[ARGE-SCALE
SCRUM

MOoREg wWITH LeSS

CRAIG LARMAN DﬂfiiWT:I'I gll':f:v
BAs VODDE

Foreword by
STEPHEN DENNING

With illustrations by Sketch Post

Large-Scale Scrum

This page intentionally left blank

Large-Scale Scrum

More with LeSS

Craig Larman
Bas Vodde

vvAddison-Wesley

Boston * Columbus ¢ Indianapolis * New York ¢ San Francisco * Amsterdam ¢ Cape Town
Dubai ¢ London ¢ Madrid * Milan * Munich ¢ Paris * Montreal * Toronto * Delhi
S&o Paulo * Sydney » Hong Kong ¢ Seoul * Singapore ¢ Taipei * Tokyo

&=3

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department

at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016941974

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-321-98571-2
ISBN-10: 0-321-98571-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, August 2016

http://www.pearsoned.com/permissions/
http://www.corpsales@pearsoned.com
http://www.governmentsales@pearsoned.com
http://www.intlcs@pearson.com
http://www.informit.com/aw

CONTENTS

1 Morewith LeSS 1 Recommended Readings 331
2 LeSS s Appendix A: Rules 333
Appendix B: Guides 337

Index 339

LeSS Structure
3 Adoption s3

4 QOrganize by
Customer Value 77

5 Management 113
Scrum Masters 135

LeSS Product

7 Product 155

8 Product Owner 171

9 Product Backlog 197
10 Definition of Done 229

LeSS Sprint

11 Product Backlog
Refinement 247

12 Sprint Planning 275

13 Coordination &
Integration 2ss

14 Review & Retrospective 313

More or LeSS
15 What's Next? 329

This page intentionally left blank

FOREWORD

by Stephen Denning

Large-Scale Scrum or LeSS continues the major discoveries that are
transforming the world of management by showing how to implement
Agile and Scrum at scale.

In the 20t Century, hierarchical bureaucracy enabled large groups to
work together to achieve extraordinary improvements in productivity.
Then the world changed. Deregulation, globalization, the emergence of
knowledge work and new technology, particularly the Internet, trans-
formed everything. Competition increased. The pace of change acceler-
ated. Computer software enabled huge gains in productivity but in turn
generated immense complexity. As power in the marketplace shifted
from seller to buyer, the customer, not the firm, became the center of
the commercial universe. These shifts required fundamentally different
management that could mobilize the talents of everyone in the organi-
zation—and beyond—to meet the new and more difficult challenge of
delighting customers. The changes went far beyond fixes to existing
management practices. Agile and Scrum offer explicit alternatives to
seemingly long-held, obvious, self-evident management assumptions.

LeSS shows how to handle large and complex development. Self-man-
aged teams are not just tiny curiosities. They can manage vast interna-
tional operations of great technical complexity. The practices are not
only scalable, unlike bureaucracy, they are scalable without sclerosis.

LeSS continues the process of fundamentally reinventing management
by incorporating the hard-won lessons of experience over more than a
decade in scaling the management methods of Agile and Scrum. It
shows how to cope with immense complexity by creating simplicity.

LeSS is deliberately incomplete. It leaves space for vast situational
learning. It doesn't offer definitive answers. Nor does it try to satisfy
20th Century longings for formulaic answers or for apparently safe and

vii

viii

disciplined approaches that offer a comforting illusion of predictable
control. LeSS focuses on the minimal essence required when scaling,
including continuous attention to technical excellence, and a mindset of
continuous experimentation. It involves forever trying new experiments
in an effort to improve. Like Scrum itself, LeSS strives for a balance
between abstract principles and concrete practices.

And like Scrum, LeSS is not a process or a technique for building prod-
ucts. Rather, it is a framework within which processes and techniques
can be adapted to meet the needs of the particular situation. It aims to
make clear how product management and development practices can
enable continuous improvement that adds value to customers.

Rather than providing fixed answers, LeSS provides the starting point
for understanding and adopting its deeper principles. Instead of asking,
“How can we do Agile at scale in our complex hierarchical bureaucracy?”
it asks a different and deeper question is, “How can we simplify the
organization, and be Agile?”

LeSS strives to achieve this balance for larger product groups. It adds
more concrete structure to Scrum, while maintaining radical transpar-
ency and emphasizing the inspect-and-adapt cycle so that groups can
continuously improve their own ways of working. It addresses the basic
question: How do we take what works really well at the individual team
level and make that happen at a much wider level in the organization?

Much remains to be learned and done in terms of scaling Agile and
Scrum. This book is both a progress report and a guide to the future. At
present, many organizations are not doing a good job having multiple
teams working in sync on various aspects of products and platforms.
Surveys show that most Agile and Scrum teams today report tension
between the way their team operates and the way the rest of the orga-
nization is run. This book provides a practical, step-by-step guide to
resolving this tension.

Stephen Denning
Author of The Leader’s Guide to Radical Management
April 27,2016

PREFACE

All great truths begin as b[asphemies.
—George Bernard Shaw

Welcome to this portal into the world of LeSS, where simpler structures
replace organizational complexity by focusing on people and their
learning. To some people, LeSS might seem romantic and hopelessly ide-
alistic. Not so, it is the reality for many product groups today!

Why This Book?

While reflecting on the feedback that our previous two books on LeSS
presented too many ideas with too few starting points, Craig asked Bas
if he wanted to write another book. Bas declined as he was eagerly
awaiting the arrival of his second son. A relentless Craig convinced Bas
this book was going to be an easy one. Craig was wrong.

Our initial intent was to write a primer for the previous LeSS books. We
ended up with a very different book as our exploration in concrete
starting points led to a pursuit for the minimum essentials for scaling.
The result? The LeSS rules, the LeSS guides, and this book.

The LeSS rules and guides are important, but they are not the only con-
siderations when scaling. Before diving into LeSS, we want to explicitly
highlight two other important points: continuous attention to technical
excellence and the experimentation mindset.

Audience

This book is for everyone in product development. The only prerequi-
site to this book is basic Scrum knowledge. If you don’'t have that, we
recommend you start with reading through the Scrum Guide
(scrumguides.org) and the Scrum Primer (scrumprimer.org). We start
every chapter with a quick Scrum refresher related to that topic.

http://www.scrumprimer.org
http://www.scrumprimer.org

Chapter Structure
Each major chapter has the following structure:
> One-team Scrum
Summarize one-team Scrum, to set the stage for learning LeSS.

> LeSS
Covers the basic LeSS framework. This section is structured as:

> Introduction and related LeSS principles.
> LeSSrules.
> LeSS guides.

> LeSS Huge
Structured the same way as the LeSS section.

Style

We decided on the following style choices:

> LeSS and Scrum terms are capitalized, such as: Sprint, Product
Backlog, Team. Note: Team is the role in LeSS whereas team is the
general concept of a team.

> Throughout the book we use you to refer to you, the reader. We
assume you are involved in a LeSS adoption and we pretend your
role relates to the topic of the chapter. For example, in the Product
Owner chapter, you are a Product Owner.

> We use italic, bold, and boxes to emphasize important points.

> The book is intentionally shallow in bibliographic references. For
more thorough references, please refer to our previous books
which have extensive bibliographies.

Organizational Terms

Most terms are defined when first used. However, we've struggled with
organizational terms as different companies use different terms. There-
fore, here we introduce the terms we use throughout the book, which
will be obvious for some readers, yet obscure for others.

> Product group
All people involved in the product. Companies often use project to
refer to all people involved in the development, but this book
avoids the term project as it strives to emphasize product develop-
ment. Hence, product group.

> Line organization
The formal organization usually depicted in an org-chart. Line
organization is typically involved in evaluation, hiring, firing, and
competence development. Companies might also have a matrixed
project organization (this should not exist in LeSS) and staff or
support organization.

> Line manager and first-level manager
A manager you report to in the line organization. The first-level
manager is the direct line manager you report to.

> Senior manager or executive
Managers who work near the top of the organization. In a large
organization, they tend to be outside the product group.

> Product management or product marketing
The functionin product organizations that explore the market and
decide on the content of the product. This is normally not in aline
relationship with the teams.

> Head of the product group

> Project/program manager
Role traditionally responsible for the schedule of arelease. Thisis
normally not a line relationship with the team as it has a short-
term temporary focus.

> Functional organization
Line organization for a functional skill such as development, test,
or analysis. Should cease to exist in a LeSS organization.

Acknowledgments

We've had a huge number of reviewers for this book. Those who com-
mented on more than one chapter are listed below.

KEY. All LeSS Prod Group reports to. All Teams and their members.

Xii

Janne Kohvakka, Hans Neumaier, Rafael Sabbagh, Ran Nyman, Ahmad
Fahmy, Mike Cohn, Gojko Adzic, Jutta Eckstein, Rowan Bunning, Jean-
marc Gerber, Yi Lv, Steve Spearman, Karen Greaves, Marco Seelmann,
Cesario Ramos, Markus Gartner, Viktor Grgic, Chris Chan, Nils Bernert,
Viacheslav Rozet, Edward Dahllof, Lisa Crispin, Mike Dwyer, Francesco
Sferlazza, Nathan Slippen, Mika Sjoman, Tim Born, Charles Bradley,
Timothy Korson, Erin Perry, Greg Hutchings, Jez Humble, Alexey Kriv-
itsky, Alexander Gerber, Peter Braun, Jurgen De Smet, Evelyn Tian,
Sami Lilja, Steven Mak, Alexandre Cotting, Bob Schatz, Bob Sarni, Milind
Kulkarni, Janet Gregory, Jerry Rajamoney, Karl Kollischan, Shiv Kumar
Mn, David Nunn, Rene Hamannt, llan Goldstein, Juan Gabardini, Meh-
met Yitmen, Kai-Uwe Rupp, Christian Engblom, James Grenning, Ven-
katesh Krishnamurthy, Peter Hundermark, Arne Ahlander, Darren Lai,
Markus Seitz, Geir Amsjg, Ram Srinivasan, Mark Bregenzer, Aaron
Sanders, Michael Ballé, Stuart Turner, Ealden Escafian, Steven Koh, Ken
Yaguchi, michael james, Manoj Vadakkan, Peter Zurkirchen, Laszlo
Csereklei, Gordon Weir, Laurent Carbonnaux, Elad Sofer.

And then a special thanks to Bernie Quah for the art and Terry Yin for
support on nearly anything requested. And to Chris Guzikowski from
Addison-Wesley for his patience during this longer than intended book
project.

MORE WITH LESS

The cheapest, fastest, and most veliable components are those that aren’t there.
—Gordon Bell

« Why LeSS? «

Why did Scrum adoption explode during the last decade? This is the
question we toyed with at a hawker center in Singapore, over a beer.

Some say it was due to the simplistic certification model. Perhaps. But
another agile method, DSDM, provided certification before Scrum yet
never became as widespread.

Others say the availability of Scrum Master courses made the differ-
ence. Ken Schwaber’s original Scrum Master course has indeed had a
strong influence. Yet, Extreme Programming had the XP Immersion
course first and isn't as common.

Perhaps it’s the simplicity of Scrum that made the difference? Com-
pared to XP, Scrum provides a simpler framework. Yet, even simpler

agile methods such as Crystal never really took off.

After some more discussion and thought, Craig suggested:

Scrum hits an ideal balance between
abstract principles and concrete practices.

That concluded the discussion and we had another beer.

These concrete practices emphasize empirical process control—a core
Scrum principle. Empirical process control distinguishes Scrum from
other agile frameworks. The Scrum Guide puts it well:

1. More with LeSS

Scrum is not a process or a technique for building products; rather, it is a
framework within which you can employ various processes and tech-
niques. Scrum makes clear the relative efficacy of your product manage-
ment and development practices so that you can improve.

Meaning? With empirical process control we neither fix the scope of the
product nor the process of how to build it. Instead, in short cycles we cre-
ate a small shippable slice of the product. We inspect what we have and
how we created it, and adapt the product and the way we create it. This
clear inspection is enabled by the built-in mechanisms for transparency.

Principles sound good but are not obviously actionable. It is the small
simple set of concrete practices that make it easy to start with Scrum:
the clear roles, artifacts, and events.

These practices get you started, but are intentionally “incomplete” so
that groups have the space to continuously learn and improve within the
Scrum framework, recognizing that you are working in domains of high
complexity where defined process recipes are too simplistic.

The concrete practices of Scrum provide the starting
point for adopting its deeper principles. A perfect balance.

Large-Scale Scrum (LeSS) achieves the same balance for larger product
groups. It adds a bit more concrete structure to Scrum, whose purpose
is to maintain transparency and emphasize the inspect-adapt cycle so
that groups can continuously improve their own ways of working.

Like Scrum, LeSS is deliberately incomplete; it leaves space for vast situ-
ational learning. It doesn't offer many definitive answers. It won't satisfy
those looking for formulaic answers or for apparently safe and disci-
plined approaches that offer a comforting illusion of predictable control
viadefined processes. These approaches destroy the principle of empir-
ical process control, and feeling ownership of processes and practices.

A less defined process leads to more learning. More with less.

This page intentionally left blank

Contents

LeSS 6 LeSS Huge Framework 33

+ Background « 6 + Requirement Areas + 33
« Experiments, Guides, Rules, Principles « 8 + Area Product Owners « 35
« LeSS Principles « 10 « Area Feature Teams « 35
« Two Frameworks: LeSS & LeSS Huge « 12 + LeSS Huge Framework Summary « 37
+ LeSS Huge Stories « 38
LeSS Framework 13 « LeSS Huge Story: A New Requirement Area « 39

« Multi-Site Teams: Terms & Tips « 46

« LeSS Framework Summary « 13 .
« LeSS Huge Story: Multi-Site Teams « 47

+ LeSS Stories « 14
« LeSS Story: Flow of Teams « 15
« LeSS Story: Flow of Items « 29

a large story map in initial PBR in LeSS

4B https://less.works For Gene Gendel only, id:gene-gendel

LeSS

ONE-TEAM SCRUM

Scrum is an empirical-process-control development framework in
which a cross-functional self-managing Team develops a product in an
iterative incremental manner.> Each timeboxed Sprint, a potentially ship-
pable product increment is delivered and, ideally, shipped. A single Prod-
uct Owner is responsible for maximizing product value, prioritizing items
in the Product Backlog, and adaptively deciding the goal of each Sprint
based on constant feedback and learning. A small Team is responsible
for delivering the Sprint goal; there are no limiting single-specialized
roles. A Scrum Master teaches why Scrum and how to derive value with
it, coaches the Product Owner, Team, and organization to apply it, and
acts as amirror. There is no project manager or team lead.

Empirical process control requires transparency, which comes from
short-cycle development and review of shippable product increments.
It emphasizes continuous learning, inspection, and adaptation about the
product and how it’s created. It's based on understanding that in devel-
opment things are too complex and dynamic for detailed and formulaic
process recipes, which inhibit questioning, engagement, improvement.

In the Scrum Guide and Scrum Primer, the emphasis is for one Team; the
focus is not many Teams working together. And that naturally leads to
thinking about large-scale Scrum.

1. Please read the Preface for why chapters start with this section, the repeating major
structure in each chapter, definition of some key terms, and style points.

see Adoption

see Organize by Cus-

tomer Value

see Coordination &
Integration

see Product

2. LeSS

LESS

LeSS is Scrum applied to many
teams working together on one product.

LeSS is Scrum—Large-Scale Scrum (LeSSY) isn't new and improved
Scrum. And it's not Scrum at the bottom for each team, and something dif-
ferent layered on top. Rather, it's about figuring out how to apply the prin-
ciples, purpose, elements, and elegance of Scrum in a large-scale
context, as simply as possible. Like Scrum and other truly agile frame-
works, LeSS is “barely sufficient methodology” for high-impact reasons.

Scaled Scrum is not a special scaling framework that happens to
include Scrum only at the team level. Truly scaled Scrum is
Scrum scaled.

...applied to many teams—Cross-functional, cross-component, full-
stack feature teams of 3-92 learning-focused people that do it all—from
UXto code to videos—to create done items and a shippable product.

...working together—The teams are working together because they
have a common goal to deliver one common shippable product at the
end of a common Sprint, and each team cares about this because they
are a feature team responsible for the whole, not a part.

...on one product—\What product? A broad complete end-to-end cus-
tomer-centric solution that real customers use. It's not a component,
platform, layer, or library.

« Background -

In 2002, when Craig wrote Agile & Iterative Development, many believed
that agile development was only for small groups. However, we both
(Craig and Bas) became interested in—and got increasing requests—to

1. LeSSsuggests both Large-Scale Scrum and simplifying when scaling—less.

LeSS

apply Scrum to large, multi-site, and offshore development. So, since
2005 we have teamed up to work with clients to scale up Scrum. Today,
the two LeSS frameworks (smaller LeSS and LeSS Huge) have been
adopted in big groups worldwide in disparate domains:

> telecom equipment — Ericsson & Nokia Networks?

> investment and retail banks — UBS

> trading systems — ION Trading

> marketing platforms and brand analytics — Vendasta

> video conferencing — Cisco

> online gaming (betting) — bwin.party

> offshore outsourcing — Valtech India?
In terms of large, what’s a typical LeSS adoption case? Perhaps five
teams in one or two sites. We've been involved in adoptions of that size,
of afew hundred people, and up to a LeSS Huge case of well over a thou-

sand people, far too many development sites, tens of millions of lines of
C++, with custom hardware.

More LeSS Learning

To help people learn and based on our experiences with clients, in

1. Nokia Networks is not the mobile phone firm acquired by Microsoft.
2. Seethe case studies at less.works for more examples.

https://less.works
LeSS books:
2008 -
2010 -

LeSS books in 2008 and 2010 - have experiments

2. LeSS

This book—Large-Scale Scrum: More with LeSS—is the third in the LeSS
series, a prequel and primer. This booksynthesizes, clarifies, and high-
lights what's most important.

Besides these books, see lessworks for online learning resources
(including book chapters, articles, and videos), courses, and coaching.

« Experiments, Guides, Rules, Principles «

The first two LeSS books emphasized: There are no such things as best
practices in product development. There are only practices that are adequate
within a certain context.

Practices are situational; blithely claiming they are “best” disconnects
them from motivation and context. They become rituals. And pushing
so-called best practices kills a culture of learning, questioning, engage-
ment, and continuous improvement. Why would people challenge best?

Therefore, the earlier LeSS books shared experiments we and our clients
have tried, and we encouraged—and encourage—this mindset. But over
time we noticed two problems with the only-experiments mindset:

> Novice groups made unskillful decisions to their detriment, adopt-
ing LeSS in ways not intended, with obvious problems; e.g. groups
created Requirement Areas with one team each. Ouch!

> Novice groups asked, “Where do we start? What’s most
important?” They understandably couldn’t see the key basics.

Based on this feedback we reflected and returned to the Shu-Ha-Ri
model of learning: Shu—follow rules to learn basics. Ha—break rules and
discover context. Ri—mastery and find your own way. In a Shu-level
LeSS adoption, there are a few rules for a barely sufficient framework to
kick-start empirical process control and whole-product focus.* These
rules define the two LeSS frameworks that are introduced soon.

To summarize and build on these points, LeSS includes:

1. Scrum also has a few rules for its framework, for the same reasons as LeSS.

https://less.works

LeSS

> Rules—A few rules to get started and form the foundation. They
define the key elements of the LeSS frameworks that should be in
place to support empirical process control and whole-product
focus. e.g. Hold an Overall Retrospective each Sprint.

> Guides—A moderate set of guides to effectively adopt the rules
and for a subset of experiments; worth trying based on years of
experience with LeSS. Guides contain tips. Usually helpful and are
an area for continuous improvement; e.g. Three Adoption Principles.

> Experiments—Many experiments that are very situational and
may not even be worth trying; e.g. Try... Translator on Team.

> Principles—At the heart, a set of principles—extracted from expe-
rience with LeSS adoptions—that inform the rules, guides, and
experiments; e.g. whole-product focus.

A good way to look at LeSS is visualized in the LeSS complete picture:

Large-Scale Scrum: More with LeSS (2015)

https://less.works/img/principles/principles.pdf

-Deep and Narrow
-Bottom Up and Top Down
-Volunteering only

Rules = Frameworks (LeSS & LeSS Huge)

https://less.works/resources/LeSS-complete-picture.pdf

https://less.works/resources/LeSS-complete-picture.pdf

2. LeSS

The LeSS complete picture will order the way we introduce LeSS:

1. LeSS principles, up next
2
3. LeSS guides, in the following chapters of this book

4. LeSS experiments, already available in the first two LeSS book

« LeSS Principles «

The LeSS rules define the LeSS framework. But the rules are minimalis-
tic and don’t answer how to apply LeSS in your specific context. The
LeSS principles provide the basis for making those decisions.

o

LARGE SCALE TRﬁNSPARENCY

SCRUM [S SCRUM N t‘ i!

_ 7 more
S WITHLESS
EMPIRICAL | .
PROCESS CONTROL < Ny
\ WHOLE
PRODUCT ==l
SYSTEMS & — - \ Focus =360)
THINKING \ LV
- ’ J N
" CONTINUOUS IMPROVEMENT CUSTOMER
TOWARDS PERFECTION CENTRIC

LEAN
THINKING = #390 _

p
(cusrtild

Large-Scale Scrum is Scrum—It isn't new and improved Scrum. Rather,
LeSS is about figuring out how to apply the principles, rules, elements,
and purpose of Scrum in a large-scale context, as simply as possible.

10 deso

LeSS

Transparency—Based on tangible “done” items, short cycles, working
together, common definitions, and driving out fear in the workplace.

More with less—\We don’t want more roles because more roles leads
to less responsibility to Teams. We don’t want more artifacts because
more artifacts leads to a greater distance between Teams and custom-
ers. We don't want more process because that leads to less learning
and team ownership of process. Instead we want more responsible
Teams by having less (fewer) roles, we want more customer-focused
Teams building useful products by having less artifacts, we want more
Team ownership of process and more meaningful work by having less
defined processes. We want more with less.

Whole-product focus—One Product Backlog, one Product Owner, one
shippable product, one Sprint—regardless if 3 or 33 teams. Customers
want valuable functionality in a cohesive product, not technical compo-
nents in separate parts.

Customer-centric—Focus on learning the customers real problems
and solving those. ldentify value and waste in the eyes of the paying cus-
tomers. Reduce wait time from their perspective. Increase and
strengthen feedback loops with real customers. Everyone understands
how their work today directly relates to and benefits paying customers.

Continuous improvement towards perfection—Here's a perfection
goal: Create and deliver a product almost all the time, at almost no cost,
with no defects, that delights customers, improves the environment,
and makes lives better. Do endless humble and radical improvement
experiments toward that goal.

Lean thinking—Create an organizational system whose foundation is
managers-as-teachers who apply and teach lean thinking, manage to
improve, promote stop-and-fix, and who practice Go See. Add the

Systems thinking—See, understand, and optimize the whole system?
(not parts), and use systems modeling to explore system dynamics.
Avoid the local sub-optimizations of focusing on the efficiency or pro-

11

12

2. LeSS

ductivity of individuals and individual teams. Customers care about the
overall concept-to-cash cycle time and flow, not individual steps, and
locally optimizing a part almost always sub-optimizes the whole.

Empirical process control—Continually inspect and adapt the product,
processes, behaviors, organizational design, and practices to evolve in
situationally-appropriate ways. Do that, rather than follow a prescribed
set of so-called best practices that ignore context, create ritualistic fol-
lowing, impede learning and change, and squash people’s sense of
engagement and ownership.

Queuing theory—Understand how systems with queues behave in the
R&D domain, and apply those insights to managing queue sizes, work-
in-progress limits, multitasking, work packages, and variability.

« Two Frameworks: LeSS & LeSS Huge -

Large-Scale Scrum has two frameworks:

> LeSS. 2-8 Teams
> LeSS Huge. 8+ Teams

The word LeSSis overloaded to mean both Large-Scale Scrum in general
and the smaller LeSS framework.

The Magic Number Eight

Actually, eight isn't a magic number, and if your group can successfully
apply the smaller LeSS framework with more than eight teams, great!
But we haven't seen that... yet. It's just an upper-limit empirical observa-
tion. And in some cases, such as varied complex goals with multi-site
inexperienced foreign-language-only teams, it could be less than eight.

In any event, at some point, (1) the single Product Owner can no longer
grasp an overview of the entire product, (2) the Product Owner can't
balance an external and internal focus, and (3) the Product Backlog is so
large that it becomes difficult for one person to work with.

1. The systemis everyone and everything from concept to cash, and all its dynamics in
time and space, primarily from the customer and user perspective.

Beyond 8: for PO: hard to grasp
-Product,
-Product backlog,
-balance b/w internal and external focus

LeSS Framework

When the group hits that tipping point, it may be time to change from
the smaller LeSS framework to LeSS Huge. On the other hand, we sug-
gest first trying to get better, smaller, and simpler, before getting huger.

Common Across the Frameworks

The LeSS and LeSS Huge frameworks share common elements:

> one Product Owner and one Product Backlog
> one common Sprint across all teams

> one shippable product increment

The following two sections of this chapter explain the frameworks; the
smaller LeSS framework is next, and LeSS Huge starts on p. 33.

LESS FRAMEWORK

e LeSS Framework Summary e

Poreyy
LeSS FRAMEWORK
== SCRUMMASTER
= & FEATURE TEAM

22 N
] [i ggg A <

SPRINT
PLANNING 2

SPRINT REVIEW

™ RETROSPECTIVE
> Q o CO vy scaum
COORPINATION 5 e OVERALL RETROSPECTIVE

NEXT
SPRINT

SPRINT PROPUCT
BACKLOG BACKLOG
REFINEMENT

The smaller LeSS framework is for one (and only one) Product Owner
who owns the product, and who manages one Product Backlog worked

14

2. LeSS

on by teams in one common Sprint, optimizing for the whole product.
The LeSS framework elements are about the same as one-team Scrum:

Roles—One Product Owner, two to eight Teams, a Scrum Master for one
to three Teams. Crucially, these Teams are feature teams—true cross-
functional and cross-component full-stack teams that work together in
a shared code environment, each doing everything to create done items.

Artifacts—One potentially shippable product increment, one Product
Backlog, and a separate Sprint Backlog for each Team.

Events—One common Sprint for the whole product; it includes all
teams and ends in one potentially shippable product increment. Details
are explained in the upcoming stories, and in separate chapters.

Rules & Guides—Rules for a barely sufficient scaling framework for
empirical process control and whole-product focus. Guides may help.

o LeSS Stories e

Learning LeSS—One way to learn is by reading in-depth exposition, and
readers preferring that can comfortably skip ahead to the introduction
to LeSS Huge (p. 33), and then on to following chapters. Others who like
stories, keep on reading.

Simple stories—These stories don't explore the complexities of large-
scale development—from politics to prioritization—that we experience
when consulting. Later chapters unpack those boxes. Here are inten-
tionally plain and simple stories just to introduce the basics of a LeSS
Sprint. If you want thrilling dialog and drama, read a Lean book.

Rules & guides—In the stories you will notice that the margins refer to
related LeSS rules and guides, to clarify and make connections.

Two perspectives—Following are two related stories focusing sepa-
rately on two key perspectives, to introduce some flows more simply:

1. The flow of teams through a LeSS Sprint.
2. The flow of customer-centric items (features).

LeSS Framework

« LeSS Story: Flow of Teams «

This story focuses on the flow of teams through a Sprint, rather
than the flow of items. In reality the majority of time in the
Sprint is working on development tasks, not meetings. However,
this story emphasizes meetings and interactions, as the goal is
an understanding of how multiple teams work together during
LeSS events, and how they coordinate day by day.

Mark walks into the room where his team (Trade) works and sees Miral,
who says, “Good morning! Just a reminder, we're the team representa-
tives for this Sprint, and Sprint Planning One starts in 10 minutes’”
“Right,” says Mark, “Meet you in the big room.

Sprint Planning One
(Guide: Sprint Planning One, p. 276)

It's time for a common Sprint Planning One. Around the big room are 10
team representatives from the five teams in this product group. They all
work on their flagship product for trading bonds and derivatives. Sam,
the Scrum Master of teams Trade and Margin, is also there. He's plan-
ning to observe and coach as needed.

Many Sprints earlier, everyone from all the teams attended Sprint Plan-
ning One. That was more useful when the group was not very good at
getting items clear and ready, nor at creating broad knowledge across
the teams. Back then, Sprint Planning One was used to answer a lot of
major questions that everyone needed to hear. But lately that’s been
much improved, and so now the group is experimenting with using
rotating representatives, in what has become a simple and quick meet-
ing with only a few minor questions that tend to pop up. If the new
approach doesn't work well, it will probably be raised in an Overall Ret-
rospective, and another experiment for Sprint Planning will be created.

1. Tohelpremember characters and roles, names use an alliteration; e.g. Mira a team
Member, Sam a Scrum Master, Paolo a Product Owner.

Tip: Rotate repre-
sentatives each
Sprint

RULE: There is one
product-level Sprint,
not a different
Sprint for each
Team.

RULE: Sprint Plan-
ning consists of two
parts: Sprint Plan-
ning One is common
for all teams while
Sprint Planning Two
is usually done sepa-
rately for each team.
Do multi-team
Sprint Planning Two
in ashared space for
closely related
items.

15

RULE: Sprint Plan-
ning Oneis attended
by the Product
Owner and Teams or
Team representa-
tives. They together
tentatively select
the items that each
team will work on
for the next Sprint

Tip: Teams choose
their items

Guide: Multi-Team
PBR, p. 252

Tip: Don't pre-
decide division of
items to teams

16 deso

2. LeSS

Paolo walks in and says
“‘Hi!” He's the Product
Owner and also the lead
product manager.! Paolo
lays out 22 cards on a
table and says, “Here’s
the big themes: German
market, order manage-
ment, and some regula-
tory reports. I've laid
them out in my priority
order. | think everyone here understands why these are the priorities,
since we've been discussing this a lot in Product Backlog refinement.
But please ask again, if it’s not clear”

Mira and Mark walk over to the table (along with the other representa-
tives) and pick two cards for items related to German-market bonds.
Over the last two Sprints their team clarified these items in detail, in sin-
gle-team Product Backlog refinement (PBR) workshops.

And they pick two more items related to order management that both
Team Trade and Team Margin understand quite well. Both teams
worked together in multi-team PBR workshops on these items. Why?
The teams wanted to decide as late as possible the choice of team-to-
item, during some future Sprint Planning. This increases the group’s
agility—easily responding to change—and their broader whole-product
knowledge fosters self-organized coordination.

A minute later, Mary from Team Margin, on scanning another team’s
cards, asks their representatives, “Do you mind if we do that report? We
did something very similar last Sprint and | bet we can get it done
quickly. Could you swap for this German-market item?” They agree.

1. Inproduct companies, the product management or product marketing roles—in collab-
oration with teams—focus on vision and direction, encourage innovation, analyze
competitors, and discover customer and market needs and trends. In internal devel-
opment groups, this role might be filled by a lead user in an operational business
group. The Product Owner—the owner of the product—in Scrum and LeSS typically
comes from these roles, such as Paolo the lead product manager serving as Product
Owner. See the Product Owner chapter for more.

LeSS Framework

1eSS SPRINT PLANNING
@ |
SPRINT @ Q PRODUCT OWNER Q 3
PLANNING 1 TEAM 0R \ TEAM O0R é
REPRESENTATIVELS] REPRESENTATIVES) S
PRODYCT BACKLOG J

))
SELECTED ITEMS | SELECTED ITEMS |

SPRINT
PLANNING 2

>
LL8

54
J

o’ B Ve

SPRINT BACKLOG SPRINT BACKLOG SPRINT BACKLOG

After a few minutes, the teams finish choosing and swapping based on
their interests, strengths, and desire to group related items for focus.

Sam (the Scrum Master) says, “I notice that Team Margin has the top
four priority items. Could that become a problem?” A quick discussion
ensues in which the group realizes there's a chance that one of the high-
est-priority items for the product could get dropped if things don't go
smoothly for Team Margin. They decide to distribute a few of the high-
est-priority items across more teams (constrained by which teams
know which items), making it more likely that top items will get done.

The representatives have chosen a total of 18 cards, leaving four lowest
priority items on the table. Paolo looks over the unchosen item cards,
picks up two of them, and says, “These two are pretty important to me
this Sprint. Maybe | should have given them a higher priority to begin
with, but | didn’'t, and now I'd like to change my mind. Let’s find a way to
swap them with some items you've already chosen. And of course, if a
team gets lucky and finishes early, please pick up the unchosen items.”

NOLIYIIEYT)
1VNI4 4 NO113313S

WYL-UINW

e i e e e e

N¥Y1d %
N9I534 1VILNI

Guide: Five Scrum

Master Tools, p. 141

Tip: Spread high-
order items

17

RULE: Teams iden-
tify opportunities to
work together and
final questions are
clarified

Tip: Diverge to clar-
ify

RULE: Each Team
has its own Sprint
Backlog

RULE: Do multi-
teamSP2inashared
space for closely
related items.

Tip: Whole-group
design & shared
work session

Guide: No Software
Tools for Sprint
Backlog, p. 281

18 deso

2. LeSS

After that’s resolved, Paolo says, “Okay, let’s spend some time wrapping
up lingering questions. As you know, I've been focusing more on figuring
out prioritization, and most of you know these item details a lot better
than me, but let’s see what we can do together to clear up minor stuff”

In parallel, Mira, Mark, and the others think hard about final minor
points to clear up for their items, and write some questions on flip-chart
papers on the walls around the room. Paolo roams around to different
areas, discussing. Everyone mingles and contributes. After about 30
minutes, all the minor questions that could be answered have been.

The group forms a standing circle to wrap up. No one raises any coordi-
nation topics, so eventually Sam says, “I notice that Teams Trade and
Margin and NotDerivative have picked up strongly related order-man-
agement items”” Mira says, “Hey, let’s get Trade, Margin, and NotDeriva-
tive together for a multi-team Sprint Planning Two. We've got
opportunities to work together” That's agreed. The meeting -

Team and Multi-Team Sprint Planning Two
(Guide: Multi-Team Sprint Planning Two, p. 280)

After a break, two of the five teams hold their own single-team Sprint
Planning Two meetings to create their own Sprint Backlogs, designing
and planning their work for the Sprint.

In contrast, Teams Trade, Margin, and NotDerivative hold a multi-team
Sprint Planning Two together in a big room, since they are implementing
strongly related items—which were also previously clarified together in
multi-team PBR—and they foresee value in working closely.

They talk together in a 10-minute session to set the stage, identifying
shared work (common tasks) and design issues. Then they start the
clock for a timeboxed 30-minute design session, agreeing to visualize:
more sketching on the whiteboard, less talking without drawing. During
this time, more shared work is also discovered and written on the board.

Ding! After 30 minutes lots of unexplored details remain, but the teams
move on anyway. Each team heads to a different corner of the big room
where each starts its own focused Sprint Planning Two, talking more
about detailed design issues and creating their own Sprint Backlog with

LeSS Framework

cards. Further coordination is handled by an advanced variation of the
just talk technique in LeSS: just scream.

During the talking, the teams realize the need for an in-depth multi-
team Design Workshop. They agree to hold one later that day.

Multi-Team Design Workshop
(Guide: Multi-Team Design Workshop, p. 301)

After Sprint Planning and another break, Mira and Mark from Team
Trade, and a few people from Team Margin and Team NotDerivative
hold a timeboxed one-hour multi-team Design Workshop for a deeper
dive into a common and consistent design for their work. Around a large
whiteboard they sketch and talk together towards some clarity and
agreement on a design approach and common technical tasks. Fortu-
nately, the conclusions don't seriously impact their existing Sprint plans,
but they feel uncomfortable with their process, recognizing they could
have predicted the need to resolve these big design questions earlier.

Development Activities Supporting
Coordination and Continuous Delivery

After Sprint Planning, the teams dive into developing items, with an
emphasis on communicating in code. All the teams are integrating continu-
ously. The continuous integration of all code across all teams creates the
opportunity to cooperate by checking who else made changes in the
component being worked on. That’s useful, because the group uses inte-
gration as a way to inform and support their coordination.

For example, early during the second day of the Sprint, Mark, a devel-
oper on Team Trade, pulls the latest version locally and quickly checks
the latest changes related to the component they are working on now.
He discovers changes related to code added by Maximilian from Team
Margin. He knows that team is working on a strongly related item, so he
is not especially surprised. Since the code has communicated that now
there’s a need to coordinate and who he needs to talk with, he immedi-
ately visits Team Margin down the hall. They just talk about how to work
together to benefit from one another’s work.

Guide: Just Talk,
p. 287

Guide: Communi-
cate in Code, p. 292

Guide: Integrate
Continuously, p. 293

RULE: Prefer decen-
tralized and informal
coordination over
centralized coordi-
nation.

Guide: Just Talk,
p. 287

19

RULE: The perfec-
tion goal is to
improve the Defini-
tion of Done so that

it results in a shippa-

ble product each
Sprint (or even more
frequently).

RULE: An Overall
Retrospective is
held after the Team
Retrospectives to
discuss cross-team
and system-wide
issues, and to create

improvement exper-

iments. This is
attended by Prod-
uct Owner, Scrum
Masters, Team Rep-
resentatives, and
managers (if any).

Guide: Improve the
System, p. 320

20 demm

2. LeSS

For the item that Team Trade is developing, and in fact for every itemin
every team, they have written the automated acceptance tests before
starting to develop the solution code. Thus, in addition to integrating
the code continuously, they're also integrating the automated tests.
These acceptance tests are run frequently by team members, and so
when any of them fails, the teams are immediately signaled to coordi-
nate. The code is telling them, “Hey! There's a problem! You need to talk
and work it out”

Naturally, another major benefit of the group’s practice of integrating
continuously, automated testing, and stopping-and-fixing whenever the
build breaks, is that their product is more or less continuously ready to
deliver into production. There's no separate integration team or testing
team that would add delay, handoff, and complexity.

Overall Retrospective
(Guide: Overall Retrospective, p. 317)

On the second day of the Sprint, Sam and the other Scrum Masters, the
Product Owner Paolo, a site manager, and a representative from most
of the teams, all get together for a maximum 90-minutes Overall Retro-
spective related to the last Sprint.

nd on the last Friday, they held
both the Sprint Review and the team-level Retrospectives. After that
they didn't have the energy to hold an engaged Overall Retrospective at
the end of the day. So they've opted for an early next Sprint. Sam pri-
vately thinks this delay is not a great idea—he'd rather they started
Sprint Planning a little later after this meeting—but he wants the group
to discover that for themselves.

They focus on a system-wide issue and improvement: how to coordi-
nate, share information, and solve problems across the entire group
during the Sprint? Previously they have tried Scrum-of-Scrum meetings
and didn't find them very effective. Sam explains the technique of Open
Space, and they agree to try it this Sprint.

LeSS Framework

Activities for Coordination
(Coordination & Integration, p. 285)

The fourth day demonstrates a variety of coordination ideas in LeSS:

In LeSS, each Team holds a Daily Scrum as usual. To support coordina-
tion between Teams Trade and Margin, Mira goes as a scout to observe
Team Margin’s Daily Scrum and then returns and updates her team on
what she learned. And someone from Team Margin does the opposite.

As agreed in the Overall Retrospective, the group holds a 45-minute
Open Space meeting for coordination and learning, preceded by drinks
and snacks. Sam acts as facilitator to teach the group how to hold an
Open Space meeting. Everyone is welcome, but most teams decide to
send only a few representatives. Mira and Mark from Team Trade join
in. The group plans to try an Open Space once a week.

The Test community, with volunteers from most teams, gets together for
a half-hour to hear Mary’s proposal to try a new automated acceptance-
testing tool. They enthusiastically agree, and Mary volunteers her Team
Margin to do the actual experimental work next Sprint, since they are
really interested in learning this.

Mira is a member of the Design/Architecture community. There's no
design workshop needed this Sprint related to overall architecture, but
she wants to hold a half-day spike in the next Sprint for a new technol-
ogy. She posts her idea on the community collaboration tool, and sug-
gests the community do the spike together with mob programming to
increase their shared learning.

The build system seems to have a weird bug. Time to stop and fix! This
Sprint, Team Trade is responsible for it, and it's one of Mark’s secondary
specialties, so he volunteers to fix it and asks another team member to
pair up with himto help his colleague learn more about it.

Later, Mira and a few other team members visit the customer support
and training group, who work closely with hands-on users. Her team has
finished their first item and they want to get early feedback from people
closer to customers. One of the trainers is free and he plays with the
new feature. Team Trade leaves with a few ideas to make it better.

RULE: Cross-team
coordinationis
decided by the
teams.

Guide: Scouts,
p. 307

Guide: Open Space,
p. 305

Guide: Communi-
ties, p. 295

Tip: Have an archi-
tecture community

Tip: Stop and fix
when problems

Tip: Experts teach
others

RULE: Clarification
ideally between
Teams and users and
other stakeholders

Tip: Early feedback

21

Guide: Communi-
cate in Code, p. 292

Guide: Integrate
Continuously, p. 293

Tip: Rotate repre-
sentatives each
Sprint

Guide: Prioritiza-
tion over Clarifica-
tion,p. 178

Guide: Five Rela-
tionships, p. 180

Tip: PO engages the

teams in owning the
product

Guide: Splitting,
p. 260

Guide: Scaling Esti-
mation, p. 269

22 demm

2. LeSS

Later in the day Mark and the rest of Team Trade are doing tasks for
their second item. Mark has just completed a 10-minute TDD cycle and
has clean stable code after a micro-change. Once again—about every 10
minutes—he pushes the tiny change to the central shared repository (to
‘head of trunk”), to integrate continuously with his team and all others.
He glances over to their big visible red-green screen on the wall and
sees that the build system is passing all the tests for the entire group.

Overall Product Backlog Refinement
(Guide: Product Backlog Refinement Types, p. 249)

On the fifth day, Mark and Mira join an overall PBR workshop, with rep-
resentatives from each team, and Paolo, the Product Owner. Paolo
starts by sharing his current thinking on product direction and where to
go next in the short term and, most importantly, why. To help them
understand his reasoning, he reviews his prioritization model with the
group, that factors in profit impact, customer impact, business risk,
technical risk, cost of delay, and more.

Paolo asks for feedback and ideas from the group for upcoming direc-
tion, and the group discusses what items to refine next. Although he
knows that he'll make the final priority calls, Paclo works hard to engage
the teams in understanding his thinking, and also to learn from their
thinking. He wants the teams to also be involved in owning the product.

The group then splits a few big new items, doing lightweight clarifica-
tion (more will follow later), and planning poker estimation as a way to
learn more about the items—rather than to create estimates.

The representatives from three teams (including Trade and Margin)
decide to later do multi-team PBR together for some items to increase
their shared understanding and because they are strongly related. And
representatives from two other teams choose items to focus on sepa-
rately in team PBR sessions.

LeSS Framework

Multi-Team PBR and Team PBR
(Guide: Multi-Team PBR, p. 252)

On the sixth day, everyone in three of the teams gets together for a
multi-team PBR workshop in the big room.

Although their main business is creating and selling their trading solu-
tion, the company has a small group of bond traders that use it, with rel-
atively small positions that keep them engaged but without high risk.
This way the company has better insight into market trends as well as
some expert users that can easily talk with the development teams.

Tanya and Ted are the traders who told Paolo about a trend that led to
the items being refined in the multi-team PBR session. So they both join,
as experts to help the teams learn and clarify the new items.

The other two teams, in discussion with some other traders, hold sepa-
rate PBR workshops to complete clarification of some items already
under refinement and to start on some new ones. Also, one of the com-
pany’s three lawyers specializing in financial regulations and compliance
joins one of these teams to help them in clarification.

As a last step in the PBR meetings, people take photos of everything on
the walls and whiteboards. They add those to the wiki pages that are
used to record everything for each item. Plus they update and clean up
the text and tables in the wiki pages that were quickly added during dis-
cussions.

A Chat About Team-Level Backlogs and Product Owners

After the multi-team PBR workshop, Mike (who just joined the com-
pany) sees Sam by the coffee machine and walks over to talk. Mike says,
‘Hey Sam. I'm interested in your opinion on something. In the refine-
ment workshop we just finished, of course | noticed that we were work-
ing directly with some of the traders to clarify together. But isn't that
inefficient? In my last company,

RULE: All prioritiza-
tion goes through
the Product Owner,
but clarification is as
much as possible
directly betweenthe
Teams and cus-
tomer/users and
other stakeholders.

Guide: Tools for
Large Product Back-
logs, p. 210

Tip: Use a wiki for
item details

23

they are customers/users

24

2. LeSS

Sam says, “Interesting questions. Do you mind if | ask you a few ques-
tions to explore this?”

“Sure, go ahead”

“Let’s first consider one Product Backlog versus many team-level back-
logs. Suppose each team had its own backlog. How easy and effective is
it for one truly overall Product Owner to have an overview? And how
much knowledge will a team have of the requirements and designs of
items in a different team’s backlog?”

Mike replies, “| can answer that pretty clearly from my last company.
Not much”

Sam continues. “Now suppose there are eight teams and eight team
backlogs. What if, from the higher company or product perspective, for
some reason, the items in two of the eight team backlogs are actually by
far the most important or highest priority. Maybe there’s some change
in the market so that this situation comes up. So some questions for
you: Can the six teams working in the lower-priority backlogs easily
shift to start working on the high-priority items in the other two back-
logs? And is it likely that the group will even see this problem, given that
they are locked in to each team having their own backlog and local prior-
ities?”

Mike answers, “Our teams at my old place only worked on their own
team item backlog. They couldn’t shift to others. But why would they
want to? Isn’t that inefficient?”

Sam responds, “Well, from a company perspective, the teams are only
working ‘efficiently’ on low-priority stuff because of their narrow
knowledge created by each focusing in a different team backlog and
because the overall priority and overview isn’t visible. Let me ask you
some questions: Does that seem inflexible or flexible—agile? And does
that optimize people working on the highest-impact stuff from the com-
pany perspective?”

LeSS Framework

Mike pauses, “‘Oh! | think | get it. It's actually not being agile, even though
our group said they were doing agile. We weren't responsive to the high-
est-value changes overall. And my old team Product Owner said she
was prioritizing for highest value in our team backlog. But now | see that
my team was just busy efficiently working on what could be low-value
stuff when you look at it from a higher level”

Sam says, “Exactly. So that’s one of several reasons why we have one
Product Backlog here, and no team backlogs, even though there are
many teams. In short, it supports whole-product focus, system optimi-
zation, and agility. And of course it's simpler, and it's easy to see what’s
going across the group.”

‘Also,” Mike comments, “I noticed it was much harder in my prior com-
pany for all the teams to really work together at the same time, since we
were working on very different goals in asynchronous Sprints. Here it
feels like all the teams have more of a common focus and direction in
one Sprint together”

“Exactly!” Sam replies, then continues.

“Here’s another question: If there’'s only one Product Backlog and one
real Product Owner who prioritizes it, but each team still had its own
so-called Product Owner who per definition is not prioritizing a team
backlog—since there isn't one—then what do they do all day long?

Mike replies, “Well, in my last company it was the job of the team-level
Product Owner to talk to the users and write the stories for the team,
so they could focus on efficiently programming while the team Product
Owner worked on gathering and writing requirements”

Sam asks, “Mike, before you learned about Scrum terms such as ‘Prod-
uct Owner’, what would you have called middlemen in between the
developers and real customers—the ones collecting requirements and
then giving them to developers?”

‘I joined my last company before we adopted Scrum there!” Mike
answers, “And back in the day, there was a group of business analysts
who did that. After we adopted Scrum, we were asked to call them the
Product Owners.’

RULE: There is one
Product Owner and
one Product Backlog
for the complete
shippable product.

RULE: The Product
Owner shouldn’t
work alone on Prod-
uct Backlog refine-
ment; she is
supported by the
multiple Teams
working directly
with customers/
users and other
stakeholders.

RULE: All prioritiza-
tion goes through
the Product Owner,
but clarificationis as
much as possible
directly betweenthe
Teams and cus-
tomer/users and
other stakeholders.

25

RULE: There is one
product Sprint
Review; it is com-
mon for all teams.

26 demm

2. LeSS

“Today in your PBR workshop,” Sam asks, “Did you talk with the traders
who were there?”

“Let me think back” Mike replies, “Yeah, | was talking with Tanya about
her idea to analyze trading Russian corporate bonds. It seemed a little
confusing so | asked her, why? She explained it was because of concerns
around money laundering in offshore accounts. Now, she didn’t know
that we've been recently working on some other features that integrate
with new EU and USA regulatory databases to assess this. So | pro-
posed to her a different approach, which | think—and she agrees—will
better solve the problem.

“Now that | think about it he reflects, “that probably wouldn't have
happened in my last company, since we rarely talked directly with users”

More Development

Minute by minute and day by day the teams develop code, integrating
continuously combined with full test automation. They stop and fix
when the build breaks, working towards their perfection goal of having
a done shippable product they can continuously deliver to customers.
Therefore, when the Sprint is nearly over and the teams are preparing
to join the Sprint Review, there’s no late mad rush of effort to integrate
and test a big batch of code—it’s been integrated and tested all along.

Sprint Review
(Review & Retrospective, p. 313)

Finally it's the last day and time for an all-together Sprint Review. Who's
there? Paolo (the Product Owner, lead product manager), all the inter-
nal bond traders, a few trainers and customer service representatives, a
few people from Sales, and four users from external clients who pay
lower annual rates in exchange for participating regularly in these
reviews. Also, there’s all the team members.

LeSS Framework

PROPUCT OWNER TEAM USERS
& STAKEHOLDERS

|
o 198 8 42 %ﬁ
\

TEAM Q gg
RETROSPECTIVE

TEAM

(3% 02 8
RETROSPECTIVE

MANAGER SCRUMMASTER PROPUCT OWNER SCRUMMASTER TEAM REP.

Because there are many items to explore, the group starts with a one-
hour bazaar—something like a science fair—with many devices set up in
the room, each available for exploring different sets of items. Some
team members stay at fixed areas to collect feedback while everyone
else uses and discusses the new features.

Guide: Review
Bazaar, p. 316

27

Tip: Discuss direc-
tion for upcoming
Sprints

RULE: Each Team
has its own Sprint
Retrospective.

Guide:Belgian Tripel
Karmeliet

28 demm

2. LeSS

After an hour, the group comes together to discuss the questions and
feedback, in a session led by Paolo. After that, they discuss future direc-
tion. Paolo shares what'’s going on in the market and with competitors,
and his thoughts on where to go next, and asks for advice.

Team Retrospectives

After a break, Team Trade (and all other teams) hold separate team-
level Sprint Retrospectives. They decide that holding a multi-team
Design Workshop with Team Margin after Sprint Planning (rather than
earlier) was far from ideal in this case, because major issues were left
unexplored until the last minute—issues which could have seriously
blocked or complicated development. So for the next Sprint they decide
that

worth discussing with other teams. And if so,
hold a multi-team Design Workshop as soon as possible.

The End

Sprint done! Sam invites Team Trade tojoin Mira and him at the Belgian-
beer pub down the street—Mira’s favorite—to celebrate her birthday.

Summary

Some key points from the story:

> it emphasized flow of people and teams through a Sprint in LeSS
> it connected story elements to specific LeSS guides and rules
> for areader who knows Scrum, the events should be familiar
> the story shows whole-product focus, even with many teams
> the activities emphasized team-based learning and coordination

> develop items by integrating continuously so that communicating
in code supports decentralized coordination and just talking, in
addition to continuous delivery

> teams clarify directly with users and customers, to reduce handoff
and increase understanding, empathy, and ownership

LeSS Framework

« LeSS Story: Flow of Items «

This story focuses more on the flow of items (features) through
part of a Sprint, primarily during refinement and development.

Portia wraps up her meeting with the government regulator and heads
to the airport, and home. She’s another product manager; she helps
Paolo, and specializes in regulatory and audit trends.

Later, Portia meets with
Paolo. Writing on cards,
she summarizes the new
rules that are going to
impact their product, and
what clients she thinks
are going to want certain
features first. Paolo
points to the five cards
L and asks, “So this covers
& all the work, as far as you
Yy know?” Portia smiles and

. says, “This is regulatory.

It's never finished or clear”

SO THIS COVERS
ALL THE WORK RIGHT?

THIS 1S REGULATORY,
PAOLO. 'S NEVER
FINISHED OR CLEAR .

Paolo asks, “Can you put these in the Product Backlog for me, unor-
dered at the bottom for now?”

“Sure”

A week later Paolo tells Portia, “Soon, | want to start delivering some
parts of the big regulatory requirement for bond derivatives. In the next
Sprint’s Product Backlog refinement workshops, I'm going to ask for
some teams to focus on that. You know the most about it, so please be at
the overall PBR and at whatever team refinement workshops where

Guide: Product
Owner Helpers,
p.179

Guide: Tools for

Large Product Back-

logs, p. 210

Tip: Spreadsheet
and wiki for large
Product Backlog

29

Guide: Product
Backlog Refinement
Types, p. 249

Guide: Splitting,
p. 260

Guide: Scaling Esti-
mation, p. 269

30 demm

2. LeSS

they want you. Also, can you set up a wiki page with links to the new reg-
ulatory docs, to share with the teams?”

“Already done,” answers Portia.
Overall PBR

Paolo kicks off a quick overall PBR workshop, “We've got lots of work
around new regulations. Soon we need to deliver related items because
of a legal deadline end of fiscal year. We'll know better after some split-
ting and estimation, but | wouldn’t be surprised if it ultimately involves
three or more of the teams for implementation, and lots of time”

The group splits the new giant item into only a few large parts, to learn
major elements. More splitting will happen later in a single-team or
multi-team PBR session. Portia heads to the whiteboard; on the left side
she writes “regulations for bond derivatives” Then in conversation with
the group, they sketch a tree diagram with four arms representing a
splitting into four major sub-items. But they don't go any deeper—
they're avoiding over-analysis.

Next, Paolo asks, “So Portia, of these four big ones, which one first?”

She points to the second card. “Over-the-counter exotic bond deriva-
tives.

Paolo says, “We need to start delivering some of that as soon as possi-
ble. It's moving way up the Product Backlog. So I'd like one team to take
a bite into this, next Sprint. Who's interested?”

Team Trade volunteers.

Finally, team members from three other teams decide to hold a multi-
team PBR workshop for related items.

LeSS Framework

Team PBR: Biting In

The next day Team Trade holds a team PBR workshop with Portia. They
have only one of the four giant items to focus on: New regulations for
over-the-counter (OTC) exotic bond derivatives. Sam (their Scrum Mas-
ter) is also there. Portia says, “This is a gigantic complex item, in an area
that frankly nobody is really clear about. It's going to take us a long time
to split this up, really understand it, and specify it well”

Sam asks, ‘Do we really need to understand all of it? And will all that
analysis teach us more, or could it actually delay our learning?”

He reviews with them the idea of Take a Bite: to just split off one tiny
fragment, really understand that, and implement it quickly. Sam con-
cludes,

With Portia, the team splits off one tiny bite of a thin customer-centric
end-to-end item.

From now on they will focus on that tiny bite, clarifying and implement-
ing it. Only after implementation and feedback will they return much
later to more splitting and refinement. Using specification by example
Portia and Team Trade spend the rest of the day chewing on their bite.

Multi-Team PBR: Rotation Refinement

One outcome of overall PBR was the decision to take a bite with Team
Trade. Another was the decision for three teams to hold a multi-team
PBR workshop for related items, to increase learning and the agility of
multiple teams knowing and thinking about the same items.

In addition to everyone from the three teams, the
about a

dozen new items.

To start,
The mixed groups start clarifying different items in separate

areas in the room, each with a whiteboard, big wall space, laptop, and
projector. Tanya is with one group, Ted another, and Travis, the third.

Guide: Take a Bite,
p. 202

Tip: Specification by
example in “Clarify-
ing” on page 254

Guide: Multi-Site
PBR, p. 254

31

Figure 2.1 multi-
team PBR

Guide: Scaling Esti-
mation, p. 269

Guide: Product
Owner Helpers,
p. 179

Guide: Dealing with
Parents, p. 204

32 demm

2. LeSS

_: After 30 minutes, a timer goes ding!

One group walks over to the other’s area, and vice versa, but Tanya, Ted,
and Travis don't move. The timer is restarted, the traders explain the
current results to the incoming groups, and they continue clarifying.

left with hanging questions that will have to be explored later—new
items are introduced at a work area. Some of the bigger items are split
into two or three new smaller ones.

Updating the Product Backlog and Product Owner

The day after the PBR workshops, Portia and a few team members

> update the Product Backlog with the new split items derived from
the original ones, and delete the originals

LeSS Huge Framework

> add links to the new wiki pages of item details, created in the PBR
workshops

> record new estimates, and items ready for implementation

Later, Portia and those team members meet with Paolo to review the
Product Backlog changes and to answer his questions.

The End

Some key points from the story:

> Take a Bite on a giant item to learn from delivery of something
small and to avoid premature and excessive analysis.

> Do multi-team PBR for items, for shared knowledge across teams,
which increases organizational agility, broadens whole-product
knowledge, and fosters self-organized coordination.

> Strive for whole-product focus, even with many teams.

Next—The next section shifts to the LeSS Huge framework, used for
large groups of many teams.

LESS HUGE FRAMEWORK

« Requirement Areas »

With 1000 or even just 100 people on one product, divide-and-conquer
seems unavoidable because of the complexity of so many requirements
and people. Traditional large-scale development divides these ways:

> single-function groups (analysis group, test group, ...)

> architectural-component groups (Ul-layer group, server-side
group, data-access component group, ...)

This organizational design yields slow inflexible development with (1)
high levels of waste (inventory, work-in-progress, handoff, information
scatter, ...), (2) long-delayed ROI, (3) complex planning and coordination,

The Magic Number
Eight,p. 12

34 demm

2. LeSS

(4) more overhead management, and (5) weak feedback and learning.
And it is organized inward around single-skills, architecture, and man-
agement, rather than outward around customer value.

But in the LeSS Huge framework when above about eight teams, divi-
sion is around major areas of customer concerns called Requirement
Areas. This reflects the customer-centric LeSS principle.

Size—A Requirement Area is big, usually with between four and eight
teams, not one or two. The following Area Feature Teams section on p. 35
explains why.

Dynamic—Requirement Areas are dynamic. Over time an area will
change inimportance, and then it grows or shrinks with teams joining or
departing—most likely to or from another existing area.

Example—For example, in a Securities product (to trade stocks), these
could be some major areas of customer interest—Requirement Areas:
> trade processing (from pricing to capture to settlement)
> asset servicing (e.g. handling a stock split, dividends)
> new market onboarding (e.g. Nigeria)

Conceptually in the one Product Backlog, a Requirement Area attribute
is added, and each item is classified into one and only one area:

B market onboarding
C trade processing

D asset servicing

F market onboarding

LeSS Huge Framework

Then people can focus on one Area Product Backlog (conceptually, a
view onto one Product Backlog), such as the market onboarding area:

Item Requirement Area

B market onboarding

F market onboarding

Common Sprint—Does each Requirement Area work separately in its
own Sprint, with delayed integration until a far-future date? No.

« Area Product Owners «

In LeSS Huge one new role is introduced. Each Requirement Area has
an Area Product Owner who specializes in that area and focuses on its
Area Product Backlog.

Large product groups usually have several supporting product manag-
ers specializing in different customer areas, and some of these are likely
to serve as the Area Product Owners,|

« Area Feature Teams «

Area feature teams work within one Requirement Area (e.g. asset ser-
vicing), with one Area Product Owner focusing on the items in one Area
Product Backlog. From a team'’s perspective, working in the area is like

@%@@ https://less.works For Gene Gendel only, id:gene-gendel

35

36

2. LeSS

working in the smaller LeSS framework—they interact with their Area
Product Owner as though she were the Product Owner, and so on.

The team members come to know the customer domain of that area
well. And fortunately, the items of one Requirement Area tend to cover
a semi-predictable subset of the entire code base, thereby reducing the
scope of what they have to learn well within a vast product.

Key point about size: Many feature teams work in a Requirement Area.

A Requirement Area normally has four to eight teams.
An implication is that a Requirement Areais big.

The Magic Number Four

First, why does a Requirement Area have a suggested upper limit of
eight teams? See The Magic Number Eight, p. 12.

What about the lower limit of four teams? Why not one or two teams?
Naturally, four isn't a magic number, but it strikes a balance so that the
product group is not composed of many tiny Requirement Areas.

What's the problem with many tiny areas? They reduce visibility into
overall product-level priorities, increase local optimizations, increase
coordination complexity, require more positions, and create teams that
are too narrowly specialized and lack the flexibility (agility) to take on
the emerging highest-value items from a company perspective. Further-
more, in a tiny area the Area Product Owner is increasingly likely to act
as a business analyst between the users and one or two teams.

Are there any IR O the lower limit of four? Yes:

> An early transitional situation when the group is incrementally
a new areathat is fully expected to ultimately have four or
more teams. Then, start small and simple with one team.

> When re-balancing teams from an area with a -demand
to one with anincreasing demand causes an area to go from four

LeSS Huge Framework

to three teams. Ultimately, merge two reduced small areas back
into anew larger area.

Example Requirement Areas and Teams

In summary, a Securities product could have

> one Product Owner and three Area Product Owners, all together
forming the Product Owner Team

> six feature teams in the trade processing area
> four feature teams in the market onboarding area

> four feature teams in the asset servicing area

« LeSS Huge Framework Summary e

POTENTIALLY
SHIPPABLE
FROPUCT
INEREMENT

)
tooRmINATION ||

\\

v ||
BACKLOG
HeRS 'KSIIWM MASTER REFINEMENT
& FEATURE TEAM

@33 https://less.works For Gene Gendel only, id:gene-gendel 37

38

2. LeSS

Each Requirement Area works as a (smaller framework) LeSS imple-
mentation, each working in parallel in one overall Sprint. We sometimes
summarize a Sprint in LeSS Huge as a stack of LeSS.

From the viewpoint of ateam in one area,
LeSS Huge looks like (smaller) LeSS regarding events.

As with LeSS, there are rules and optional guides for LeSS Huge; those
are introduced in the following stories and fleshed out in later chapters.

Roles—Same as LeSS, plus two or more Area Product Owners, and four
to eight Teams in each Requirement Area. The one Product Owner
(who focuses on overall product optimization) and the several Area
Product Owners form the Product Owner Team.

Artifacts—Same as LeSS, plus a Requirement Area attribute in the one
Product Backlog and thus an Area Product Backlog view for each area.

Events—There is still only one common Sprint for the product; it
includes all the teams and ends in a common potentially shippable prod-
uct increment.

« LeSS Huge Stories «

Learning LeSS Huge—Readers who prefer exposition can comfortably
skip ahead to following chapters, bypassing these stories.

Simple stories—These are intentionally plain and simple stories just to
introduce basics in LeSS Huge.

Two topics—Following are two stories with distinct topics:

1. Creating and growing a new Requirement Area to deal with a new
gigantic requirement.

2. Working with multi-site teams. (This happens in the smaller LeSS
framework too, but is especially common in LeSS Huge.)

but Sprint reviews are separate, per Area each

LeSS Huge Framework

Priti welcomes Portia to her first day in her new job.1 As a mid-level
Operations manager in the Securities division of the large trading com-
pany as well as Product Owner for their internal Securities system, Priti
is also responsible for finding and retaining talent for her Product
Owner Team of Area Product Owners. And she thinks Portiais a fantas-
tic find, as her expertise is exactly what is required for dealing with
some new huge requirements.

During the recent job interview—when Portia was still a product man-
ager specializing in regulatory issues at a company that made a system
for trading bonds—Priti had laid out the situation. “Portia, after the last
crash, the regulators are coming down hard and they require us to be
compliant with Dodd-Frank. Right now, we don’t know what it exactly
means or how it will impact our system. You've got incredible knowl-
edge of this space, and a great professional network with the regula-
tors. | would love it if you would join our group and help us figure out
how to deal with this’

A Big Surprise

A few days later... Priti welcomes Portia, Peter, and Susan into her
office. Peter is Area Product Owner for market onboarding, and Susan
is a Scrum Master from the trade processing area.

Priti says, “As you know, Dodd-Frank is coming, and it's huge. What you
don’t know is that this morning the regulators called us and they want
us to take action now. I'd been working under the assumption we could
start next year. So we're going to have to adapt, big time.

‘I don’t think anyone is clear what it means in detail—even the regula-
tors. And we don’t know how it will impact our system and how much
work this is going to take, other than, a lot! But now Portia’s joined us
and she has a better understanding of this than anyone, although she’s
totally new to our systems. So, how can we help her start tackling this
mountain of work?”

1. Reminder: Naming uses an alliteration for role recall. Pritiis a Product Owner, Portia
an Area Product Owner, Susan a Scrum Master, Mario a team member.

Guide: LeSS Huge
Product Owner,
p.193

39

40

2. LeSS

Susan asks, “You guys understand the Dyslexic Zombies, right?”

Peter and Priti nod. Everyone knows about them—and it isn't just their
name. The Dyslexic Zombiest have probably the broadest experience of
all the teams. They've been around for years and they were a true pain
in the ass when they adopted LeSS. The team contained two former
members of their now-abandoned architecture group and a couple of
people who had been working on the system for over fifteen years.
Those people’s resistance to the LeSS adoption was legendary as they
were afraid they'd lose their “system perspective” To their surprise, the
opposite happened! Because of their deep knowledge they continu-
ously get tough items to develop. And they regularly participate as
expert-teachers in current-architecture-learning workshops with new-
comers, and Mario—one of the former PowerPoint architects—is now
coordinator for the architecture community. When fed enough beer,
he'll admit that working closer with code and tests has increased his real
understanding of the system.

Susan continues, “If any team can quickly
help Portia get a better understanding of
the size and impact of Dodd-Frank, it'll be
the Zombies. And they led the work on
Sarbanes-Oxley a few years ago. Tomor-
row is their PBR session. They are just
about wrapped up on a new feature. Why
don’t we re-direct the meeting to include
them in a discussion on Dodd-Frank, and
soon after, ask them to focus full-time on
it?”

Refining with Zombies

Next day at the refinement meeting with the Zombies, Portia explains
the situation, “You've probably all heard about the Dodd-Frank legisla-
tion. But here’s the surprise: We've just been told by the regulators that
they want us to take action ‘now’ and demonstrate significant compli-
ance by the end of the year. Otherwise they might restrict our trading”

1. Yes, that was really their name, in Lisbon!

LeSS Huge Framework

The Zombies are visibly surprised. They had heard rumors but didn’t
expect such a rush!

Mario says, “OK Portia, give us a quick summary of what this means.
And how is it different from Sarbanes-Oxley?”

Portia picks up a pen and
starts sketching on a white-
board. After about 45 min-
utes, sheis finished with the
overview and the Zombies
looked a little stunned.

“End of the year, they said?”
says Mario. “If the whole
group started today, it
wouldn't get finished. This
is huge!”

He takes a pen and at the whiteboard starts a rough sketch of their sys-
tem, talking with the other Zombies about the impact it might have.

He says, “Portia, let’s also use this as a chance to help you understand
the system better. Ask away.’

Portia says, “Can you hold on for a second? Let me start a video record-
ing to help me remember this’

Michelle, a veteran in the team, says, “Wed better start on some real
development soon and learn more as we go because otherwise we'll end
up analyzing forever. I've seen this story before!

Susan, their Scrum Master, says, “Reminds me... Tom DeMarco once
said that the reason for every failed project is that it started too late’
Everyone laughs. She continues, “So here'’s a suggestion: take a bite.”

Guide: Take a Bite,
p. 202

41

Guide: New Area for
Giant Requirement,
p.223

Guide: Leading
Team, p. 308

42 demm

2. LeSS

Creating a New Requirement Area

The next day, Portia, Priti, and rest of the Product Owner Team meet.
Portia shares a summary of the scope as she understands it now.

Priti says, “This is even bigger than | expected, and we need to show
some tangible progress to the regulators within a few months, and
major progress before fiscal year end—seven months from now. To
state the obvious, they're now authorized to require more from us, and
with the power to shut us down. As you know, just last month the CEO
made it crystal clear that new regulatory requests take priority over any
other concern. It's my experience that our goodwill and flexibility with
the regulators goes up if we can give them something early, and be
transparent and responsive. So that’s what we're going to do.”

Priti continues, “It seems to me that we'll need a new area for this big
surprise. And of course that’s probably going to impact some of our
existing high-priority goals, since we'll have to shift some teams. Let’s
prepare for a deeper discussion of overall prioritization impact in a cou-
ple of days. But for now, I'd like your input about spinning up a new area’

After a short discussion, it’s clear that everyone recognizes the impor-
tance of creating a new area.

Priti then says, “Portia, | know you are new to us, but do you think you
would be able to handle the Area Product Owner responsibility for
this?”

Portia nods.

Priti continues, “Peter, do you think the Zombies could start work on
this? And we'll need them to learn more Dodd-Frank and figure out the
impact on our system before we can add more teams to this”

Peter says, “| don't think we've got any choice”

Priti says, “OK Portia, so currently we've got a few items in Peter’s Area

Backlog, the one huge item | think you called “remainder of Dodd-
Frank” and the tiny item which the Zombies and you split off of it. Please

LeSS Huge Framework

ask Peter to show you how to set up a new area in the Product Backlog
and move the items over to it

Priti continues addressing the group, “The next Sprint starts in three
days. Let’'s move the Zombies into your area and get started on this
monster. Probably in a couple of Sprints we'll be ready to—and need
to—grow your area by moving in another team. Folks, please think
about two major concerns: First, preparing for a serious prioritization
impact meeting in a few days. And second, what other teams will be
good candidates for the new area’

Sprint Planning in the New Requirement Area

Each Requirement Area holds its own Sprint Planning meetings, all
more or less in parallel. In Portia’s new area, she starts her Sprint Plan-
ning by introducing two unfamiliar faces to the Zombies.

She says, “Gillian and Zak have been in contact with the regulators regu-
larly and will help us flesh this thing out. They've agreed to help us now
in Planning, during our PBR sessions, and as much as they can spare
daily during upcoming Sprints.

She continues, “Here’s my tentative plan of attack for the next two
Sprints. First, together we need to learn more about Dodd-Frank, and
also split it into some major and manageable pieces so we can start to
clear the fog and get a better sense of priorities.

“Second, we implement the smaller bite we've taken, starting this Sprint.
That'll give us better information about the real work and the impact on
our product. And we'll have some concrete visible progress.

“Third, we prepare for more teams to join our area. What do you think
of this approach? Other suggestions?”

During the short discussion, Mario says to his team, “Let me give a bit
more context, because | represented our team in the recent Product
Owner Team meeting with all the Area Product Owners and Priti. To
start with, it's just us to start. We're going to take the lead on early

Guide: Leading
Team, p. 308

43

Guide: Take a Bite,
p. 202

Guide: Handling
Gigantic Require-
ments, p. 224

44 =

2. LeSS

implementation, and getting the big picture of the item, and under-
standing the overall impact on our architecture”

Michelle interrupts, “Like a tiger team working on a new product?”

“Yes, like that,” says Mario. “Think of Dodd-Frank support as a new prod-
uct that needs to be continuously integrated into the rest of the prod-
uct. But we're in a hurry and it’s a ton of work, so in a few Sprints one
more team will join us and shortly after, probably two more teams. We
keep developing too, but we'll be the | EIIEEE. Which means we'll
need to bring the other teams up to speed and make sure we keep the
overall product in mind”

Michelle says, “It's starting to sound to me like we're going to become
the architecture and project management team!”

Mario laughs, “No. I'm done with that. We're still a normal feature team,
but besides development we'll focus on mentoring and bringing the new
teams up to speed as fast as possible. But let’s be clear: team coordina-
tion and management is still the responsibility of each team.”

The First Sprint in the New Requirement Area

Their first Sprint is an unusual balance of clarification versus develop-
ment, but nevertheless quite useful in this extreme situation. They
spend almost half the Sprint in clarification with Portia, Gillian, and Zak.
That'’s because even for this extremely small bite, trying to understand
what is wanted in the obscure realm of new government regulations—
with nodirect access to the politicians and policy writers—required a lot
of investigation, reading, discussion, and communicating with outsiders.
They expect that in future Sprints, the amount of time needed for clarifi-
cation will soon drop down to a more common 10% or 15% of their
Sprint.

And so they also only spend about half the Sprint developing one small
item. But the discussion and the learning from coding pays off. Slowly
but surely they start to split Dodd-Frank apart—at least the parts that
any of them can understand.

LeSS Huge Framework

While implementing the small item they had bitten off first, they spend
much of the time together at whiteboards to discuss the overall design
implications on the system. The team moves frequently back and forth
between the code and the wall.

Sprint Review in the New Requirement Area

In Portia’s area, during their Review, she, Gillian, and Zak explore the
one “‘done” item that the Zombies have managed to complete and inte-
grate into the overall product. They had originally forecast two items,
but Portia is impressed that they got even one done, given how fast this
new work was thrown at them.

The Second Sprint

In the second Sprint they're able to make slightly better progress on
items, though they once again spend a lot of time clarifying together
with Portia, Gillian, and Zak.

In the middle of the Sprint they hold a multi-team PBR session with the
second team that is planned to soon join the area, teaching them about
Dodd-Frank. They hold a current-architecture learning workshop to
introduce the team to the major design elements already in place.

The Zombies know how big the work is and look forward to more help.

Product Owner Team Meeting

A few Sprints later... It's time once more for the per-Sprint Product
Owner Team meeting. They use it to align and coordinate between the
different Area Product Owners, and for Priti to give guidance.

The Area Product Owners each share in turn their situation and upcom-
ing goals. When it's her turn, Portia says, “To none of our surprise, the
progress is little and the surprises are big. But the fog is clearing and the

Guide: Current-
Architecture Work-
shop, p. 303

Guide: Product
Owner Team Meet-
ing, p. 283

45

Shared PSPI but different events.

2. LeSS

teams and | are getting our heads around the work. Gillian and Zak have
been tremendous help!

Pablo, the Area Product Owner of asset servicing, comments on some
close item relationships he now sees between their areas. Portia agrees
to meet with Pablo and some team representatives later.

Priti asks, “Portia, about our upcoming Sprint. What are your goals?”

Adding a Third Team

Two Sprints later... At the Product Owner Team coordination meeting,
Priti says, “As you know, Portia’s area still has only two teams. | know
that Pablo would like to keep his six teams in asset servicing, but Dodd-
Frank is just too important to me this year. So we're going to move one
team from Pablo’s area into Portia’s. Pablo, please ask for a volunteer
team from your group and let me and Portia know.”

The End

Some key points from the story in LeSS Huge:

> The Product Owner is responsible for finding Area Product Own-
ers and developing their talents.

> The Product Owner is responsible for deciding to start, grow, or
wind down Requirement Areas.

> Requirement Areas are large, normally requiring four to eight
teams, but during initial startup they may be smaller, especially if
initiated with one team using a Take a Bite approach.

> A_to tackle a gigantic item until they

understand the domain and development, and then they coach
more incoming teams to help with the vast work.

« Multi-Site Teams: Terms & Tips e

Next is a LeSS Huge story involving multi-site teams. But first, some
clarifying definitions, because the common term distributed teams con-
fusingly means several things. The clarifying terms are as follows:

LeSS Huge Framework

> dispersed team—One team of (e.g. seven) people spread out in
different locations; either different rooms, buildings, or cities

> co-located team—One team working literally at the same table

> multi-site teams—One co-located team working at one site, and
another co-located team working at another site

Second, an observation and guidance:

> Adispersed teamis rarely a real team:; it is much more likely a
loosely connected groups of individuals. The communication and
coordination frictions are higher, and they seldom jell as a team.

> When your product group is 50 or 500 people, dispersed teams
aren't necessary. Each team of seven-ish people can easily be co-
located. However, some teams may be in different sites, so that
the product group has multi-site teams. Dispersed teams are usu-
ally the result of bad organizational decisions and ignorance about
the cost of not having co-located teams.

« LeSS Huge Story: Multi-Site Teams «

Portia is the Area Product Owner for a new Requirement Area in a
Securities trading system. The new area started with just one team for
focus and simplicity. A few Sprints later Portia’s area adds a third team.
Her first two teams are based in London with her. But her third new
team, HouseDraculesti, is based in Cluj Romania at a major development
site for the company.

Why not add a third team from the London site? That would have
avoided the many aggravations and efficiency penalties that can come
from multi-site development within one area—costs potentially so high
that adding a team can effectively result in deleting a team.

But on the positive side in this case, Cluj is only two time zones from
London, and everyone there speaks English well. And they are all strong
developers with Computer Science degrees, in a city that values long-
term and hands-on engineering mastery. Also, this is a dedicated inter-
nal development site for the company, so these are experienced internal
teams that have in-depth knowledge of the product and domain.

Rule: Each team is
(1) self-managing,
(2) cross-functional,
(3) co-located, and
(4) long-lived.

47

Guide: Sprint Plan-
ning One, p. 276

48 demm

2. LeSS

And bottom line, Priti (the Product Owner) didn't want any of the other
London teams to shift from their current areas.

Priti knows that multi-site teams are a new situation for Portia, and so
at their next meeting, she says, “Please ask your Scrum Master to talk
with Sita, and also ask Sita to coach some of your events. She’s a Scrum
Master in asset servicing, and she’s observed their multi-site situation
for afew years. She knows the importance of Scrum Masters co-located
with their teams, and she’s helped facilitate many multi-site meetings”

Priti continued, “Also, we've had a super profitable year, so I'm providing
funding for you and the Zombies team—at least those that can travel—
to spend a Sprint in Cluj as soon as possible. Work closely with them, all
in one room. The Cluj team could come here to London, but you want to
send a strong signal that they are important, at their site. Try to avoid
making them feel that London is more important than Cluj. Oh—and
you'll want to regularly visit every few months”

Multi-Site Sprint Planning Part One

A few Sprints later, Portia walks into the room. There's a computer pro-
jector attached to a laptop, displaying via video a room in Cluj. The
whole team in Cluj are sitting and waiting. Sita suggested it would
improve learning and engagement if the entire Cluj team participated in
multi-site meetings for the first few months of their addition to the area.

All the team representatives have tablets or laptops with them.

Portia begins. “Welcome and let’s get started. My offer of items this
Sprint are highlighted in the shared spreadsheet. Can you all see it? |
think you all understand why these are the themes and priorities, since
we've been discussing this in PBR and it reflects your input and mine.
But please ask again if you'd like clarification. Other than that, you're
invited to enter your team names beside the items you want”

That done, the group enters a Q&A phase to wrap up lingering ques-
tions about the items. The London representatives tape up some flip-
chart papers and start writing questions. The Cluj team members enter
their questions in separate sheets of a shared spreadsheet. Portia

LeSS Huge Framework

spends some time at the different paper flip charts, discussing answers
and sketching on the paper. And she spends some time at the spread-
sheet, typing in answers for the Cluj team, while also talking with them
face-to-face via the video session.

After about 30 minutes the separate questions have been resolved, and
Portia asks everyone to come back together. She says, “Any issues or
questions that you want to discuss together, before we wrap up?”

Multi-Site Overall PBR

People enter the workshop room in London. Two projectors are set up.
One shows a video session of the workshop room in Cluj. The other dis-
plays a browser on Portia’s computer.

Portia says, “Let’s get started. | want to focus on splitting some items.
I've invited Zak to join us because he knows quite a lot about this”

Using a mind-mapping, browser-based graphics tool, Zak starts to cre-
ate some branches, while discussing with the group.

Afterwards, they use a
shared spreadsheet to
discuss and write a single
example for each of the
new split items, so that
the people at both sites
gain a lightweight but
concrete understanding
of the details. Later, the

The End

Some key points from the multi-site story in LeSS Huge:

Guide: Product

Backlog Refinement

Types, p. 249

Guide: Multi-Site
PBR, p. 254

49

50

2. LeSS

> Multi-site teams frequently create both obvious and subtle fric-
tions and costs that are surprisingly large in their negative impact.

> Quialities that reduce the friction of another site include similar
time zone, internal dedicated site (not outsourced), developers
that are fluent in the same spoken language, a location and culture
that highly values long-term hands-on developer excellence.

> A Scrum Master must be co-located with their teams.

> Each site must feel like a peer, not a second-class citizen.
> Sites must be visited regularly and cross-pollinated.

> |In meetings, strive for face-to-face with video tools.

> The use of shared-document tools make it easy for everyone to
modify artifacts together and at the same time.

ONWARDS

Rather than asking, “How can we do agile at scale in our complex and
awkward organization?”, ask a different and deeper question, “How can
we simplify the organization, and be agile rather than do agile?” And since
truly scaling Scrum starts with changing the organization rather than
changing Scrum, the next major section focuses on understanding and
adopting a simpler customer-focused LeSS organization.

This is followed by major sections on a more customer-focused product
and Sprint in a simpler LeSS organization.

LeSS Structure

Contents

LeSS Adoption 54

+ Guide: Three Adoption Principles 55

+ Guide: Getting Started 59

+ Guide: Culture Follows Structure 64

« Guide: Job Safety but not Role Safety 66

« Guide: Organizational Perfection Vision 66
+ Guide: Continuous Improvement 69

« Guide: Growing Your Adoption 71

LeSS Huge 72

« Guide: Evolutionary Incremental Adoption 73
+ Guide: One Requirement Area at a Time 74
+ Guide: Parallel Organizations 74

managers thinking about improvements to help

Qaéﬁi https://less.works For Gene Gendel only, id:gene-gendel

ADOPTION

]fyou do not change direction, youmay end up where you are heading.

—Lao Tze

ONE-TEAM SCRUM

Scrum is simple. Adopting Scrum isn't. Why not?

Scrum isn't a process. It doesn’t magically solve your problems and cre-
ate “hyperproductive” teams. It's a framework that creates short feed-
back loops that dramatically increase transparency. This acts as a mirror
showing the team how good they are at making a product. It also
exposes problems in the team and organization. This visibility underpins
empirical process control, which, along with inspect-adapt cycles, puts
the team, Product Owner, and organization in a continuous improve-
ment loop.

That’s the good news. The bad news is that this sucks. In reality, trans-
parency is discomforting or even threatening, which makes adoption
hard.

One-team Scrum doesn’t say much about Scrum adoption other than to
start “by the book.” This isn't because the Scrum zealots want to force
their favorite rules on the world but is a recognition that improvement
starts with following and understanding the standard. Or in lean think-
ing, “Where there is no standard, there can be no kaizen.” Experiencing
Scrum by the book creates understanding of how Scrum principles and
practices relate—a systems-thinking perspective. That’s critical for suc-
ceeding with Scrum.

An experienced Scrum Master and a team with a deep understanding of
Scrum will dramatically improve the likelihood you will achieve a suc-
cessful adoption.

53

54

3. Adoption

LESS ADOPTION

LeSS adoption involves big organizations and many minds with deeply
rooted assumptions about how organizations should work. Successful
adoption requires challenging these assumptions and simplifying the orga-
nizational structure, with all the explosive politics and “loss of face” that
working across a big group entails. Adoption needs everyone to
improve towards a shared goal.

When scaling, principles related to adoption include:

Continuous improvement towards perfection—Naturally, a group
adopting LeSS brings to the table their assumptions and habits about
adoption. Which are those? Create a change vision and kick off many
change projects. When the original goal is apparently achieved then,

1. “the change is done” and
2. the organization settles into a new status quo, until
3. the next change effort surfaces, and then

4. undoes the previous change.

This classic approach is like the sequential and “big batch” approach of
software development, where change is an exception strictly managed...
by many change-control boards.

LeSS Adoption

« LeSS Rules «

For the product group, establish the complete LeSS structure
“at the start”; this is vital for a LeSS adoption.

For the larger organization beyond the product group, adopt
LeSS evolutionary using Go and See to create an organization
where experimentation and improvement is the norm.

These principles are crucial to an organizational LeSS adoption:

Deep and Narrow over Broad and Shallow

Prefer adopting LeSS in one product group? really well over applying
LeSS in many groups poorly.

Poor LeSS adoptions harm. Lack of deep understanding destroys trans-
parency and the feedback cycles that are keys to empirical process con-
trol and continuous improvement. We've even seen “LeSS” abused as a
marvelous micro-management tool. Then, it’s really hard to change
again after a micro-management LeSS adoption is the established norm.
It's tough to re-learn what you already know.

Therefore, focus LeSS adoption effort on one product group, give them
all the support they need, and ensure that they work really well. This
minimizes risk and if you face big problems, it triggers a focused learning
opportunity. And when you succeed it creates a positive “word on the
floor” that’s vital nourishment for further adoption.

1. Incase of LeSS Huge, one Requirement Area.

55

for more on man-
agement in LeSS,
see the Management
chapter

56 demm

3. Adoption

Top-down and Bottom-up

We are often asked whether adoption is best top-down or bottom-up.
That's afalse dichotomy. Either one is likely to fail. Do both.

Purely top-down—The manager-driven, “thou shalt do LeSS™adoption
causes resistance and sets up the organization for failure. Ordering
teams to manage themselves is a contradiction. LeSS adoption requires
deep understanding that doesn’'t come from directive but from discus-
sion. Only by understanding, choice, and a sense of personal safety will
people take the additional responsibility to reflect and improve. Lack of
these is exacerbated by an us-them relationship between managers
and workers. In that setting, forcing LeSS into the organization encour-
ages victimized behavior and further degrades relations. People will
claim, “We have no choice, our manager says we must do LeSS!” And
secretly and perhaps unconsciously, they rest in that victimization as a
comfortable—or at least familiar—position.

Purely bottom-up—These LeSS adoptions aren’t sustainable. In the
beginning, they create a delightful burst of energy from people who
want to do the Right Thing. This leads to an open mind, accelerated
learning, and deeper understanding. Really wonderful! Then these
energized people energetically hit the organizational walls. Bam! With-
out top-level support to change structures and policies, the enthusiasts
lose energy and become frustrated by obstacles and rigidity. Many
eventually quit or become embittered by hopes squashed. It makes us
feel sad too.

Top-down and Bottom-up—A successful LeSS adoption needs both the
energy of people doing the Right Thing and the support of people with
organizational power. The managers’ frame of mind must be support,
not control. They ensure the proper supporting structure is in place for
the grass-roots energy to flourish and expand.

We commonly hear the wish for managers’ support. Be careful what
you wish for!

> No management support often leads to victimized behavior. “We
can't do anything without my manager’s support”

LeSS Adoption

> Having management support can lead to an even worse situation.
“We must do this LeSS because our manager says so.” This mind-
less obedience undermines any LeSS adoption.

What kind of management support do you need?

Management support from those who have the organizational author-
ity to make structural changes in your group—usually the head of your
product group. This support must be... supportive.

Authentic support starts with self-education. All managers in the prod-
uct group need to take time to educate themselves about LeSS. This
includes several days in an introductory training and several books to
read. In addition to education, managers also need to provide clear
communication and action about (1) the intention to adopt LeSS, (2) the
promise to make the necessary structural changes, and (3) providing
education and coaching.

What kind of management support do you [ilNEEE?

The support of high-level managers who oversee multiple products
beyond your single product group often backfires. How come? Igno-
rance of real problems—they aren’t involved enough with the actual
development. Their support often includes making “optimization” and
“harmonization” decisions that seem to make sense from their high-
level position but rarely lead to real benefits at gemba—the place of real
value work. And then what happens? Dealing with these well-intended
harmful decisions saps energy from dealing with the real problems.

Neither do you need management support from managers who do not
yet have a deep understanding of LeSS and its impact. We are fre-
quently requested to summarize a 3-day in-depth training in a 1-hour
presentation because those managers “are too busy” for a 3-day course.
So far, we've not been able to squeeze 3-day’s worth of understanding
into a 1-hour presentation. Our bad.

57

58

3. Adoption

Use Volunteering

- How are you going to answer these

questions, and many more?

Use volunteers! True volunteering is a pow-
erful way of engaging people’s minds and
hearts. It's underused, likely because manag-
ers feel they'll lose control. But for the volun-
teering teams it feels empowering.

Volunteering starts with education. Suppose you simply ask for volun-
teers for a promiscuous pairing experiment. You probably won't get many
takers, and those that do respond are, at best, confused. But if you first
explain that promiscuous pairing is a pair-programming technique that
uses frequent pair swapping to increase learning, you'll see more and
better volunteers and a better outcome. So first, provide enough educa-
tion and discussion so people understand what they are volunteering
for.

Here are some|

Initial-product volunteering—\Which will be the first product group to
adopt LeSS, with all the implied organizational design changes? Ask for a
volunteer group by canvassing senior R&D and product managers.

Initial-teams volunteering—Suppose the initial product group to
adopt LeSS is already well-established and has about 50 people. There
may be people outside the group that are really interested in joining.
And people inside that want to leave! So before “flipping the entire
group,” use volunteering once again: Invite the entire company to join
(explaining both what and why). And invite people inside the group to
leave. Thus, the initial people will be open for learning and will take
responsibility. They are likely to make the initial teams succeed because
they aren’t just a head being counted anymore, their heart is in it.

Teams-formation volunteering—How to form teams in LeSS? Support
“self-designing teams.” This is done in a facilitated workshop where all
the future team members join. The facilitator kicks off the workshop by

@3 levels of volunteering
-which product group?
-who stays, who leaves, who joins?
-who is on which team?

LeSS Adoption

describing the goal of the product and the workshop. _
R - c i to any constraints

agreed previously. (The facilitator already knows a good template, but it
is best if the group owns the idea.) Example template:

The details of “cross-functional” and “cross-component” are discussed
and listed during the definition of the template. Next, the space is open
for a short (e.g.) timeboxed period for people to form new
teams by volunteering, . Then they review
the nascent teams against the template. If it is not good enough, the
group continues with more rounds; it usually takes two to four.?

Guide: Getting Started

The three adoption principles imply starting adoption in one product
group. How can you increase the likelihood of its success?

0. educate everyone

1. define “product”

2. define “done”

3. have appropriately structured teams

4. only the Product Owner provides work for the teams
5. keep project managers away from the teams

0. Educate Everyone

The best LeSS adoptions we have seen had everyone participating in
several days of Scrum and LeSS training. This was followed up with
team, organizational, and technical coaching.

2. See onthe web: How to Form Teams in Large-Scale Scrum? A Story of Self-Designing
Teams. (also at http://bit.ly/1WSJhKo).

59

http://bit.ly/1WSJhKo

60

3. Adoption

This step isn’t for us to sell more Certified LeSS Practitioner courses,
although we wouldn't mind. Any excellent education will do; the main
purpose is that without education you won't get a lot of volunteers
when using the adoption principle of use volunteering.

Teach why—Besides educating on the
what's and how's of adopting LeSS, it's
even more important to help everyone
understand why. There is too much
blind adherence to processes without
understanding why.

A great trainer and a great coach will
have this focus on why and will make a
world of difference in your LeSS adoption. How to choose them? Use
these guidelines:

> Prefer hands-on experience.
Ensure that your trainer/coach has hands-on experience in LeSS
from bothinside (as a team member) and outside (as coach). Avoid
training providers who don't care about who teaches, and avoid
trainers with only theoretical knowledge. They aren't useful.

> Evaluate a person, not a company.
You are looking for a unique person. Great coaching is personal.
Find your coach and form a long-term relationship. Avoid giant
consulting companies and training companies.

> Require technical depth and understanding.
LeSS requires technical excellence. Technology, team, and organiza-
tional decisions are strongly related and your coach needs to have
this broad and deep perspective. Avoid people with no or limited
technical expertise. These are often ex-PMI-project managers.

> Expect long-term engagement.
LeSS adoptions require patience and take time. Find a coach that is
committed to see your adoption through—for years. Avoid “drive-
by” coaches that come, comment, criticize, and go.

> Look for quality over cost.
Hiring a cheap but bad trainer/coach (ignoring the previous fac-

LeSS Adoption

tors) is truly penny-wise and pound-foolish. Flawed and failed
LeSS adoptions are certainly possible; a bad coach doesn't help.

> Don't delegate the selection.
The decision is too important to leave to people who aren’t going
to be directly involved themselves. Avoid delegating the selection
to a separate department, such as a PMO, Purchasing, or HR
group—they aren’t involved enough to see the important factors.

> De-emphasize certification.
Most certification of people and courses is almost meaningless. It
probably doesn’t hurt, but certification is not a reliable guide. The
above points are infinitely more important.

> Evaluate multiple people.
The best groups evaluated multiple people before making a deci-
sion and investment in a long-term relationship.

1. Define “Product”

Your product definition determines the scope of your adoption, the con-
tent of the Product Backlog, and who makes a suitable Product Owner.
Broader product definitions are advantageous, but your definition has
to be practical enough to start.

Creating a product definition involves

> expanding your product definition via expanding questions such as,
“what does our customer think our product is?”

> restraining your product definition via restraining questions such as,
“what is practical in our current organizational setup?”

> exploring improvements for expanding the product definition

The Product chapter has more details on why broader is better and how
to create the product definition.

3. Thisincludes the Certified LeSS Practitioner course. We do recommend the course,
but not for the certification but for the course.

see Product chapter

61

see Definition of
Done chapter

62 demm

3. Adoption

2. Define “Done:

A better and stronger Definition of Done (DoD or “done”) requires a
broader skill set within the teams. For example, if performance testing is
included in the DoD, then the teams need to acquire that skill. It can be
acquired by learning, but often it is acquired by moving a person with
performance-testing skill from his specialized performance testing
group into the team. On the other hand, if performance testing is
excluded from the DoD, then the separate performance-testing group
will stay and operate the same way as before, until the DoD is expanded.
Therefore...

A better and stronger Definition of Done results in
more organizational change (eliminating groups,
roles, positions, ...) than a poorer and weaker one.

And a weaker DoD causes additional risk and delay! We explore all
these topics further in the Definition of Done chapter.

The effect on the amount of organizational change makes the DoD a critical
management tool for LeSS adoption. Managers need to make a trade-off
between a strong DoD, leading to more organizational change and less
delay and risk, and a weak DoD, leading to less organizational change
and increased risk and delay. The key question is, “How much change can
my organization handle at this time?”

3. Have Appropriately Structured Teams

Each Team has a shared responsibility for achieving their common goal.
To support their success, ensure that each Team is appropriately struc-
tured. Requirements for the initial teams:

> dedicated—each person is a member of one and only one team

> stable—the members of the team aren’t changed frequently

> long-lived—the team isn’t a temporary project team but stays
together for years

DSLCC=
Dedicated
Stable
Long-Lived
Cross-functional
Co-located

LeSS Adoption

> cross-functional—the team has the needed functional skills to
achieve done functionality

> co-located—the team is in one location, often literally at the same
big table, so that trust grows through face-to-face communication
and learning grows through teaching one another

The Organizing Around Customer Value chapter has more details on each
of these team attributes.

This new structure implies that people leave their functional depart-
ments to permanently join new cross-functional teams. The functional
departments should be eliminated.

Why not have people maintain a reporting relationship to a functional
department manager? Because that causes conflicting loyalties that
destroy the team’s shared responsibility and cohesion. Right now you
might be thinking “They’re exaggerating. It can work in our company.’
Not gonna happen. We've seen many try and it doesn’'t work. Just don't
do it. Instead,

4. Only the Product Owner Provides Work

You know this feeling?... A loooong day at work, busy, busy, busy, what
the heck got done? It's the Context-Switching Vampire, sucking the life
out of you. Unproductive, unfocused, and extremely demotivating.

The initial teams have a tough job: focusing on their shared goals for the
product but also resolving a mountain of obstacles in their development
environment. Obstacles (poor test-automation, tools, policies, etc.) are
revealed by working in a cross-functional team in a short cycle to get
‘done”.

These trail-blazers are laying the foundation that future teams will build
on, so their need to focus is doubly important. How do they lose it? Well-
intended, perfectly reasonable interruptions and requests for extra work
from their line manager, Sales, the CEO, HR, etc. Don't let that happen!

Prevent this by ensuring that the Product Owner is the only person who
provides work for the teams. Not only does this support focus, it

see Organizing
Around Customer
Value chapter

see Product Owner
chapter

63

see Management
chapter

Larman’s Laws p. 64

see Product Backlog
Refinement chapter

64 demm

3. Adoption

reduces stress caused from trying to manage competing voices all say-
ing “Me first! Me first!” Prioritization is the Product Owner’s problem,
not the team’s.

5. Keep Project Managers Away from the Teams

The role of project manager within the product group ceases to exist in
experienced LeSS organizations. The role is not needed anymore as the
project management responsibilities are shared between Product
Owner and Teams.

Most LeSS adoptions can immediately eliminate the project manager
role. In some rare adoptions the role is temporarily still needed. That's
usually when there’s a weak, imperfect Definition of Done (hence,
Undone work) or cross-product-boundary coordination. In those cases,
organizations do not necessarily immediately forgo their project man-
agers.

So sometimes project managers will still be around for a while. What's
the problem? It’s likely they would regularly interrupt people and intro-
duce conflicting priorities. But it is not allowed for project managers to
interrupt teams, coordinate between teams, or give them work.

In essence, this recommendation is the same as “only Product Owner
provides work” and is also valid for other management roles. We've dis-
covered that it is important to make it explicit.

And... renaming all your project managers to Scrum Masters won't do.

Next steps?

This Getting Started guide gets you started by putting the right struc-
ture in place. The next step is to get your Product Backlog in shape. Per-
haps you'll use an initial Product Backlog Refinement event; see the
Product Backlog Refinement chapter for a guide on that.

Guide: Culture Follows Structure

Culture follows structure is actually the fourth of “Larman’s Laws of Orga-
nizational Behavior.” People in organizations are skilled at showing sup-

LeSS Adoption

port to the flavor-of-the-month-improvement without doing anything.
We have observed this repeatedly. Why does that happen?

Craig has a long development career, which started with programming
in APL in 1979 and evolved to helping large product groups adopt mod-
ern management practices. Over beer, he might mention retirement. He
was recently disturbed when he discovered no laws were named after
him. He decided to create “Larman’s Laws of Organizational Behavior”
as a reminder for this dysfunctional self-serving behavior that plagues
many organizations.

Larman'’s Laws of Organizational Behavior:

1. Organizations are implicitly optimized to avoid changing the sta-
tus quo middle- and first-level manager and single-specialist posi-
tions & power structures.

2. As a corollary to (1), any change initiative will be reduced to rede-
fining or overloading the new terminology to mean basically the
same as status quo.

3. As a corollary to (1), any change initiative will be derided as “pur-
ist,” “theoretical,” “revolutionary,” and “needing pragmatic customi-
zation for local concerns—which deflects from addressing

weaknesses and manager/specialist status quo.

4. Culture follows structure.

Anticipating your thought, it's also true that structure follows culture
(especially in startups). But the phrase is meant to be poetically pithy,
not literal.

What do we mean? As long as the structural elements—groups, roles,
hierarchy, and policies, or more broadly the organizational system/
design—aren’t changed, the behavior and mindset arent going to
change. The systems-thinking thought-leader John Seddon explains
“culture follows structure” this way:

Attempting to change an organization’s culture is a folly, it always fails.
People’s behavior (the culture) is a product of the system; when you change
the system peoples’ behavior changes.

65

see Management
chapter for more on
management
changes

66 demm

3. Adoption

We have observed many organizations that attempt to adopt LeSS but
refuse to change the organizational structure, roles, and policies
accordingly. All of them have failed in achieving the full benefits of using
LeSS.

Part of the problem is personal safety. Of course people don't want to
lose a job because of a structural change. That’s one reason why LeSS
adoption emphasizes the lean-thinking principle of job safety but not
role safety.

Guide: Job Safety but not Role Safety

Who is going to strive for continuous improvement when the likely out-
come is losing ajob? Nobody. In a LeSS adoption, it is vitally important to
establish the policy that nobody is going to lose employment. At least
not due to position or role eliminations from the structural changes
caused by the LeSS adoption. Communicate this clearly and repeatedly.

Workers from dissolved functional groups join LeSS teams. Ex-manag-
ers of functional groups may do likewise, as they are usually skilled at
the hands-on value-creating work. The organization must actively help
everyone find their new role within the new structure.

Guide: Organizational Perfection Vision

Organizations are wonderfully complex systems in which it's impossible
to control everything or to know everything.

Everyone makes small decisions and the organizational behavior
emerges from these. People make decisions based on their experiences,
goals, principles, and values. When decisions are misaligned, then well-
intended people scurry in different directions, causing an organiza-
tional deadlock or gridlock. When these decisions are aligned, energy
gets unleashed and things start moving and improving.

This is especially true related to improvements. We've seen a vast
amount of well-intended “improvements” that only caused additional

LeSS Adoption

bureaucracy and increased suffering. When is an improvement an
improvement? Obviously, it has to be a global systems improvement
rather than a local optimization. But how do you know? Two questions
help separate most real systems improvements from local optimiza-
tions:

> Will the improvement bring us closer to our organizational perfec-
tion vision?

> Will the improvement be an improvement at the gemba—the real
place of work?

The gemba is covered in the Go See guide in the Management chapter.
This guide focuses on the organizational perfection vision. First, what is
a perfection vision?

The classic lean perfection vision is Toyota’s just-in-time system—every
time a customer buys one car then exactly one car is produced just in time.
This perfection vision lead to the ideal of ‘one-piece flow” in which the
production system is set up to handle small batches of work, ideally
batches of size one. This ideal will probably never be achieved, but it has
guided Toyota's continuous improvement of their production system
for decades.

Here is the perfection vision for LeSS that we use:

Create organizations able to deliver or change
direction at any time without additional cost.

A perfection vision is different from a vision. The goal of a vision is to
achieve it, whereas the goal of a perfection vision is to channel improve-
ments. WWhen you achieve a vision, you celebrate, but when you achieve
a perfection vision, you are sad as it just became useless.

The successful product groups that we've worked with have an organiza-
tional perfection vision—an unattainable goal about how their product
group is and works. How is it used? People discuss and evaluate deci-
sions based on whether it brings them closer to the perfection vision.

see Management
chapter

67

3. Adoption

Discussing is important work, but words float away. So people also want
to write a vision to help get everyone on the same page, literally. For
example, here is an early version of principles established by a client
adopting LeSS Huge in a product group:

1. The perfection goal is to have a releasable product all the
time. Release stabilization periods need to be reduced and
eventually eliminated.

2. Co-located, self-managing, cross-functional, Scrum teams
are the basic organizational building block. Responsibility
and accountability are on team level.

3. The majority of the teams are organized as customer-centric
feature teams.

4. Product management steers the development through the
Product Owner role. Release commitments are not forced
on teams.

5. The line organization is cross-functional. The functional-spe-
cialized line organizations are gradually integrated in the
cross-functional line organization.

6. Special coordination roles (such as project managers) are
avoided and teams are responsible for coordination.

7. The main responsibility of management is improvement—
improve team’s learning, efficiency, and quality. The content
of the work always comes from the Product Owner.

8. There is no branching in development. And product variation
is not to be reflected in the version control system.

. All people must learn test automation skills.

10. Adoption is gradual and evolutionary. These principles are
considered in every decision.

Of course thisis just an example, but feel free to use it as a starting point
for your discussion about your perfection vision.

LeSS Adoption

Managers—together with the whole product group—have to establish
this organizational perfection vision that guide decision making. This is
usually done by informal discussions and workshops, leading to some
guiding perfection vision and principles. There are two common ways of
imagining this perfection vision: (1) imagine you arrive at work, how
would a perfect organization be and work, or (2) envision the perfect
product and then imagine the organization creating it.

A LeSS adoption ends only when you've achieved perfection and world
domination. Without that, there are always things to improve.

The job of managers is to build an environment in which teams continu-
ously deliver and continuously improve. Preferably the teams them-
selves do most improvements, but managers and Scrum Masters are
often involved for organizational and environmental improvements.

Tips:

> Focus!
Not doing any improvements because everyone is too busy think-
ing up new improvement ideas is the greatest failure to continu-
ous improvement. “Let’s do yet another assessment of our current
state” “Hey, they are the same, | wonder why?” Or the popular
alternative, “Let’s adopt NooDLeS because LeSS isn't working
here” (without ever truly trying out LeSS).
The way out of this? Stop assessing, start doing! Always keep in
mind the top two improvements and focus your energy on them.
When the improvements aren’'t done, the teams will quickly lose
interest and stop thinking about new improvements.

> Use retrospectives to create improvements.
The prime place for discovering new improvements is the team
Retrospectives and the Overall Retrospective.

> Focus on true improvements.
Not all of the improvements are real improvements. Some are
local optimizations—improvements that do not improve the whole
system but only one perspective. Two common local optimizations
are (1) functional local optimizations, and (2) unchallenged-

see Management
chapter

see Review & Retro-
spective chapter

69

3. Adoption

assumption-based local optimizations. Functional local optimiza-
tions are improvements from one functional-specialization per-
spective that are often harmful from the system-output
perspective. For example, “It's an impediment to test each Sprint.
We should start testing when the system is finished so that the
testing can be done more efficiently.” Unchallenged-assumption-
based local optimizations are improvements based on assump-
tions about “how things work” that are probably false. The big sys-
tems improvements often require that assumptions be
challenged; otherwise, the local improvements have little impact.
Example of such assumptions, “We have to finish programming
before we can test” and “It will be more efficient if everyone has
only one skill”

Improvement suggestions that might be local optimizations are
valuable as opportunities for learning and expanding perspectives.
When these are suggested, analyze them with the originating per-
son or team. This discussion broadens the perspectives and estab-
lishes a basis for further improvements.

> Avoid quality, process, transformation, or improvement peo-
ple.
Big organizations usually have the quality and process department
staffed with Six Sigma black belts who are responsible for running
improvement projects. Or even better, some have a transforma-
tion department. Avoid that! Continuous improvement must be
done everywhere by everyone, all the time. Having one depart-
ment responsible for improvement is the best way to kill it and kill
engagement of teams. Instead, use existing direct organizational
structures to support adoption and improvements.

> Avoid improvement teams; use normal teams.
Related to the previous tip. Organizations commonly create
improvement teams and task them with implementing improve-
ment items.* We have seen this approach fail repeatedly. A better
alternative is to have the normal teams work on improvement
items. This can be together with regular items or focused only on
improvement items for a few Sprints. A great advantage is that a

4. This organizational behavior reflects the Taylorist influences discussed in the Manag-
ers chapter.

LeSS Adoption

regular team will probably be a future user of their own improve-
ment and so they will implement it to be more usable and useful.

> Avoid improvement projects; use the Product Backlog.
Also, organizations often assume that all improvements must be
done using “projects.” These are separately managed and are
either staffed by improvement teams (see previous point) or even
worse, by removing people from their normal teams. The latter
causes organizational hustling for “resources” and a lack of team
focus, and will break the team’s shared responsibility. Rather,
involve regular teams, and offer improvement items to them via
the Product Backlog. This way, all the work is visible on the Prod-
uct Backlog and continuous improvement becomes the normal
system.

The most frequent cause of the collapse of continuous improvement is
failure to actually improve. This causes frustration in the teams and dis-
trust towards managers. When this happens, managers need to stop
and reflect and ask themselves, “What kind of service do we provide?”

Guide: Growing Your Adoption

First LeSS product adoption done! What's next? Do we have perfection
and world domination yet? If not, do this:

> Expand to a few more products, with the same support.
Obviously you'll expand, but to how many products? Maybe two
next rather than one, but not many. The key constraint is the peo-
ple, resources, and focus you can bring to maintain and even
improve the support for each product. A common problem we see
is that the laser-sharp focus given to the first adoption in terms of
support becomes unfocused and lackadaisical when expanding.
Don't let it happen. Each new product needs the same supporting
environment and focus.

> Strengthen the Definition of Done.
The Definition of Done is unlikely to be perfect. Strengthen the
Definition of Done by increasing the teams’ cross-functionality;
uncovering new hurdles to resolve.

> Expand product definition.
The initial product definition is often restrained by organizational

see Product Backlog
chapter

see Definition of
Done chapter

see Product chapter

71

72

3. Adoption

structure. Try to broaden that to gain better prioritization, more
customer focus, and a simpler organization.

> Improve teams’ output, and share how.
The results from the initial teams are unlikely to be fantastic. They
discovered limitations in their environment and development
practices. They had a lot to learn and to improve, and many limita-
tions still remain. Resolving these should improve their output. Do
share these solutions across the teams and with other products.

> Improve support.
How effective was the support for the initial teams? Get that feed-
back from the teams and use it to improve the support (teaching,
coaching, organizational changes, etc.), so that it is available for
future products adopting LeSS.

> Channel bottom-up energy.
Positive results from the initial teams in the first product can
cause teams in other groups to adopt LeSS without the approval of
high-level managers. Rather than killing this off, let it be and sup-
port it to exploit this bottom-up energy.

LESS HUGE

When scaling further, an additional issue is this:

Too big for all-at-once structural changes—in a huge product group it
is harder to make huge structural changes. It isn't just the number of
people and minds that makes it hard. It's because

> there’s a horde of customers who all received promises about new
features by certain dates and that makes large changes risky;

> organizational politics cause such changes to be career-limiting; and

> it’s hard to provide enough education and coaching on that scale.

Thus, a LeSS Huge adoption is done in a more evolutionary way.

LeSS Huge

« LeSS HUGE Rules «

Guide: Evolutionary Incremental Adoption

approaches to LeSS Huge adoptions:

> Gradual incremental adoption over the whole product group.
All the teams gradually improve their scope and capability at the
same pace. This could be by expanding the product-level Defini-
tion of Done and using tools such as feature team adoption maps.

> Focused deeper adoption at a part of the product group.
Improvements focus to make a few teams really good, and then
spread one team at the time. This might be by expanding a few
teams’ Definition of Done, letting them work on specific improve-
ment items, and by focused coaching.

Both approaches work. The impatient gradual incremental adoption has
the advantage of hopefully having faster product-wide results, though it
often doesn’t happen because all teams need to solve the same prob-
lems at the same time—causing new problems. The focused deeper
adoption seems slower but avoids pain in all teams. The drawback, of
course, is that the already existing pain won't be resolved as they aren’t
(yet) the focus of the adoption.

The LeSS adoption principles suggest a preference to the focused
deeper adoption, which is covered here. The gradual incremental adop-
tion is covered in the Organizing by Customer Value chapter.

Guide: Feature-
Team Adoption
Maps, p. 920

73

74

3. Adoption

Guide: One Requirement Area at a Time

The easiest incremental step to start a LeSS Huge adoption is to adopt
LeSS within one Requirement Area. This focuses the LeSS adoption first
in the area where the benefits are high and the risks low—or at least the
latter.

This implies creating only one new Requirement Area at a time.

Now here’s where it gets tricky: This new (and perhaps only) Require-
ment Area is still part of the product and therefore there will be depen-
dencies between the Requirement Area and the vast “old organization”
The hard part is to find the balance between supporting this young
Requirement Area by disrupting the “old organization” and still con-
forming to the organizational interfaces.

Pick your battles. One disruption that must happen in the “old organiza-
tion” is to abandon individual/team code ownership; otherwise, the young
Requirement Area doesn’t stand a chance.

Guide: Parallel Organizations

The previous guide is an instance of the more general technique for cre-
ating structural change without changing anything: build a parallel orga-
nization. This means you keep your existing organization as it is and
gradually build the new organization next to it, starting with a few fea-
ture teams or one Requirement Area. This works well with feature
teams since they have essentially no dependencies. Once the first
teams are working well, you gradually shift teams from the traditional
organization. When there is enough momentum, you merge the old
organization into the new one.

Some caveats:

> A parallel organization is not a pilot, and one consequence is that

I+ line of organizational reporting must be separate from the tra-
ditional organization.

LeSS Huge

> Don't let the parallel organization branch the codebase as that will
lead to merge-hell. They are separate organizations but work on
the same product and the same codebase.

> Communicate very clearly that eventually everyone will be in the
new organization. That's an important message so that people in
the old organization do not focus onrivalry.

75

Contents

Organize by Customer Value in
LeSS 78

« Guide: Build Team-Based Organizations 79

« Guide: Understanding Feature Teams 81

« Guide: Feature-Team Adoption Maps 90

« Guide: Prefer Specialization in Customer
Domain 95

« Guide: LeSS Organizational Structure 97

« Guide: Organizing Multi-Site in LeSS 100

LeSS Huge 101

« Guide: Requirement Areas 102

+ Guide: Dynamics of Requirement Areas 105
« Guide: Transitioning to Feature Teams 106

+ Guide: LeSS Huge Organization 109

Teams organized around customer value

ORGANIZE BY
CUSTOMER VALUE

1 want it to be transparent, but 1 don’t want the background to show through.
—~Anonymous customer

ONE-TEAM SCRUM

A central theme in Scrum is a relentless focus on delivering customer
value. The order of the work is based on delivering value to customers
rather than on the convenience to development. For the developers
who want to build the framework first, this focus on validating technical
decisions by delivering value early is a difficult change.

The three Scrum roles provide a balance between a relentless focus on
customer value and caring about technical excellence.

> The Product Owner is responsible for return on investment. She
makes difficult business decisions. What is in? What is out? When
to release? How much to invest? She has a customer-centric view
on what the product is.

> The Teamis a cross-functional, self-managing team that consists of
professional product developers who share the responsibility for
delivering working and maintainable done functionality every
Sprint. They decide how to build the product and thus the effort.

> The Scrum Master is responsible for getting Scrum to work and be
beneficial for the organization. Her focus is on growing a well-
functioning productive Team, a responsible Product Owner, and a
continuously improving organization.

77

78

4. Organize by Customer Value

ORGANIZE BY CUSTOMER VALUE IN LESS

When scaling, these principles relate to organizing:

Customer-centric—In a small one-team product, organizing by cus-
tomer value is trivial. The more teams, the more they become like cogs
in the large development machine. Like Charlie Chaplinin Modern Times,
his job is to turn screws but he has no idea how the customer will use
the product... or who that customer actually is. How to scale and keep a
customer focus?

Large-Scale Scrum is Scrum—\We once visited a team that wanted to
adopt Scrum. We taught them LeSS; and when they exclaimed, “So you
want us to do what we used to do when there was only one team?” we
replied, “Yeah” When the company grew rapidly, it brought in “profes-
sional management” and layers of projects, programs, portfolios, and
other governance. That additional structure had damaged the core of
the company—building great products. How can we keep scaled Scrum as
simple as Scrum?

Systems thinking and whole-product focus—Traditional organiza-
tions contain a lot of local optimizations such as a relentless pursuit to
optimize individual output. How can we structure our organization with
more focus on the whole product and relentless delivery of customer
value?

Organize by Customer Value in LeSS

« LeSS Rules «

Structure the organization by using real teams as the basic
organizational building block.

Each team is (1) self-managing, (2) cross-functional, (3) co-
located, and (4) long-lived.

The majority of the teams are customer-focused feature
teams.

Guide: Build Team-Based Organizations

Yoshiro Nakamatsu is the inventor of the floppy disk. His other inven-
tions include a pillow that prevents you from falling asleep, a cigarette
that activates your brain, and a condom with an embedded magnet. He
claims to hold the world record of the number of inventions with over
4000 patents. He is an example of the modern-day “crazy scientist”...
but most inventions—and most software development—is done by
teams, not individuals.

Products are created by teams, yet traditional (Western) organizations
are built around individual accountability. You are held accountable by
your manager for your individual performance. This gets reflected in
practices such as assigning work to individuals, individual performance
reviews, and individual rewarding. These practices promote individual
crazy scientists but not well-functioning teams that take a shared respon-
sibility for achieving their goal.

Team-based—LeSS—organization has the following structure:

> Dedicated teams
Each team member is dedicated for 100% of his time to one and
only one Team. This might feel inflexible, but team members
require dedication if you want them (1) to take a shared responsi-

79

4. Organize by Customer Value

bility for the Team’s goal, and (2) to take ownership of how a team
works—own their processes.

> Cross-functional teams
Each team contains or acquires all functional skills needed to pro-
duce a shippable product. Traditional functional specialized teams
might feel the most “efficient” from that function’s perspective,
but most effort spend and problems in product development are
between the functions, and thus teams must be cross-functional if
you want them to focus on the whole working product.

> Co-located teams
Each team is co-located in the same room.! This might sound
unreasonable. Wouldn't you, in today’s globalized world, want to
use the best skilled individuals in the place where they are? No.
We want the best teams that take a shared responsibility for the
outcome of the team and learn from each other. Shared responsi-
bility requires trust and humans are more likely to build trust by
close cooperation and face-to-face communication. Co-location
also promotes faster feedback and team learning—the essence of
continuous improvement.

> Long-lived teams
A Team stays together forever. This might feel idealistic, but Teams
need to have stability if you want them to care about how they
work as a Team. Anyone who has ever been on a real long-lived
team knows that teams get better as the team members get to
know each other and learn how to do and improve work together.

This advantageous team-based organizational structure causes inter-
esting dynamics. It is important to recognize these, as sometimes they
feel counterintuitive and can cause organizational anxiety. These are
described below.

Learning humans over “one-skill resources”—Organizations fre-
quently look at people as “human resources” which puts people in the
same category as money, machines, and memos. Resources have one
skill. A machine does what it does and when you need it to do something

1. This does not mean all teams must be at the same site, although that is definitively
preferred. Multi-site development is unfortunately common in LeSS organizations.

Organize by Customer Value in LeSS

else... then you will need a new machine. People are born fairly skill-less.
But we have an extraordinary meta-skill: to acquire new skills. This skill
is the most essential for organizations that aim to be flexible. Having
dedicated, long-lived teams automatically causes people to practice
those learning skills.

Teams over individuals as unit of “resourcing”—Resourcing, the pro-
cess for deciding which people ought to work on a product, is usually
based on individual people. When following the team-based structure,
the question will no longer be “Which individuals do we need?” but will
become “Which teams do we need?”

Give work to creative teams over creating teams around work—Tra-
ditional organizations form a project group with exactly the right set of
skills and people for each new feature request. But organizations with
long-lived teams don't re-organize but instead split the work and give it
to an existing team that can learn and adapt.

Stable organizations over dynamic matrixed structures—Constantly
changing organizational structure doesn’t create flexibility but causes
confusion. Instead, true organizational flexibility comes from splitting
work in meaningful customer-centric ways and giving that to suitable
teams who make up for missing skills by using their learning skill. The
effect? LeSS organizations abandon matrix-based structures in favor of
stable organizational structures.

Guide: Understanding Feature Teams

Most large product groups are organized around technology following
a model we call component teams. LeSS product groups organize
around customer value following a model we'll call feature teams.2 The
shift from organizing around technology towards organizing around
customer value is profound.

2. We've written extensively about these two models. What follows is a summary of
earlier work. For a thorough treatment see Scaling Lean & Agile Development: Thinking
and Organizational Tools for Large-Scale Scrum, or feature teams at less.works or feature-
teams.org.

Guide: Splitting,
p. 260

81

https://less.works
http://www.featureteams.org
http://www.featureteams.org

Figure 4.1 feature
team

82 demm

4. Organize by Customer Value

What are feature teams?

A feature team (see Figure 4.1) is a stable, long-lived team that does
end-to-end customer-centric features.® The team delivers done fea-
tures every Sprint.

FEATURE TEAM

)

&

CROSS-FUNTIONAL
CROSS-COMPONENT
STABLE AND LONG-LIVED

PO

PROPUCT

BACKLOG CUSTOMER
CENTRIC
FEATURE

creemeend

---3

POTENTIALLY SHIPPABLE
PRODUCT INCREMENT

TEAM HAS THE NECESSARY KNOWLEDGE AND SKILLS TO COMPLETE AN END-TQ-END CUSTOMER-CENTRIC
FEATURE. IF NOT, THE TEAM 1S EXPECTED TO LEARN OR ACQUIRE THE NEEPED KNOWLEPGE AND SKILL.

Feature teams have the following advantages, among others.

> Crystal-clear responsibilities—The goal of a feature teamis clear.
The feature, Product Backlog Item, should be done before the
Sprint is over. Everything that needs to be done to achieve that
goal falls within the responsibility of the team. This simplifies plan-
ning and resolves dependencies.

> Purpose and customer focus—Feature teams speak the language
of customers. They create features for real people to improve
their lives rather than creating technology for technology’s sake.
This heightened customer focus and purpose enables the team to
work directly with customers in their language and to co-create
the best product. This is powerful.

3. Note, this doesn’'t mean any team can deliver any feature. Teams might specialize on
certain types of features, as long as they still deliver high value.

Organize by Customer Value in LeSS

> Flexibility and learning—No more planning hell and enormous
dependency matrices. You need a new feature? Find a suitable
team.? The team won't have exactly the skills required, so they get
to practice their meta-skill of learning.

A common misunderstanding of feature teams is that a team gets a
gigantic feature, covering the whole system, and needs to make changes
everywhere. This is not so. Instead, the gigantic feature has to be split
before giving smaller end-to-end customer-centric parts of the huge
feature to a feature team. A key difference is in splitting work into cus-
tomer-centric parts instead of into component parts.

Changing to feature teams requires a thorough understanding of how
and why they work. We summarize the differences between feature
teams and component teams and briefly analyze their benefits and
drawbacks. Feature teams have drawbacks too. They are not a quick fix
to all your problems. Adopting them requires a long-term perspective.

Component Team Model

Component teams are organized around the architecture, as illustrated
in Figure 4.2. Every team is specialized in a part of the system or tech-
nology. This could be front-end versus back-end, Java versus C++, or
more generally by components (modules, subsystems, frameworks,
libraries, etc.)

This is the default for most product groups and has some advantages:

> clear code and design ownership
> clear boundaries (each team in its own sandbox)

> deep specialization

4. Important to understanding feature teams is that features aren’'t randomly distrib-
uted over the teams without taking their skill and experience into account.

Guide: Splitting,
p. 260

Guide: Handling

Gigantic Require-

ments, p. 224

83

Figure 4.2 the
component team

model

84

4. Organize by Customer Value

%o e ———
@ /osvstem
F ————————
> @ -
PROPUGT

COMPONENT

]
|

OWNER IV Sy pp— . A

TEAM 3

ITEM 1 4 : R
M2 4 |
I

ITEM 3 \ @ @Q | compoNENT

g]

ITEM 4 < COMP B R e ey B

o=

e s e S i A e i -

o - P — =y |

TEAM | e=
I
3 |
ﬁ I [componeNt
il C
COMP ¢ T o= /

TEAM il

These advantages aren’t without significant costs:

Clear code and design ownership—Having ownership of design and
code creates identity and clear responsibility. When there is a problem
inour code, then it is clearly our responsibility to fix it.

The flip side is that only one team can change the code, which causes
a bottleneck. In addition, the owners also won't receive much feedback
on alternative code/design as nobody else really cares about their code.

Clear boundaries—\We have our area in which we can do whatever we
want and other teams will not interfere with our work.

The flip side is that integration rarely is just pushing everything
together. Figuring out who is responsible for what, when the integration
failed, is painful and time consuming. LeSS avoids sandboxing with a
whole-product focus and continuous integration to reduce product risk.

Deep specialization—Our system is complex and nobody can under-
stand everything. Our team has its own area in which we specialized for
years and that makes our work better and more efficient.

Organize by Customer Value in LeSS

The flip side is that the specialization is in only one dimension—a
technical one. This advantage of specialization (more local efficiency)
comes at a price: not specializing in other dimensions. More on this in
the upcoming guide: prefer specialization in customer domain.

The component team model has some serious drawbacks:?

> imbalanced and asynchronous dependencies
> focus on amount of output rather than value

> results in sequential life cycle and a long release cycle

Analysis of these drawbacks and typical workarounds show that getting
“agile” component teams to work well is perhaps impossible.

Imbalanced and asynchronous dependencies—Customers want fea-
tures and those tend to involve multiple components. This causes
dependencies between the teams. These dependencies are (1) imbal-
anced, e.g. team Zombies have lots of work but team Draculas have lit-
tle, and (2) asynchronous, e.g. team Mummies have work that depends
on team Werewolfs who won't be working on that as they have more
important items. This causes serious coordination and integration chal-
lenges.

The typical answer: (1) plan more, (2) create a new role for coordina-
tion, and (3) create a “project team” with regular status meetings. All
those so-called solutions are futile. The dependencies won't ever be
resolved over time, and quick fixes within the existing system causes
pain, suffering, and horrible conflict. You may feel we're exaggerating.
But if you look closely at what is really going on below the facade of neat
status reports, even in groups that have been trying for years, it's a
mess.

Focus on amount of output rather than value—Specialization in a
technical dimension might increase output as measured in code pro-
duced but that does not equal value to customers. Especially when the

5. Amore complete list can be found in the Feature Team chapter of the Scaling Lean &
Agile Development: Thinking and Organizational Tools for Large-Scale Scrum book or fea-
ture teams at less.works.

85

https://less.works
https://less.works

Figure 4.3 feature
team model

86 demm

4. Organize by Customer Value

optimization for efficiency influences the prioritization of features. Do
your customers prefer lots of code or valuable features?

Results in sequential life cycle and long release cycles—\Who does
the original customer requirement analysis? Who defines the technical
component work for a component team? Who will integrate and test
the whole customer centric feature? An analysis team, architecture
team, and a system test team? Back to a sequential life cycle with all its
handoff problems and additional delay with long release cycles.

These drawbacks are well known and no quick fix in the component-
team model can resolve them. Moving to a feature team model avoids
them.

Feature Team Model

Feature teams are organized around customer value, as shown in Fig-
ure 4.3. Every team might be specialized around one or more types of
features in the customer domain. This could be diagnostics, bond trad-
ing, or administration.

7010 " weren S]
@ /osstem /]
fm————— |
l-‘o' Q :] : :
PRODUCT | lcowousm [

1 I
OWNER /—> WEI TEAM -___/ A | !
[
ITEM ‘ f = o
ITEM 2 /"\ b
|
ITEM 3 COMPONENT | | ||
B 3
ITEM 4 o= P
LI |
I 1

I
COMPONENT | | 1 1
C]
ey i)

ﬂﬂﬂ / :1’

Organize by Customer Value in LeSS

Advantage of feature teams:

> clear feature ownership
> no dependencies that cause delay

> development organization that speaks customer language
As with the component-team model, these do not come without cost.

Clear feature ownership—\Who is responsible for ensuring that the
whole customer-centric feature works within the existing system?
Many organizations love to play the integration ping-pong game of con-
stantly deflecting responsibility to the other team. This dysfunctional
behavior evaporates with feature teams as the responsibility is always
with the feature team.

The flip side is that a feature team works on multiple components.
Other teams work on the same components at the same time, and that
will impact the design/code of the components. This impact can be posi-
tive where the design/code improves. But many people worry that it will
get messier. Adoption of modern development practices such as unit
testing, merciless refactoring, continuous integration, multi-team
design workshops, and evolutionary design can prevent component
degradation and grow the product healthily. Furthermore, component
mentors and component communities provide learning and support for
changing components the team isn't yet familiar with.

No dependencies that cause delay—\When a feature requires a change
to a component, then the feature team makes the change. They do not
wait for another team to make the change for them. This reduces syn-
chronization needs for delivering customer features and in turn dra-
matically reduces the time from feature request to value delivery.

The flip side is that there will be shared components or platforms. If
each feature team just focuses on implementing their functionality then
that could lead to the same functionality being implemented many
times. They lost the opportunity to cooperate with other teams. This
can be resolved by emphasizing cooperation across teams related to the
technical implementation. Useful techniques for this are multi-team
Product Backlog Refinement or multi-team Sprint Planning Two.

see Coordination and
Integration chapter

for component men-
tors and multi-team

design meetings

see PBR and Coordi-
nation & Integration
chapters for related

guides

87

Guide: Current-

Architecture Work-

shop, p. 303

see Coordination &
Integration chapter
on practices that
help

Guide: Splitting,
p. 260

88 demm

4. Organize by Customer Value

Development organization that speaks customer language—Feature
teams speak the same language as customers and can directly ask cus-
tomers for clarification. This makes work more purposeful as the teams
know what, why, and who they build it for. It also reduces layers of indi-
rection—analysts, product and project managers—between customers
and developers.

The flip side is that some engineers have never considered customer
communication to be a required skill. Some might prefer not to talk with
customers, some might not be able to. Our experience has been that
broadening skills is rewarding but can feel uncomfortable at first.

A feature team model has its own challenges:

> requires developers to learn a larger part of the system
> can lead to messy code/design

> affects the way work is split

These are serious challenges yet not insurmountable ones.

Requires developers to learn a larger part of the system—Develop-
ers will need to learn a larger part of the system, yet a common miscon-
ception is that developers or teams have to know the entire system. This
is untrue. People within a team will have their primary specialization and
teams will also have their specialized area. Imagine a system with 50
components. Traditionally a developer knows 1 well. In a feature team,
he will need to know a few of them in depth and perhaps a dozen shal-
lowly. He won't need to know all 50.

Can lead to messier code/design—As mentioned, removing compo-
nent ownership potentially causes the degradation of the code/design.
This stems from the “shared responsibility is no responsibility” thinking.
Technical excellence and modern development practices can prevent
this degradation. Additionally, sometimes this degradation doesn’t hap-
pen because developers know others will see their code, so they put in
extra effort to maintain their reputation. Stimulate this code pride.

Affects the way work is split—\With component teams, work is split
into technical component tasks. This is usually done by a separate per-
son or group: architects, analysts, or specifiers. This type of splitting is

Organize by Customer Value in LeSS

unnecessary with feature teams. Work still needs to be split. This split-
ting is in the customer domain and is done in Product Backlog Refine-
ment meetings. Customer-centric splitting is not difficult but it is
different. Without understanding of customer-centric splitting, feature
teams will seem inconceivable.

These challenges are real yet resolvable. A feature team transition is
not hard for a 4-team LeSS adoption, but on the other hand for a 100-
team LeSS Huge adoption, it takes months or even years. But it is possi-
ble and the benefits are substantial.

Dependencies in Component Teams and Feature Teams

Figure 4.4 shows both models; a comparison leads to important
insights.

COMPONENT TEAMS FEATURE TEAMS
SYSTEM
D =
P‘E:&UI:T FK‘:IJF"UGT Q i [componenr i
OWNER OWNER s s e
COMP WEI - A ‘
/ |
M1 ¢ I1EM 1 LA e //,f c=H i
IreM 2 < M2 T~ ‘< 7 % i
ITEM 3 ITEM 3 § /‘\; compoNeNT [[!
I 1 I
e + ITEM 4 coMP S /7N /T ."E:.EEEB |
~ /‘ < I I
AN i
g S\ [component| | 1
! |
R
COMP WU V| f=E) !
[=

A major problem with component teams is the asynchronous nature of
dependencies between teams related to customer-centric features.
Feature teams resolve dependencies and create the opportunity for
teams to benefit from each other via shared work without being
blocked by dependencies. When using development practices rooted in
1980s practices—producing lots of paper before writing code and only
integrating all parts when you're done—this shared work causes a major

Figure 4.4 feature
and component
team models
compared

89

for product defini-
tion see Product
chapter; for Defin-
tion of Done see
Definition of Done

90 demm

4. Organize by Customer Value

pain as the shared work is just speculation. But with modern agile devel-
opment practices—focus on clean code, merciless refactoring, and con-
tinuous integration—this shared work becomes a true opportunity. The
feature dependencies of component teams aren’t resolvable as they are
structural and systemic in nature.®

Thus, LeSS requires the majority of the teams to be feature teams.

Guide: Feature-Team Adoption Maps

What is a component? What is a feature? What is functional specializa-
tion? So far, we've looked at them as binary but the answer exists along a
continuum. One group’'s work scope might be limited to an individual
class whereas another group could work on an entire subsystem. They
are different types of component teams.

A similar scale exists that’s related to functional specialization. Some
product groups have five levels of testing and that gives “include testing
in the team” a very ambiguous meaning!

Drawing these scales in a graph, as shown in Figure 4.5, affords some
insights in feature-team adoption and the kind of organizational change
yOou can expect.

The Y-axis represents a gradually increasing work scope of the teams
expressed as architectural decomposition and the expansion of the
product definition. The X-axis represents the degree of cross-function-
ality of the teams expressed as a gradually increasing Definition of
Done.

6. Andwe've seen organizations try over and over again to resolve the drawbacks of
component teams. The problem are never resolved. Unfortunately, many organiza-
tions have to learn this by themselves.

Organize by Customer Value in LeSS

PROBLEM
IDEAL STATE!
HARD TO ACHIEVE,
§ FUNCTIONAL 600D TO WORK TOWARDS
= OVERSPECIALIZATION
= WHOLE SYSTEM
=
2
= FEATURE
£ TEAMS
S WHOLE PRODUCT
ad
o
=
=
=
2 SUBSYSTEM
=
&
= EXTENDED COMPONENT TEAMS
= CONFLICT IN SCOPE IN THE TEAM
B e COMPONENT LEAPING TO PUPLICATION O
TEAMS APPITIONAL COORPINATION WORK

NOTHING COPE +PESIGN ANP +SUBSYSTEM +ANALYSIS ANP +C0-CREATION

UNIT TEST ARCHITECTURE SYSTEM TEST
ANP TEST

Figure 4.5 shows four areas:

Component teams—Any team that (1) focuses on parts of the product
rather than end-customer-centric features or (2) focuses on finishing a
task rather than delivering a product increment is a component team.
The smaller the work scope and the stricter the specialization, the bigger
the component-team problems.

Feature teams—Any team that has a whole-product focus and is
involved from clarifying customer-centric features to testing them is a
feature team. Feature teams also exist along a scale. They can be limited
to just implementing the features stated they need. Or, when the prod-
uct definition is broad enough, they can be involved with identifying and
solving the customers’ real problems and thus co-creating the product
on the whole system.

Figure 4.5 feature-
team adoption map

see Product chapter
for broader product
definitions

91

Product Owner
Guide: Don't Be
Nice, p. 189

92 demm

4. Organize by Customer Value

Functional overspecialized team—Any team that performs a limited
task on a larger scope is probably functionally overspecialized. This
leads to lots of waste due to handoffs. This is to be avoided.

Extended component teams—Any team that has a limited component
work scope yet is responsible for checking that their part works within
the larger product is an extended component team. The team has an
internal conflict as they have both a limited “‘component scope” and a
“‘whole product scope.” This conflict leads to either (1) duplication of
work as multiple teams create the same tests or (2) additional coordina-
tion effort as the teams have to coordinate their “product focused” test-
ing. The same conflict of scope is true for requirements clarification.
The Product Owner will need to remind the team that completely done
items are expected at the end of the Sprint. These teams are perhaps an
improvement over basic component teams but fall far short of deliver-
ing the benefits of feature teams.

A perfect feature team is a team that works across the whole system
and co-creates the product together with actual users. This is a good
yet difficult-to-achieve perfection goal.

Examples

With that perfection goal, we can use the earlier chart as a feature-
team adoption map. Two examples are explored next.

The Figure 4.6 feature-team adoption map is from a huge telecom prod-
uct adopting LeSS Huge. When they started their adoption they had tra-
ditional component teams.

Their goal for the next few years is to move to full product-wide
feature teams. However, there are some shared components created by
a peer product group and that makes it hard to include these compo-
nents as doing so would require a significantly larger organizational
change. So, these are excluded from their current goal.

Expanding to the system-scope is difficult because doing so would
involve several code bases of millions of lines of code each, an enormous
amount of functional specializations, and a full reorganization involving
thousands of people. So, cross-product group coordination and integra-

Organize by Customer Value in LeSS

tion activities are likely to stay as is for the next decade and will con-
tinue to cause a constant headache.

FROPLEM
WOULD REQUIRE INVOLVEMENT IN
STANDARDIZATION OFTELECOM NETWORK
TELECOM NETWORK
ORGANIZATIONAL CONSTRAINT
OUTSIDE CURRENT ORGANIZATIONAL SCOPE l/ (EFO0TS OFFXIROL SEIVE
WHOLE FROPUCT
BOAL NEXT FEW YEARS 1
SYSTEM COMPONENT {
CURRENT STATE :
I
COMPONENT . 3
ORIBINAL TEAMS I
BEFORE LESS ADOPTION |
FILE/ELASS]
NOTHING COPE +PESIGN AND +50 PESIEN AND +SPECIFICATION AND +SYSTEM PESIGN AND +STANPARPIZATION
UNIT TEST SC TEST ENTITY INTEGRATION TEST SYSTEM VERIFICATION

ACTIVITY (FUNCTION) INSIPE THE TEAM, PEGREE OF CROSS-FUNCTIONALITY

The Figure 4.7 feature-team adoption map is from a trading product
and is a much smaller LeSS Huge adoption. They had the same starting
point as the telecom product group but decided to go with an all-at-
once adoption strategy. Deploying to production is still outside the
scope of the feature teams. This is reflected in their imperfect Defini-
tion of Done.

The amount of change required in an all-at-once LeSS Huge adoption is
often too large for the organization to cope with. That's why we don’t
recommend all-at-once LeSS Huge adoptions. This case is a great exam-
ple. The product group adopted whole-product feature teams, with one
exception: One rather important component was organizationally in
another product group. The changes forced on the organization and

Figure 4.6 feature-

team adoption ma
of telecom system

p

93

4. Organize by Customer Value

especially that product group became one of the reasons the adoption
eventually took a few steps backwards. Large-scale organizational
change is a breeding ground of nasty politics.

FROBLEM

WOULD REQUIRE INVOLVEMENT IN LOTS
OF OTHER COMPANIES IN THE ECOSYSYTEM

WHOLE SYSTEM Il |]
OUTSIDE CURRENT ORGANIZATIONAL SCOPE SCOPE OF

TRADING PROPUCT 3 ; ; / PROPUCT 0ROVP

APPLICATION CURRENT STATE

POTENTIAL TECHNOLOGY WORK SCOPE INSIPE THE TEAM

I
|
|
I
COMPONENT . . ll.
ORIGINAL TEAMS I
BEFORE LESS ADOPTION
SUBCOMPONENT |
I
NOTHING COPE *DESIGN AND +ANALYSIS +CO-CREATION

UNIT TEST AND UAT
Figure 4.7 feature-
team adoption map

of financial trading HE|p Wlth Decisions
system

A feature-team adoption map is an important tool when you are adopt-
ing LeSS. It helps with the following decisions:

> What is “all”?—A smaller LeSS framework adoption requires an
all-at-once change to feature teams. Who is included in “all”
depends on the scope of the feature teams.

> Future improvement goals—The map can be used for setting
future goals as the telecom product group had done. These future
goals frequently go hand in hand with the expansion of the Defini-

94

@E@ https://less.works For Gene Gendel only, id:gene-gendel

Organize by Customer Value in LeSS

tion of Done. The map also shows the expected changes and their
difficulty, as expanding beyond the current organizational bound-
ary involves the hard work of “political” boundaries.

> LeSS or LeSS Huge?—The scope of the feature teams influences
the size of your adoption and can swing a LeSS group into adopt-
ing LeSS Huge instead. For example, a network-performance tool
is a customer-centric product and its development-group size
leads to the smaller LeSS Framework. However, when realizing it
is always sold as an integrated part of a network management sys-
tem changes the product scope and then is likely a LeSS Huge
adoption.

Guide: Prefer Specialization in Customer

Domain

One essential concept behind feature teams is to _

The same concept also guides other LeSS structuring decisions.

A common misunderstanding of feature teams is that it leads to aban-
doning specialization altogether. Part of this misunderstanding comes
from the false dichatomy of either specializing in one component or not
specializing at all—which we've covered extensively in our writing on
feature teams. Part of the misunderstanding comes from the belief that
specialization is a one-dimensional thing—specializing in a component.
But specialization is multi-dimensional. Exploring these dimensions
leads to better decisions on how to balance these.

conventional way of thinking about specialization is almost exclu-
sively around functional skill or components, as shown in a feature-
team adoption map. But other dimensions of specialization exist; they
include programming language, hardware, operating system, API, mar-
ket, type of customer, and type of feature. We can group these as (1)
technological (component, OS, etc.), or (2) customer-oriented (market,
type of feature, etc.). Looking at the adoption of feature teams from
these dimensions leads to the chart in Figure 4.8.

“;

95

Figure 4.8 two
dimensions of
specialization

96 demm

4. Organize by Customer Value

COMPONENT
TEAMS

FEATURE
TEAMS

ANALYST
TEAMS

SPECIALIZATION IN TECHNOLOGY PIMENSION

SPECIALIZATION IN CUSTOMER PIMENSION

LeSS brings users and developers closer together. The user perspective
is almost always lost in traditional large product groups. Feature teams
are one way of organizing by customer value, but not the only one. The
principle of preferring specialization in customer domain also leads to
other structuring decisions.

For example: Banks create mobile apps for banking services on mobile
devices. The teams are typically organized by platform such as the iOS
teams and the Android teams. These teams are feature teams and they
are specialized in the technical dimension—namely, the platform. Alter-
natively, they can be organized in customer domains such as mobile pay-
ments, admin, and reporting. This leads to the teams implementing the
same type of features on multiple platforms instead of implementing
many types of features on the one platform.

Which specialization dimension is better? Traditional organizations
tend to specialize in technology dimensions. Why? Perhaps technology
is perceived as more difficult and hence specializing in that dimension
leads to faster development? LeSS prefers specialization in the cus-
tomer domain to increase collaboration with real users, remove hand-
offs, and make work more meaningful. Let’s explore another example...

We worked with a company that builds graphics cards. They structured
their organization around technology: (1) hardware team, (2) Linux-

Organize by Customer Value in LeSS

driver team, and (3) Windows-driver team. These are component
teams, but a move to feature teams requires a cross-functional hard-
ware/software team. That's possible but difficult to achieve in most
hardware companies—for cultural reasons. The software teams are
additionally specialized in driver API. This organization is predicated on
the assumption that learning the OS-driver-API is more important and
difficult than understanding the hardware—the company’s product.
LeSS prefers organizing around the customer and thus an alternative
team organization is (1) 2D-graphics chip team and (2) 3D graphics chip
team.

tomer specialization? A hard decision. When adopting LeSS, prefer spe-
cialization in the customer domain.

What is the perfect balance between technology specialization and cus—))

Guide: LeSS Organizational Structure

How does this all fit together in an organizational ?
structure? Of course, each organization is differ- < ‘ -
ent, yet LeSS organizations tend to follow a sur- ~ \""0"'

prisingly simple structure. The first difference

between LeSS organizations and most traditional ‘ ;
ones is that the structure is stable as (1) work is ‘.,
organized around teams and (2) mismatch of skills %43
triggers learning and coordination within existing

teams.

97

Figure 4.9 typical
LeSS organizational
chart

98 demm

4. Organize by Customer Value

HEAD OF PROPUCT GROUP

TEAM =1 TEAM %2 TEAM =N PROPVCT UNPONE
DEPARTMENT

gollllegl| 5 | &

Notice what isn't here:

> No functional organizations.

Having team members with programming skills report to the
development manager and team members with testing skill report
to the QA manager won't create great teams. Why? It causes con-
flicting loyalty where a QA person has one loyalty towards the
team for all the work of the team and one loyalty towards the QA
manager for his functional specialization. LeSS organizations avoid
this conflict by abolishing functional organization and instead cre-
ating cross-functional line organizations.

> No project/program organization or project/program manage-

ment office (PMO).

These traditional control organizations cease to exist in a LeSS
organization as their responsibilities are distributed between the
feature teams and the Product Owner. Insisting on keeping such
organizations will cause confusion and conflicts of responsibilities.

> No support groups such as configuration management, contin-

uous integration support, or “quality and process”.

LeSS organizations prefer to expand the existing teams responsi-
bility to include this work over creating more complex organiza-
tion with specialized groups. Specialized support groups tend to
own their area which leads to them becoming a bottleneck.

Let's examine a LeSS organization...

Organize by Customer Value in LeSS

Head of Product Group—Most product development LeSS organiza-
tions still have managers including a “head of product group.” They sup-
port the teams by Go See and help them remove obstacles and improve.
(We cover manager responsibilities in the Management chapter.) LeSS
organizations don’t have matrix structures and there are no dotted-line
managers.

The name “Head of Product Group” might be confusing to you. This is
probably because different organizations use quite different terms for
this. What we mean is the line manager of all the teams, whatever that is
called in your organization.

Feature teams—This is where the development work is done. Each
team is a cross-functional, self-managing feature team with a Scrum
Master. They are permanent units that stay together for the duration of
a product (and sometimes longer). Preferably all members have the
head of the product group as their direct manager. We've seen 150 peo-
ple who all had the same direct manager as most management activities
were taken over by the teams. But some larger LeSS organizations have
some additional team line manager structure. Try to avoid the addi-
tional organizational complexity whenever possible.

Product Owner (Team)—This is also commonly called “Product Man-
agement.” It can be one person but in a larger LeSS organization the
Product Owner might be supported by other product managers.

An important point in this organizational structure is that the

We have found it important to keep the power balanced
between the roles. The Teams and Product Owner should have a coop-
erative peer relationship to together build the best possible product,
and a peer structure supports this. This point is further explored in the
Product Owner chapter.

This organizational structure is especially common for product compa-
nies. The frequent alternative, especially for internal development, is
for the Product Owner to belong to a different organization—the busi-
ness side. Thus, he is not within the hierarchy of the Head of the Product
Group. This is recommended, though it does often require additional

See Management

chapter for more on
the role of manage-

ment.

Guide: Who Should
be Product Owner?,

p.173

929

100

4. Organize by Customer Value

effort to ensure the Product Owner has a close relationship with the
Teams.

Undone department—This department, ideally, does not exist.

Unfortunately, sometimes the teams are not yet able to create a true
shippable increment every Sprint. This is reflected by their “Definition
of Done” not being equal to “Potentially Shippable” The difference
between them is called Undone Work. Someone needs to do this
Undone Work, and a common “solution” is to create separate groups
that pick up the “undone work”—the undone department. More on this in
the Definition of Done chapter.

Undone departments such as test, QA, architecture, or business analy-
sis groups should never exist in the smaller LeSS framework groups;
rather they should be integrated into the teams from the start. On the
other hand, we unfortunately still frequently see an operations or pro-
duction undone department in LeSS adoptions, as they often cross orga-
nizational boundaries.

A goal in every LeSS adoption is to remove the undone department.
How long will this take? The answer is highly dependent on how fast the
organization improves its capability.

Guide: Organizing Multi-Site in LeSS

We worked at an online games company when a new Product Owner
joined. She asked, “Where are my teams located?” Someone listed the
three cities in Eastern Europe. She asked, “How long is the flight to the
first city?” Her question triggered laughing. The answer, “There is no
flight or airport. You have to fly to Kiev and take a three-hour train ride!”
The new Product Owner was astounded. That site was closed down.

Product development is best done with only one site. And yet there are
good (and more not so good) reasons for having multiple sites. Apply
these principles for your site strategy:

LeSS Huge

Reduce sites—Multi-site might be inevitable due to external factors.
Eventhen, have an explicit policy to co-locate as much as possible. Close
down smaller sites and at least reduce time-zone differences.

Reduce time-zone differences—Time is a bigger obstacle than dis-
tance. You can mitigate problems caused by physical distance with
video and text chat, etc., though all are inferior to being face-to-face at a
whiteboard. But the only way to overcome time differences is to shift
your work day. Most teams prefer not to do that and thus big time dif-
ferences guarantee a one-day delay in communication.

Co-locate whole teams—Team members share responsibility for the
team’s work. Shared responsibility requires a high level of trust. Unfor-
tunately, distance breeds distrust as humans find it difficult to trust
people they don't see and directly interact with. Plus the people in one
team need to be together to learn from each other.

Do not have sites specializing in functional skill—An unfortunate yet
common division of work between sites is based on functional special-
ization, e.g. one development site and a second (cheaper) testing site.
This division of work doesn’t work in LeSS as it leads to every cross-
functional team having members in multiple sites.

Do not have sites specializing in components—Another common way
of deciding “site responsibility” is to take the architecture diagram and
assign parts of the architecture to sites. This doesn't work when adopt-
ing feature teams.

LESS HUGE

When scaling, context and issues include:

Customer-centric—It is easy to forget the customer in large develop-
ment efforts when the added structure pushes teams away from cus-
tomers towards technology single-specialization. How do you prevent
that? How do you keep customer closeness with perhaps a thousand
developers?

101

4. Organize by Customer Value

More with LeSS—When scaling to LeSS Huge, it seems inevitable that
some additional structure is required. Requirement Areas and the Area
Product Owner role provide this while keeping the framework small.

« LeSS Huge Rules «

Customer requirements that are strongly related from a cus-
tomer perspective are grouped in Requirement Areas.

Each Team specializes in one Requirement Area. Teams stay
in one area for a long time. When there is more value in other
areas, teams might change Requirement Area.

Each Requirement Area has one Area Product Owner.

Each Requirement Area has between “4-8" teams. Avoid vio-
lating this range.

Guide: Requirement Areas

A Requirement Area is a grouping of Product Backlog items that logi-
cally belong together from the customer perspective, such as trade pro-
cessing or new-market onboarding. Requirement Areas allow us to
manage an area as if it is its own product with its own (smaller) LeSS
adoption. A Requirement Area consists of:

> Area Product Backlog—A subset of the Product Backlog that
belongs to one area. This is not a separate backlog but is logically a
view on the Product Backlog but might be managed as a separate
backlog. This is covered in the Product Backlog chapter.

> Area Product Owner—A separate “Product Owner” who special-
izes in a logical area of customer requirements. The Area Product
Owner acts as the Product Owner towards the teams. She also
works with the overall Product Owner and other Area Product

102
eSS

LeSS Huge

Owners as part of the Product Owner Team to keep the whole-
product focus. This is covered in the Product Owner chapter.

> Feature teams—The Teams that specialize in part of the product
while still speaking the language of the customer. Each Team
belongs to exactly one Requirement Area.

Requirement Areas are the prime structural addition to LeSS when you
are scaling above “8” teams—thus creating LeSS Huge. They were cre-
ated to resolve the following problems encountered when scaling LeSS:

> Product Backlog too big.
Suppose there are four items per team per Sprint with 3 Sprints’
worth of clarified granular ready items, and 20 teams. That implies
240 items in the fine-grained section of the Product Backlog. Hav-
ing so many items in just the fine-grained section—not to mention
the many less-refined items—makes the Product Backlog unman-
ageable.

> Product Owner stretched too thin.
How many teams can one Product Owner work with? If the Prod-
uct Owner is not involved in detailed clarification of every item
and she focuses instead on prioritization, customers, and team
collaboration, then we see there is a tipping point somewhere
between 5 and 10 teams (e.g. “8”). Above that, there’s too much
going on to maintain a balance of outward and inward focus and to
be sustainable.

> Meetings too crowded.
Two team representatives from each of 20 teams lead to big Sprint
Planning meetings It is hard to keep meetings of that size produc-
tive and focused.

> Teams lacking focus.
Teams get frustrated and go slow when they change focus too fre-
quently or when they cover too broad an area. Specializing a team
in a customer-centric area creates the focus required to create a
productive team.

Figure 4.10 shows an example of a Requirement Area structure:

demm 103

4. Organize by Customer Value

Figure 4.10

Requirement Areas
NEW-MARKET ONBOARDING FEATURE TEAMS

[T e~ 7 s

AREA PRODUCT QWNER

ONBOARPING
PROPUCT BACKLOS ITEM 1

4 ITEM 2
ITEM §

4 TRADE PROCESSING

ITEM 3
ITEM 4

FEATURE TEAM FEATURE TEAM

e e L P e

AREA PROPUCT OWNER TRAPE PROCESSING FEATURE TEAMS

The Product Backlog contains all Product Backlog Items. Each of these
items is assigned to one and only one Requirement Area. Each Require-
ment Area has one Area Product Owner, and all items that belong to
that Requirement Area form the Area Product Backlog. Each team
belongs to one Requirement Area for a long time.

The overall Product Owner monitors the value of the items across all
areas. When the value difference between areas becomes too large,
then the Product Owner can move a team to another area. This way the
Product Owner focuses on the return on investment of the whole prod-
uct.

104
eSS

LeSS Huge

Guide: Dynamics of Requirement Areas

Requirement Areas contain four to eight teams. But why four? Having
smaller Requirement Areas inevitably leads to lack of transparency and

local optimizations. Why? Let’s first explore the evolution of a Require- -65° Husge Story:A

New Requirement

ment Area over time. Area o, p. 39

Midlife—The relative importance of a Requirement Area will change
during its lifetime. That's because customers won't neatly divide their
needs into Requirement Area, but instead one area will get a higher pri-
ority for some time while others fall in priority. It's the responsibility of
the overall Product Owner to recognize this and dynamically adjust
Requirement Areas by moving teams to where the most value is.

When Requirement Areas are not dynamic, then this hints at deeper
systematic problems.

Retirement—It is rare for a Requirement Area to just disappear, as
there will always be small changes in the area. But they will shrink to
below four. Then what? Merge Requirement Areas. Take two Require-
ment Areas, expand their scopes to be the same and then merge the
Area Backlogs and have one Area Product Owner continue. Having a
meaningful combined scope is best, but if that can't happen, then taking
the name of the first Requirement Area, appending the word and, and
taking the name of the second Requirement Area will do to start.

7. This could be awhole new market or it could be one insanely huge feature that would
require many teams many months.

this often happens
when sites and
Requirement Areas
are aligned

Guide: Organizing
Multi-Site in LeSS,
p. 100

106
eSS

4. Organize by Customer Value

So, why combine small areas and avoid areas smaller than four? Tiny
Requirement Areas at best cause a lot of work for the overall Product
Owner in dealing with cross-Requirement-Area prioritization. This
should cause the Requirement Areas to be rapidly changing. At worst, it
doesn’t happen and the cross-Requirement-Area prioritization is lost
and with it, the overview on the Product Backlog. Having tiny Require-
ment Areas is usually a sign of these problems: (1) silo-Requirement
Areas with too powerful Area Product Owners, (2) lack of customer
focus leading to a lack of prioritization in the overall Product Backlog, or
(3) the Area Product Owner’s being too involved with the clarification
and therefore unable to handle more than two teams.

Guide: Transitioning to Feature Teams

When adopting (smaller framework) LeSS, the transition to feature
teams is all-at-once. But when adopting LeSS Huge, you can choose
from several transition strategies. Which one is best? These simplistic
steps help you determine the best strategy for your organization:

1. Determine your context.
2. Determine your transition strategy.

Let’s explore both in more depth.

1. Determine Your Context

The transition to feature teams is influenced by several factors:

Size of the product group—CObviously it is easier for a 10-team prod-
uct group to transition to feature teams than for a 100-team group.

Lifetime of the product—Products that will probably be around for the
next 30 years tend to make slow changes, ostensibly to lower risk. Prod-
ucts that last only a few years must change faster.

Degree of component and functional specialization—More special-
ization makes feature-team adoption a larger change. Use the feature-
team adoption map to draw the current state of component/functional
specialization.

LeSS Huge

Number of development sites—More development sites makes fea-
ture-team adoption harder. This is doubly true when sites specialize in
certain components or function. This site specialization is an obstacle to
cross-component and cross-functional learning.

2. Determine your Transition Strategy

There are three broad transitioning strategies:

All-at-once—As also used in LeSS adoption. In LeSS Huge all-at-once is
less common because of the amount of organizational change it
requires. Yet when (1) the product group is relatively small, (2) the life-
time of the product is short, (3) the specialization is low, and (4) the
development is co-located at one site, then all-at-once is a good strat-
egy. A common mistake in all-at-once LeSS Huge adoption is to underes-
timate the amount of learning and coaching required.

Gradually expand component team responsibility—You can plot the
current state of your organization in a feature-team adoption map and
mark future goals for expanding the scope of the teams. The cross-func-
tional expansion is achieved by expanding the Definition of Done. More
on this in the Definition of Done chapter.

We've encountered this transition strategy repeatedly. It can work but
has a couple of big weaknesses: (1) It gives you the drawbacks of both
feature and component teams while not giving the best benefits; (2) it is
hard to adopt customer-centric Requirement Areas when the teams are
still component teams.

Still, this transition strategy is a good idea in a multi-site environment
when a lot of multi-site learning must happen.

Parallel organization—In this strategy you keep the existing compo-
nent team organization in place and gradually build a feature team orga-
nization next to it as a parallel organization.

Guide: One Require-
ment AreaataTime,

p.74

107

Figure 4.11 grow a
parallel organization

108

4. Organize by Customer Value

m Y e e 7
@ _ / svstem /]
et e 5 (il
o) _\i\\\ ! ! '
PRODUCT \ O [component| [| i
OWNER oY A i
|) i i
ITEM 1 \T *\ TS)
I T
ITEM 2 |
TASKS FOR A ' \\ \:\ : I
TASKS FOR B N 1 N COMPONENT I :
\ ! 1
ITEM 3 ! L
TASKS rou/ — +' o |=vB : :
TASKS FOR B =i \ Le= i
| 11
ITEM 4) A
TASKS FOR A A 1|
TASKS FOR & S : \ COMPONENT : :
| ¢ P
cOMP ¢ = 7
TEAM .

The existing component-team organization keeps functioning the way it
did before, except that the new feature team(s) will change their code.
The new feature team(s) take on valuable but painful features (those
with the most dependencies) and work across the components by
changing the components directly. Remember: Seek volunteers for these
nascent feature teams.

This strategy is gradual and low-risk and is well-suited for huge LeSS
Huge product groups. Its most important drawback? It will take a long
time.

When using this strategy, give your young feature teams a lot of support
and do not expect much output. They have to resolve obstacles such as
different practices in different components, different component struc-
tures, different tool usage, and different test environments. On top of

LeSS Huge

that, they’ll also need to deal with learning new component and new
functional skills. Give them lots of support and time, as they are the
messengers of all weaknesses and dysfunctions in the organization.

-: LeSS Huge Organization

Scale is often accompanied by additional organizational structure.
Before we explore the typical additional structure, we need to stress
that scale doesn't have to mean additional structure. Additional struc-
ture usually causes narrower responsibilities, which paves the way for
loads of organizational dysfunction and politics. Keep organizational
design simple.

Figure 4.12 typical
LeSS Huge
organizational
structure

HEAD OF PROPUCT
SITE SITE UNPONE SUPPORT PROPUCT OWNER| | COMPETENCE

PEPARTMENT

v || @255 | e

TEAM #1 TEAM #2 TEAM =N

«¢ 22 W

demm 109

110

4. Organize by Customer Value

Notice that there is still no project/program organization (or PMO). In
Scrum and LeSS adoptions, these departments cease to exist.

Let's examine parts that differ from the LeSS organization.

Teams in sites—LeSS Huge adoptions are almost always multi-site, and
organizations usually prefer to keep the line organization local. This
allows managers to Go See easily and really help the teams to improve.
Avoid having the Requirements Areas be equal to the organizational
structure as it leads to them being difficult to change.

Product Owner Team—Conceptually the same as in a LeSS structure.
The team is larger since it includes all the Area Product Owners. In huge
LeSS Huge groups, the Product Owner Team has sub-teams based on
the Requirement Areas.

Undone Department—Also conceptually the same as in a LeSS struc-
ture. In LeSS Huge groups there tend to be bigger Undone depart-
ments, and it takes a longer time to get rid of them. In huge LeSS Huge
groups, there will be additional structure in the Undone department,
potentially with their own antiquated project management practices.

Support—This department provides development environment sup-
port for the teams. In LeSS the teams support each other without the
need for a separate group.

Still,
this department should be as small as possible with the attitude “How
canwe help?” rather than “Take it this way!” Why? Support groups often
end up taking over responsibilities from the teams and become huge
ever-growing pulsating abominations controlling rather than support-
ing the teams.

Configuration-management support is a common example of a support
group becoming a control group. They take ownership of the build and
create all the build scripts. The effect? Teams have no idea what hap-
pens when “the build is done;” are clueless as to why it takes 92 minutes,
and don't feel empowered to make the build better. It's all magic to them
and out of their control.

LeSS Huge

Limiting understanding of the build to a support group causes bottle-
necks, inefficiency, local optimizations, and dis-empowerment. The con-
figuration-management support group ought to be the experts who help
teams improve it and who explain the build and teach better build
designs without becoming the owners. They might pair up with team
members and observe how they work so that they can together devise
ways to improve.

Other common support groups include laboratory support, continuous-
integration system support, or operations support.

Competence and Coaching—Software is created by people. Improving
people improves products. This seems obvious, yet we rarely see orga-
nizations that are truly committed to relentlessly training and coaching
their people. LeSS Huge organizations have a dedicated training and
coaching department which is essential for continuous improvement.

The competence and coaching department focuses on three things:

> observation (Go See)
> training

> coaching

In traditional organizations, the training and coaching requests go from
unaware-of-reality managers to a really unaware training group. They
then create an alternate-reality training and waste people’s time. This is
not a good idea. Instead, the competence and coaching group consists
of skillful practitioner-experts who actively Go See and observe how
people work. They pair up and work with people to discover their train-
ing needs. People don't ask for training on subjects they don't know
exist or for skills they don’'t know they are weak at.

Coaching is key! It is the most effective way to help teams improve.
Coaches work with or in teams. They observe, pair, shadow, and ques-
tion. They give observations, feedback, ideas and examples on how the
team can improve. Coaching happens on three levels: (1) organizational,
(2) teams and Product Owner, and (3) technical. All these levels are
important. We have yet to see a successful LeSS adoption without
active coaching.

111

Contents

LeSS Management 114

« Guide: Understand Taylor and Fayol 115
+ Guide: Theory Y Management 117
« Guide: Managers Are Optional 120
« Guide: The LeSS Organization 121
+ Guide: Go See 125
« Guide: Managers as Teachers and Learners 128
+ Guide: Both Domain and
Technical Capability 129
+ Guide: LeSS Metrics with Less Targets 130
+ Guide: Management Reading List 131

&3 hitps//lesthe dysfunction of managementseparationjene-gendel

MANAGEMENT

The prevai[ing—and foo[ish—attitude is that a good manager can be a good
manager anywhere, with no specia[know[edge of the production Pprocess he's managing.
—W. Edwards Deming

ONE-TEAM SCRUM

Scrum does not mention managers. But Scrum is a change in manage-
ment style more than just a development framework. This change is
mostly caused by the following three Scrum elements: self-managing
teams, Product Owner, and Scrum Master.

With a self-managing team the responsibility of the Team is extended
to include “managing and monitoring process and progress’t These
responsibilities are removed from the manager’s responsibilities.

All work that the Team does has to come from the Product Owner. This
removes the responsibility of managers to decide what the Team is
working on.

The Scrum Master is responsible for a functioning Team, Product
Owner, and organization. She facilitates conflict resolution and
improvement by fostering reflection and learning. She is a team coach
and an organizational coach.

Traditional manager responsibilities focus on what, how, and tracking. In
summary, all these are no longer the responsibility of managers in a

1. LeSSuses the term self-managing teams instead of self-organizing teams. In Scrum
literature, the terms are often mixed or used interchangeabl
: the team is responsible for the work and monitoring and man-
aging process and progress. This definition was given by the inventor of the term,
Harvard professor and team researcher - In contrast, the term self-orga-
nizing teams is frequently used ambiguously or inconsistently.

113

114

5. Management

Scrum organization. With that, the management style changes from
command and control to supporting.

A common problem with Scrum adoption occurs
when managers do not give up these responsibilities,
thereby causing an organizational conflict between the
Team, Product Owner, Scrum Master, and managers.

What then is the role of managers in a Scrum organization? Scrum is
silent and asks organizations to figure that out for themselves. But LeSS
is not silent, and opens up the difficult discussion of the change in the
manager role in LeSS organizations.

LESS MANAGEMENT

LeSS follows traditional organizational theory. If you want to increase
organizational flexibility (agility), you do so by delegating responsibility
so decision making doesn’'t slow down responses. This leads to flatter
organizations and less managers.

Most LeSS adoptions are in organizations with no shortage of manag-
ers. So, what is their role?

When scaling, principles related to management include:

Empirical Process Control—Ownership of how the work is done ought
to be with the people doing the work. They experience feedback and
improve. How does shifting process ownership to the teams change
management?

Customer-Centric—Teams working directly with customers dramati-
cally increases customer focus and tends to make work more meaning-
ful. Managers are no longer directly involved in this cooperation and
neither do they act as intermediates.

LeSS Management

Continuous Improvement towards Perfection—\With day-to-day
management out of the way of managers, they can change their focus
towards improving the system.

Systems Thinking—Pre-LeSS organizational structure often caused a
silo mindset behavior. That has to change to a whole-system and whole-
product perspective. The change of perspective is often unfamiliar and
discomforting and will require significant learning.

o LeSS Rules «

In LeSS, managers are optional, but if managers do exist, their
role is likely to change. Their focus shifts from managing the
day-to-day product work to improving the value-delivering
capability of the product development system.

Managers'’ role is to improve the product development sys-
tem by practicing Go See, encouraging Stop & Fix, and “exper-
iments over conformance.”

Guide: Understand Taylor and Fayol

Management is an invented concept. Understanding its origins and con-
text is important in order to adapt and make it relevant for today. Are
the problems it solved back then the same problems we need to solve
today? Without challenging and deep understanding there is no contin-
uous improvement, but only... continuity from the 19th century.

Two early and key influencers of management are Frederick Taylor and
Henri Fayol.

Frederick Taylor, born in 1856, was a mechanical engineer obsessed with
worker productivity. As foreman he successfully applied scientific prin-
ciples to his workers. This led him to open his own consultancy firm and
his ideas became known as “scientific management.’2

115

116

5. Management

Henri Fayol, born in 1841, was a French mining engineer who joined a
large French mining group at age 19. His first job was to improve mining
safety. He never left the company and eventually became the managing
director. Under Fayol, the company flourished and became one of the
largest French companies. He formulated his thoughts on manage-
ment> and published them in a landmark book called General and Indus-
trial Management.

Frederick Taylor introduced two concepts that unfortunately are still
prevalent today.

> There is one best way of doing a job, which you can prove scientifi-
cally. Once discovered, this “best practice” should be pushed
throughout the organization.

> Planning and improvement work should be separated from normal
work. The planning and improvement work should be done by spe-
cial higher-educated people while the normal work can be done by
mostly uneducated people. In the words of Taylor, “There is no
question that the cost of production is lowered by separating the
work of planning and the brain work as much as possible from the

manual labor”*

Henri Fayol created 14 principles of management, which include division
of labor, authority, unity of direction, and chain of command. He also
defined the five responsibilities of managers: planning, organizing, coor-
dinating, commanding, and controlling.

Many so-called “modern” management theories can be traced back to
the ideas of Taylor and Fayol.5 They have changed the way companies
and the world works.

However, today’s world is not the world of Taylor and Fayol. This differ-
ent context makes some of the best ideas of the past the worst ideas of
the present. For example:

- Alsoknown as Taylorism,

8. Also known as Fayolism.

4. From Shop Management by Frederick Winslow Taylor published 1903.

5. Otherimportant influencers such as Max Weber and Mary Parker Follett are
skipped here but are well worth study.

LeSS Management

> Taylor wanted to maximize the productivity of the low-educated
workforce. But today’s product developers are highly educated
and smart people. Separated planning and improvement leads to
additional handoff, rigid specialization, and more overhead.

> Fayol wanted to increase unity by improving communication, as it
took up to ten days to travel from France to the United States. But
today’s travel takes less than 7 hours and communication takes
seconds. Extensive hierarchies for creating unity and to ease com-
munication are obsolete.

> Scientifically analyzing shoveling to find the best practice and
copying it might work when moving pig iron. While using science
to analyze work is an excellent idea, copying without context is
not. In addition, though sharing good practices in context is a great
idea, copying best practices contradicts continuous improvement.

> Centralized managers creating unity by planning, coordinating,
commanding, and controlling might work when optimizing mining.
And creating unity or vision in an organization is an excellent idea.
But centralizing planning and control is not. The focus on com-
mand and control results in less focus on systematic improve-
ments.

Examine your organizational structure, practices, and policies. How
many are there because “that’s the way it has always been”? Where did
these ideas come fro