team and systemwide issues and to create improve-
ment experiments. In attendance are Product Owner, Scrum Mas-
ters, Team Representatives, and managers (if any).

LESS HUGE FRAMEWORK RULES
LeSS Huge applies to products with “8+” teams. Avoid applying LeSS
Huge to smaller product groups as its principles will result in more over-
head and local optimizations. All LeSS rules apply to LeSS Huge unless
otherwise stated. Each Requirement Area acts like the basic LeSS
framework.

https://less.works For Gene Gendel only, id:gene-gendel

no less than 4 teams in a new area

336

• LeSS Huge Structure •
> Customer requirements that are strongly related from a customer

perspective are grouped in Requirement Areas.

> Each Team specializes in one Requirement Area. Teams stay in one
area for a long time. When there is more value in other areas,
teams might change Requirement Area.

> Each Requirement Area has one Area Product Owner.

> Each Requirement Area has between “4–8” teams. Avoid violating
this range.

> LeSS Huge adoptions, including the structural changes, are done
with an evolutionary incremental approach.

> Remember each day: LeSS Huge adoptions take months or years,
infinite patience, and sense of humor.

• LeSS Huge Product •
> Each Requirement Area has one Area Product Owner.

> One (overall) Product Owner is responsible for product-wide pri-
oritization and for deciding which teams work in which Area. He
works closely with Area Product Owners.

> Area Product Owners act as Product Owners towards their teams.

> There is one Product Backlog; every item in it belongs to exactly
one Requirement Area.

> There is one Area Product Backlog per Requirement Area. This is
conceptually a more granular view into the one Product Backlog.

• LeSS Huge Sprint •
> There is one product-level Sprint, not a different Sprint for each

Requirement Area. It ends in one integrated whole product.

> The Product Owner and Area Product Owners synchronize fre-
quently. Before Sprint Planning they ensure that the Teams work
on the most valuable items. After the Sprint Review, they further
enable product-level adaptations.

https://less.works For Gene Gendel only, id:gene-gendel

337

More with LeSS 1

LeSS 5

Adoption 53
Guide: Three Adoption Principles 55
Guide: Getting Started 59
Guide: Culture Follows Structure 64
Guide: Job Safety but not Role Safety 66
Guide: Organizational Perfection Vision 66
Guide: Continuous Improvement 69
Guide: Growing Your Adoption 71
Guide: Evolutionary Incremental Adoption 73
Guide: One Requirement Area at a Time 74
Guide: Parallel Organizations 74

Organize by
Customer Value 77
Guide: Build Team-Based Organizations 79
Guide: Understanding Feature Teams 81
Guide: Feature-Team Adoption Maps 90
Guide: Prefer Specialization in Customer Do-
main 95
Guide: LeSS Organizational Structure 97
Guide: Organizing Multi-Site in LeSS 100
Guide: Requirement Areas 102
Guide: Dynamics of Requirement Areas 105
Guide: Transitioning to Feature Teams 106
Guide: LeSS Huge Organization 109

Management 113
Guide: Understand Taylor and Fayol 115
Guide: Theory Y Management 117
Guide: Managers Are Optional 120
Guide: The LeSS Organization 121
Guide: Go See 125
Guide: Managers as Teachers and Learners
128
Guide: Both Domain and
Technical Capability 129

Guide: LeSS Metrics with Less Targets 130
Guide: Management Reading List 131

Scrum Masters 135
Guide: Scrum Master Focus 137
Guide: Five Scrum Master Tools 141
Guide: Large-Group Facilitation 143
Guide: Promote Learning & Multiple Skills 143
Guide: Community Work 144
Guide: Scrum Master Survival Guide 146
Guide: Scrum Master Reading List 149
Guide: Especially Pay Attention To... 150
Guide: Avoid Requirement Area Silos 151

Product 155
Guide: What Is Your Product? 157
Guide: Define Your Product 162
Guide: Expanding Product Definition 168
Guide: Product over Project or Program 168

Product Owner 171
Guide: Who Should be Product Owner? 173
Guide: Start Early or Messy with a Temporary
Fake Product Owner 176
Guide: Who Are Those Users/Customers? 177
Guide: Prioritization over Clarification 178
Guide: Don’t Do It 178
Guide: Product Owner Helpers 179
Guide: Five Relationships 180
Guide: Customer Collaborations over… 187
Guide: Ship at Least Every Sprint 189
Guide: Don’t Be Nice 189
Guide: Let Go 190
Guide: Don’t Let Undone Work
Be Your Undoing 191
Guide: LeSS Meetings 192
Guide: LeSS Huge Product Owner 193
Guide: Area Product Owners 194
Guide: PO Team Helped by Scrum Master 195

Appendix B: Guides

https://less.works For Gene Gendel only, id:gene-gendel

bad stuff does not apply in prod dev with intellectual ppl

as oppose to IT domain

not the same as distributed teams

paying, external

real, internal, not surrogates, BAs, etc.

PO toward DoD and donness

338

Product Backlog 197
Guide: Don’t “Manage Dependencies” but Min-
imize Constraints 198
Guide: Take a Bite 202
Guide: Dealing with Parents 204
Guide: Handling Special Items 207
Guide: Tools for Large Product Backlogs 210
Guide: More Outcome, less Output 213
Guide: Area Backlogs 215
Guide: Three Levels Max 222
Guide: New Area for Giant Requirement 223
Guide: Handling Gigantic Requirements 224

Definition of Done 229
Guide: Creating the Definition of Done 231
Guide: Evolve the Definition of Done 240

Product Backlog
Refinement 247
Guide: Product Backlog Refinement Types 249
Guide: Overall PBR 251
Guide: Multi-Team PBR 252
Guide: Multi-Site PBR 254
Guide: Initial PBR 255
Guide: Splitting 260
Guide: Scaling Estimation 269

Sprint Planning 275
Guide: Sprint Planning One 276
Guide: Multi-Team Sprint Planning Two 280
Guide: No Software Tools for Sprint Backlog

281
Guide: Product Owner Team Meeting 283

Coordination &
Integration 285
Guide: Just Talk 287
Guide: Coordination-Friendly Environment
288
Guide: Communicate in Code 292
Guide: Integrate Continuously 293
Guide: Communities 295
Guide: Cross-Team Meetings 299
Guide: Multi-Team Design Workshop 301
Guide: Current-Architecture Workshop 303
Guide: Component Mentors 304
Guide: Open Space 305
Guide: Travelers 306
Guide: Scouts 307
Guide: Maybe Don’t Do Scrum of Scrums 308
Guide: Leading Team 308
Guide: Mix and Match Techniques 309

Review & Retrospective 313
Guide: Adapt the Product Early and Often 315
Guide: Review Bazaar 316
Guide: Overall Retrospective 317
Guide: Improve the System 320
Guide: Multi-Area Reviews & Retrospectives
325

What’s Next? 329

https://less.works For Gene Gendel only, id:gene-gendel

doing multi-team helps! or don't use story points - use man days.

on demand, avoid SoS by mandate

White board is best. - should not be a problem for co-located team (one of 4 Team rules)

for external collaboration. e.g. other non-LeSS groups

become Community coordinators for Component communities

19

339

A
Adapt the Product Early and Often (guide) 315
adaptive planning 315
adoption

chapter 53
LeSS Huge 72

architecture 301, 303
Area Backlogs (guide) 215
Area Feature Teams 35
Area Product Owners 35
Area Product Owners (guide) 194
Avoid Requirement Area Silos (guide) 151

B
Both Domain and Technical Capability (guide) 129
Build Team-Based Organizations (guide) 79

C
causal-loop diagrams 320
Communicate in Code (guide) 292
Communities (guide) 295
Community Work (guide) 144
Component Mentors (guide) 304
Continuous Improvement (guide) 69
continuous integration 293
Contract Game 187
coordination and integration chapter 285
coordination in LeSS Huge 310
Coordination-Friendly Environment (guide) 288
CoPs - see Communities
Creating the Definition of Done (guide) 231
Cross-Team Meetings (guide) 299
Culture follows Structure (guide) 64
Current-Architecture Workshop (guide) 303
Customer Collaborations over… (guide) 187

D
Dealing with Parents (guide) 204
defects 207
Define your Product (guide) 162
Definition of Done

chapter 229
LeSS Huge 243

design workshops 301
Don’t “Manage Dependencies” but Minimize Con-
straints (guide) 198
Don’t Be Nice (guide) 189
Don’t Do It (guide) 178
Don’t Let Undone Work be Your Undoing (guide)
191
Dynamics of Requirement Areas (guide) 105

E
Especially Pay Attention To... (guide) 150
estimation 269
Evolutionary Incremental Adoption (guide) 73
Evolve the Definition of Done (guide) 240
Expanding Product Definition (guide) 168
experiments 8

F
Feature-Team Adoption Maps (guide) 90
Five Relationships (guide) 180
Five Scrum Master Tools (guide) 141
frameworks in LeSS 12

G
Getting Started (guide) 59
Go See (guide) 125
Growing your Adoption (guide) 71
guides in LeSS 337

H
Handling Gigantic Requirements (guide) 224
Handling Special Items (guide) 207

I
Improve the System (guide) 320
Initial PBR (guide) 255
innovation 207
Integrate Continuously (guide) 293
integration 285

J
Job Safety, but not Role Safety (guide) 66

INDEX

https://less.works For Gene Gendel only, id:gene-gendel

340

Just Talk (guide) 287

L
Large-Group Facilitation (guide) 143
Larman’s Laws 64
Leading Team (guide) 308
LeSS

background 6
complete picture 9
experiments 8
framework 13
frameworks 12
introduction 6
picture 9
principles 8, 10
stories 14

LeSS Guides 337
introduction 8

LeSS Huge 12, 33
adoption 72
coordination 310
Definition of Done 243
framework 33, 37
PBR 272
product 169
Product Backlog 215
Product Owner 192
Scrum Masters 151
Sprint Planning 283
Sprint Retrospective 325
Sprint Review 325
stories 38
structure 101

LeSS Huge Organization (guide) 109
LeSS Huge Product Owner (guide) 193
LeSS Meetings (guide) 192
LeSS Metrics with Less Targets (guide) 130
LeSS Organization (guide) 121
LeSS Organizational Structure (guide) 97
LeSS Rules 8, 333
Let Go (guide) 190

M
management chapter 113

Management Reading List (guides) 131
Managers are Optional (guide) 120
Managers as Teachers, and Learners (guide) 128
Managers with Both Domain and Technical Capa-
bility (guide) 129
Maybe Don’t do Scrum of Scrums (guide) 308
meetings 192
metrics 130
Mix and Match Techniques (guide) 309
More Outcome, less Output (guide) 213
Multi-Area Reviews & Retrospectives (guide) 325
multi-site

design workshops 302
meetings 300
organizational structure 100
PBR 254
Product Owner 175
Sprint Planning 279
Sprint Retrospective (overall) 319
Sprint Review 317
story 47
teams 46
tools 210

Multi-Team Design Workshop (guide) 301
Multi-Team PBR (guide) 252
Multi-Team Sprint Planning Two (guide) 280

N
New Area for Giant Requirement (guide) 223
No Software Tools for Sprint Backlog (guide) 281

O
One Requirement Area at a Time (guide) 74
Open Space (guide) 305
organizational design 77
Organizational Perfection Vision (guide) 66
organizational structure 77
Organize by Customer Value 77
Organizing Multi-site in LeSS (guide) 100
Overall PBR (guide) 251
Overall Retrospective (guide) 317

https://less.works For Gene Gendel only, id:gene-gendel

341

P
Parallel Organizations (guide) 74
PBR

chapter
initial 255
LeSS Huge 272
multi-team 252
overall 251

planning 315
PO Team Helped by a Scrum Master (guide) 195
Prefer Specialization in Customer Domain (guide)
95
principles 8, 10
Prioritization over Clarification (guide) 178
product

chapter 155
LeSS Huge 169

Product Backlog
chapter 197
LeSS Huge 215

Product Backlog Refinement - see PBR
Product Backlog Refinement Types (guide) 249
Product over Project or Program (guide) 168
Product Owner

chapter 171
LeSS Huge 192

Product Owner does Prioritization over Clarifica-
tion (guide) 178
Product Owner Five Relationships (guide) 180
Product Owner Helpers (guide) 179
Product Owner Team Meeting (guide) 283
Product Owner, Don’t Be Nice (guide) 189
Product Owner, Don’t Do It (guide) 178
Product Owner, Let Go (guide) 190
Promote Learning & Multiple Skills (guide) 143

R
recommended readings 331

for managers 131
for Scrum Masters 149

Requirement Areas 33
Requirement Areas (guide) 102
research 207
Retrospective - see Sprint Retrospective

Review - see Sprint Review
Review Bazaar (guide) 316
rules in LeSS 333

S
Scaling Estimation (guide) 269
Scouts (guide) 307
Scrum Master Focus (guide) 137
Scrum Master Reading List (guide) 149
Scrum Master Surviving Guide (guide) 146
Scrum Masters

chapter 135
LeSS Huge 151

Scrum Masters, Especially Pay Attention To...
(guide) 150
Scrum of Scrums 308
Ship At Least Every Sprint (guide) 189
Splitting (guide) 260
Sprint Planning

chapter 275
LeSS Huge 283
multi-team 280
One 276

Sprint Planning One (guide) 276
Sprint Retrospective

chapter
LeSS Huge 325
Overall 317

Sprint Review
chapter
LeSS Huge 325

Start Early or Messy with a Temporary Fake Prod-
uct Owner (guide) 176
stories

LeSS 14
LeSS Huge 38

structure
chapter 77
LeSS Huge 101

systems models 320
systems thinking 320

T
Take a Bite (guide) 202

https://less.works For Gene Gendel only, id:gene-gendel

342

Theory Y Management (guide) 117
Three Adoption Principles (guide) 55
Three Levels Max (guide) 222
tools 210, 281
Tools for Large Product Backlogs (guide) 210
Transitioning to Feature Teams (guide) 106
Travelers (guide) 306

U
Understand Taylor and Fayol (guide) 115
Understanding Feature Teams (guide) 81

W
What is Your Product? (guide) 157
Who are those Users/Customers? (guide) 177
Who Should be Product Owner? (guide) 173

https://less.works For Gene Gendel only, id:gene-gendel

	Cover
	Title Page
	Copyright Page
	Contents
	1 More with LeSS
	2 LeSS
	LeSS Structure
	3 Adoption
	4 Organize by Customer Value
	5 Management
	6 Scrum Masters

	LeSS Product
	7 Product
	8 Product Owner
	9 Product Backlog
	10 Definition of Done

	LeSS Sprint
	11 Product Backlog Refinement
	12 Sprint Planning
	13 Coordination & Integration
	14 Review & Retrospective

	More or LeSS
	15 What’s Next?

	Recommended Readings
	Appendix A: Rules
	Appendix B: Guides
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

