


ONE EXAMPLE FRAMEWORK FOR LARGE-SCALE SCRUM

1 day

2-4 week
Sprint

Sprint
Retrospective

Sprint
Review

Joint
Retro-
spective

Product Backlog
Refinement

Potentially
Shippable
Product
Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h)
(2-4 h)

  (5-10% of Sprint)

(1.5-3h)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

https://less.works For Gene Gendel only, id:gene-gendel



FEATURE TEAMS

COMPONENT TEAMS

Item 1
Item 2
Item 3

...

Item 8

…

Item 12

Team
Wei

Team
Shu

Team
Wu

Component
A

Component
B

Component
C

With feature teams, teams can always work on the highest-value features, there is less delay for 
delivering value, and coordination issues shift toward the shared code rather than coordination 

through upfront planning, delayed work, and handoff. In the 1960s and 70s this code coordination 
was awkward due to weak tools and practices. Modern open-source tools and practices such as 

TDD and continuous integration make this coordination relatively simple.

system

Item 1
Item 2
Item 3
Item 4
Item 5
Item 6

...

…

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

With component teams, there is increased delay, as one customer feature is split across multiple 
component teams for programming, and eventually transferred to a separate testing team for 

verification. There is handoff waste, and multitasking waste—as one component team may work on 
several features in parallel, in addition to handling defects related to !their" component.

Feature
Manager

With component teams, a project or feature manager is 
used to coordinate and see to completion a feature that 

spans component teams and functional teams.

With component teams, there 
is a tendency to select goals 
familiar or !fast" for teams, not 
for maximizing customer 
value. For example, 
Component B Team does part 
of Item 3 because it mostly 
involves Component B work. 

This is the “watching the 
runner rather than following 
the baton” local optimization.

system

https://less.works For Gene Gendel only, id:gene-gendel



Practices for 
Scaling Lean & Agile 

Development

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Practices for
Scaling Lean & Agile 

Development

Large, Multisite, and Offshore 
Product Development

with Large-Scale Scrum

Craig Larman
Bas Vodde

Upper Saddle River, NJ  •  Boston  •  Indianapolis  •  San Francisco
New York  •  Toronto  •  Montreal  •  London  •  Munich  •  Paris  •  Madrid

Capetown  •  Sydney  •  Tokyo  •  Singapore  •  Mexico City

https://less.works For Gene Gendel only, id:gene-gendel



Many of the designations used by manufacturers and sellers to distinguish their products are claimed 
as trademarks. Where those designations appear in this book, and the publisher was aware of a 
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or 
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is 
assumed for incidental or consequential damages in connection with or arising out of the use of the 
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or 
special sales, which may include electronic versions and/or custom covers and content particular to 
your business, training goals, marketing focus, and branding interests. For more information, please 
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Larman, Craig.
Practices for scaling lean & agile development : large, multisite, and offshore product development 

with large-scale Scrum / Craig Larman, Bas Vodde.
   p.  cm.

Includes bibliographical references and index.
ISBN 0-321-63640-6 (pbk. : alk. paper)  
1.  Agile software development. 2.  Scrum (Computer software development)  
I. Vodde, Bas. II. Title.

QA76.76.D47L3926 2010
005.1—dc22

             2009045495

Copyright © 2010 by Pearson Education, Inc. 

All rights reserved. Printed in the United States of America. This publication is protected by copyright, 
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a 
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-321-63640-9
ISBN-10:        0-321-63640-6
Text printed in the United States at Courier in Westford, Massachusetts.
First printing, January 2010

https://less.works For Gene Gendel only, id:gene-gendel



To our clients, and my friend and co-author Bas

To Lü Yi, Tero Peltola, and the little one

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



ix

1 Introduction   1
2 Large-Scale Scrum   9

Action Tools

3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany

15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

CONTENTS

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



xi

PREFACE

Thank you for reading this book! We’ve tried to make it practical.
Some related articles and pointers are at www.craiglarman.com
and www.odd-e.com. Please contact us for questions. 

Typographic Conventions

Basic point of emphasis or Book Title or minor new term. A notice-
able point of emphasis. A major new term in a sentence.
[Bob67] is a reference in the bibliography.

About the Authors

Craig Larman has served as chief scientist at Valtech, an out-
sourcing and consulting group with a division in Bangalore that
applies Scrum, where he and colleagues created agile offshore
development while living in India and also working in China.
Craig was the creator and lead coach for the lean software devel-
opment initiative at Xerox, in addition to consulting and coaching
on large-scale agile and lean adoptions over several years at Nokia
Networks, Schlumberger, Siemens, UBS, and other clients. Origi-
nally from Canada, he has lived off and on in India since 1978.
Craig is the author of Agile and Iterative Development: A Man-
ager’s Guide and Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design & Iterative Development.

After a failed career as a wandering street musician, he built sys-
tems in APL and 4GLs in the 1970s. Starting in the early 1980s he
became interested in artificial intelligence (having little of his
own). Craig has a B.S. and M.S. in computer science from beautiful
Simon Fraser University in Vancouver, Canada.

Along with Bas Vodde, he is also co-author of the companion book
Scaling Lean & Agile Development: Thinking and Organizational
Tools for Large-Scale Scrum.

Bas Vodde works as a product-development consultant and large-
scale Scrum coach for Odd-e, a small coaching company based in
Singapore. Originally Bas is from Holland, and before settling in
Singapore, he lived and worked in Helsinki (Finland) and Beijing
and Hangzhou (China). Much of his recent work is in Asian coun-

https://less.works For Gene Gendel only, id:gene-gendel

www.craiglarman.com
www.odd-e.com


xii

tries—especially China, Japan, India, the Philippines, and Sin-
gapore—applying agile principles to offshore and multisite
development. For several years he led the agile and Scrum enter-
prise-wide adoption initiative at Nokia Networks. He has been a
member of the leadership team of a very large multisite product
group adopting Scrum. Bas has worked as developer/architect in
multimedia/real-time graphics product development and in
embedded telecommunication systems. He is co-author of the
CppUTest unit-test framework for C/C++ and still spends some
time programming, and coaching agile-development practices such
as refactoring and test-driven development. 

Bas rushed through his B.S. in computer science so that he could
write real software. He has been waiting for some university to
give him an honorary Ph.D. but is afraid he will actually have to
work for it. He is a passionate book collector—especially historical
books related to product development and management.

Acknowledgments

Many thanks for the contributions and reviews from…

Peter Alfvin, Bruce Anderson, Brad Appleton, Tom Arbogast, Alan
Atlas, James Bach, Sujatha Balakrishnan, Gabrielle Benefield,
Bjarte Bogsnes, Mike Bria, Larry Cai, Olivier Cavrel, Pekka
Clärk, Mike Cohn, Lisa Crispin, Ward Cunningham, Pete Deemer,
Esther Derby, Jutta Eckstein, Janet Gregory, James Grenning,
Elisabeth Hendrickson, Kenji Hiranabe, Greg Hutchings, Michael
James, Clinton Keith, Joshua Kerievsky, Janne Kohvakka (and
team), Venkatesh Krishnamurthy, Shiv Kumar MN, Kuroiwa-san,
Diana Larsen, Timo Leppänen, Eric Lindley, Steven Mak, Shiva-
kumar Manjunathaswamy, Brian Marick, Bob Martin, Gregory
Melnik, Emerson Mills, John Nolan, Roman Pichler, Mary Pop-
pendieck, Tom Poppendieck, Jukka Savela, Ken Schwaber,
Annapoorani Shanmugam, James Shore, Maarten Smeets, Jeff
Sutherland, Dave Thomas, Ville Valtonen, and Xu Yi.

Current and past Flexible company team members (and review-
ers), including Kati Vilki, Petri Haapio, Lasse Koskela, Paul Nagy,
Ran Nyman, Joonas Reynders, Gabor Gunyho, Sami Lilja, and Ari
Tikka. Current and past IPA LT members (and reviewers), espe-
cially Tero Peltola and Lü Yi.

https://less.works For Gene Gendel only, id:gene-gendel



Bas thanks the support of Sun Yuan through another year of writ-
ing and traveling. Without her support there would be no book.
And thanks Craig for tolerating all the discussion and feedback
and… more debugging of Bas’s writing. No more “rubber chicken”
on this book, what’s next?

Craig thanks Albertina Lourenci for the healthy food so that he
could write well-nourished, and Tom Gilb for his apartment in
London so he could write well-sheltered.

Thanks to Louisa Adair, Raina Chrobak, Chris Guzikowski, Mary
Lou Nohr, and Elizabeth Ryan for publication support. 

(An Early) Colophon

Layout composed with FrameMaker, diagrams with Omnigraffle. 

Main body font is New Century Schoolbook, designed by David
Berlow in 1979, as a variant of the classic Century Schoolbook cre-
ated by Morris Benton in 1919—familiar to most North Americans
as the font they learned to read by, and from the font family
required for all briefs submitted to the Supreme Court of the USA.

https://less.works For Gene Gendel only, id:gene-gendel



Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

Chapter
• Thinking & Organizational Tools 2

• No False Dichotomy: These are only Experi-
ments 2

• No Best Practices—and no Fractal Practices 4

• Limitations 5

• Onwards 6

https://less.works For Gene Gendel only, id:gene-gendel



1

Chapter

1
INTRODUCTION

Nobody will ever win the battle of the sexes.
There’s too much fraternizing with the enemy.

—Henry Kissinger

The earliest large-scale software-intensive product development was
the Semi-Automatic Ground Environment (SAGE) system; created
in the 1950s, it involved hundreds of people.1 In retrospect, what did
a senior manager think of the development strategy?

One of the directors of SAGE was discussing why the program-
ming had gotten out of hand. He was then asked, “If you had it
to do all over again, what would you do differently?” His answer
was to “find the ten best people and write the entire thing
themselves.” [Horowitz74] (emphasis added)

This echoes the opening suggestion in the companion book.2 Build
‘big’ systems by building a small group of great people that can work
in teams, and co-locate them in one place. Only grow when it really
hurts, taking the time to hire extraordinary new talent.

But, we know that especially in existing large companies and prod-
uct groups, that is not going to happen—at least not soon. People are
still going to do large-group, multisite, or offshore development—
usually based on beliefs such as “big needs big” or that offshoring is
better value. Rather than debate if so many people are needed, we
try to support people to improve their development with agile and
lean principles so that at some point it becomes clear to the group
that they have too many people in too many places.

1.  It was way over budget and partly outdated when finally delivered.
2.  The companion book is Scaling Lean & Agile Development: Thinking 

and Organizational Tools for Large-Scale Scrum.

https://less.works For Gene Gendel only, id:gene-gendel



2

1 — Introduction

THINKING & ORGANIZATIONAL TOOLS

This book focuses on practices or action tools. To be effective and
take root, these seeds are best cast on fertile ground—and that is
the soil of thinking and organizational-design tools covered in the
companion book. It takes an understanding of systems thinking,
queueing theory, feature teams, requirement areas, the impact of
organizational policies (such as incentives and budgeting), and
more, for these practices to flower into a beautiful environment.

Without that foundation, what is likely is ritualistic application of
shallow practices—a cargo-cult3 adoption—causing disruption with
little benefit, the belief that “the adoption is finished,” and the
impression that all this is just another management fad. 

And then eventually… “Agile doesn’t work here. Let’s try X.” Where
X is PMI certification, kanban, CMMI, next-generation lean, …

The good news is that with a little investment in learning and rede-
sign, these action tools have a powerful positive impact. Some years
ago, a well-respected manager at a group we had started coaching
sent us an email: “We actually tried everything you suggested. It
worked!” As consultants and coaches it is a great joy for us to hear
this (recognizing it is the ideas, not us, that help)—and to see people
delighted by tangible improvement and enjoying their work more.

NO FALSE DICHOTOMY: THESE ARE ONLY EXPERIMENTS

A key chapter in the companion book was False Dichotomies. It
emphasized that right/wrong dichotomies are ill-advised with
respect to practices. Practices are context dependent; as such, we are
not prescribing what to do. For example, on balance, feature teams

3.  A cargo cult is a religious practice in a (relatively) primitive society 
that attempts to get the same wealth (the cargo) of a technically 
advanced society through ritualistic practices that superficially 
reflect the behaviors of the advanced group. “Cargo-cult process 
adoption” is a term suggesting shallow adoption of practices but not 
the deeper intention or principles. For example, holding a daily 
Scrum meeting to report status to a manager. 

https://less.works For Gene Gendel only, id:gene-gendel



3

No False Dichotomy: These are only Experiments

usually have more pluses than minuses and they deliver value
faster, but we know of organizations where—at this phase in their
adoption and in the context of the particular people, learning chal-
lenges, and politics—some component teams are still needed.

Yet, on the other hand, there is the “Avoid…Being agile/lean without
agile/lean practices/tools” section on page 379. It is easy to misuse
the recognition that practices are contextual as an excuse for not
changing. We meet groups that say, “Oh, we are unique4 so we don’t
do that—practices are valid only in a context.”

False Dichotomies is also so named because adopting practices does
not have to be framed as a binary choice of accept/reject. Adoption
can be along a continuum from less to more. For instance, organiza-
tions can have both some feature teams and some component
teams—and their ratio may shift over time.

Watch out for false-dichotomy thinking and speaking; computer peo-
ple—and that includes us—can get a little too binary.

And more broadly, both Scrum and lean thinking encourage inspect
and adapt, and kaizen mindset, rather than formulas or cookbook
recipes for workplace practices and processes. 

All that said, we do have opinions based on experience of what is
worth considering for a trial to improve. Therefore, the tools in both
books are presented as a series of experiments that start with Try…
or Avoid… to suggest only experiments—nothing more. As a sugges-
tion, Avoid…X means “experiment with shying away from X and
observe what happens.” It does not mean “never do X.” 

Another implication of these experiments is that they can be useful
for a while, but then dropped if they limit further improvement.

4.  It is singularly noteworthy how many groups claim uniqueness—
and yet how similar they are in terms of symptoms and causes!

https://less.works For Gene Gendel only, id:gene-gendel



4

1 — Introduction

NO BEST PRACTICES—AND NO FRACTAL PRACTICES

A variant of false-dichotomy thinking is the notion of “best practice.”
But in research and development (R&D)… 

In a review of R&D practices and outcomes, Organization of Science
and Technology at the Watershed [RS98], the editors conclude:

…there is no best practice [in R&D], since the use of tools
depends on the specific context and situation of the enterprise.

In Managing the Design Factory, a similar point is made:

…the idea of best practices is a seductive but dangerous trap. …
The great danger in “best practices” is that the practice can get
disconnected from its intent and its context and may acquire a
ritual significance that is unrelated to its original purpose.
[Reinertsen97]

Since so-called best practices are ‘best,’ they also inhibit a “challenge
everything” culture and continuous improvement—a pillar of lean
thinking. Why would people challenge ‘best’? Mary Poppendieck, co-
author of Lean Software Development, reiterates this point and
draws the historical connection from best practices to Taylorism:

Frederick Winslow Taylor wrote “The Principles of Scientific
Management” in 1911. In it, he proposed that manufacturing
should be broken down into very small steps, and then indus-
trial engineers should determine the ‘one best way’ to do each
step. This ushered in the era of mass production, with ‘experts’
telling workers the ‘one best way’ to do their jobs. The Toyota
Production System is founded on the principles of the Scientific
Method, instead of Scientific Management. The idea is that no
matter how good a process is, it can always be improved, and
that the workers doing the job are the best people to figure out
how to do it better… Moreover, even where a practice does apply,
it can and should always be improved upon. There are cer-

There are no best practices—only adequate practices in context.

https://less.works For Gene Gendel only, id:gene-gendel



5

Limitations

tainly underlying principles that do not change. These
principles will develop into different practices in differ-
ent domains… [Poppendieck04]

This last emphasized point raises
a connection to this book’s cover
by the fractal-artist Ken Chil-
dress. 

All our cover art symbolizes some
point—usually unexplained. Yet
this book’s fractal cover art could
be misinterpreted and warrants
clarification: It hints at a creative
tension: that principles scale “self

similar” or fractally, but practices and processes may not—they are
context sensitive. “Fractal practices” that apply at all scales has a
seductively neat charm to it—compelling to those that yearn for sim-
ple solutions for complex problems. 

Consider the daily Scrum meeting: Answering the three questions is
an excellent way to share information needed for a team to take a
shared responsibility and manage themselves in a complex environ-
ment. But when you do not have a team-shared responsibility (com-
mon in a “higher level” organizational group), will that practice still
be useful? Perhaps…and perhaps not.

The lean principle of continuous improvement, and the Scrum prin-
ciples of transparency, and frequent inspection and adaptation,
these—perhaps—scale “fractaled up” from one person to larger sys-
tems. Situational-appropriate practices can be generated consistent
with fractal principles, but what is practiced for one team may not
work at the level of the enterprise.

Do not assume the executive group need a Sprint Backlog.

LIMITATIONS

We visited a client, sharing our experiences and coaching. When we
left, the client thanked us and said they had learned a lot. We

https://less.works For Gene Gendel only, id:gene-gendel



6

1 — Introduction

thanked them in return and said we also learned a lot. They
responded quite surprised…not realizing that we learn something
new every day and every time we work with large product groups.

There is still much for us to learn in these areas of large, multisite,
and offshore product creation and delivery. We welcome other sto-
ries, insights, and advice from our readers, especially in the areas
where you (the reader) feel that we were limited.

Some experiments in this book are relevant to general-purpose prod-
uct development, but most of our experience is in software-intensive
products that include specialized hardware, including factory auto-
mation, ship control systems, printers, and telecom equipment. Con-
sequently, the bias is toward software-oriented practices that may
help large-scale agile or lean development.

Finally, we apologize that we are not skilled enough to make this
book about big development…smaller.

ONWARDS

The last major chapter in the companion book was Large-Scale
Scrum. This is a bridging chapter that connects both books. So, we
start with a review of frameworks for Scrum when scaling… 

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Frameworks for Scaling 10

• Try…Large-scale Scrum FW-1 for up to ten 
teams 10

• Try…Large-scale Scrum FW-2 for ‘many’ teams 
15

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



9

Chapter

2
LARGE-SCALE SCRUM

One of the symptoms of an approaching nervous
breakdown is the belief that one’s work is terribly important.

—Bertrand Russell

(An expanded version of this was also the last chapter in the companion
book. It is a bridge that connects both books.)

Large-scale Scrum is Scrum. 

It is not “new and improved Scrum.” Rather, it is regular Scrum, an
empirical process framework that within an organization can
inspect and adapt to work in a group small or large. Large-scale
Scrum is a label—for brevity in writing—to imply regular Scrum
plus the set of tips that we have experienced and seen work in large
multiteam, multisite, and offshore agile development. These are
experiments to…experiment with, in the context of the classic
Scrum framework. 

Be dubious of messages such as “Scrum 2.0,” “Scrum++,” “Scrum#,”
“UnifiedScrum,” “OpenScrum,” or “new and improved Scrum that
should replace regular Scrum.” They may miss the point of empirical
process1 and the implications of Scrum. To quote Ken Schwaber, the
co-creator of Scrum:

There will be no Scrum Release 2.0…Why not? Because the
point of Scrum is not to solve [specific problems of develop-
ment]… Scrum unearths the problems caused by the complexity
and lets the organization solve them, one by one, over and over
again. [Schwaber07b]

1.  Based on transparency, inspection, and adaptation.

https://less.works For Gene Gendel only, id:gene-gendel



10

2 — Large-Scale Scrum

Regular Scrum is a simple framework that exposes problems. It is a
mirror. We are not suggesting that new ideas cannot arise and
improve the framework. But attempts to ‘improve’ it are most often
(1) avoidance of dealing with the weaknesses exposed when regular
Scrum is really applied, (2) conformance to status quo policies or
entrenched groups, (3) belief in a new silver bullet practice or tool,
(4) fuzzy understanding of Scrum and empirical process control, or
(5) an attempt by the traditional consulting companies to sell you a
process—“Accenture Scrum/Agile,” “IBM Scrum/Agile,” and so on.

See “Try…Lower 
the waters in the 
lake” on p. 407.

Large-scale Scrum, as regular Scrum, is a framework for develop-
ment in which the concrete details need to be filled in by the teams
and evolved iteration by iteration, team by team. It reflects the lean
thinking pillar of continuous improvement. It is a framework for
inspecting and adapting the product and process when there are
many teams.

FRAMEWORKS FOR SCALING

The following descriptions only emphasize what is noteworthy in the
context of scaling. Regular Scrum elements are not explained unless
we felt that reiteration was useful.2

For large-scale Scrum we suggest two alternative frameworks. One
is for up to about ten teams. The other goes beyond that—scaling to
at least many hundreds, if not thousands, of people. 

TRY…LARGE-SCALE SCRUM FW-1 FOR UP TO TEN TEAMS

The first framework is appropriate for one (overall3) Product Owner
(PO) and up to ‘ten’ teams. ‘Ten’ is not a magic number for choosing
between framework-1 and framework-2. The tipping point is context

2.  See the online Scrum Primer and Scrum Guide for basic concepts. 
Terminology point: This chapter (and book) uses iteration rather 
than Sprint because of the former’s familiarity and use in other iter-
ative and agile methods.

3.  See “Try…Map different scaling terms” on p. 134.

https://less.works For Gene Gendel only, id:gene-gendel



11

Frameworks for Scaling

dependent; sometimes less. At some point, (1) the PO can no longer
grasp an overview of the entire product, (2) the PO can no longer
effectively interact with the teams, (3) the PO cannot balance an
external and internal focus, and (4) the Product Backlog is so large
that it becomes difficult for one person to work with. When the PO is
no longer able to focus on high-level product management, some-
thing should change.

Figure 2.1 large-
scale Scrum, FW-1

See “Try…Prod-
uct Owner repre-
sentative 
(supporting PO)” 
on p. 138.

Before switching to framework-2, first consider if the PO can be
helped by (1) delegating more work to the teams and/or (2) identify-
ing PO representatives—who are usually within teams. Encourage
teams to directly interact with real customers to reduce handoff and
reduce the burden on the PO. Most project management should be

1 day

2-4 week
Sprint

Sprint
Retrospective

Sprint
Review

Joint
Retro-
spective

Product Backlog
Refinement

Potentially
Shippable
Product
Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h)
(2-4 h)

  (5-10% of Sprint)

(1.5-3h)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

https://less.works For Gene Gendel only, id:gene-gendel



12

2 — Large-Scale Scrum

done by the teams. The PO does not need to be involved in low-level
details; the PO should be able to focus on true product management.

Roles

! Product Owner

! (Feature) Teams

! ScrumMasters

Product Owner—The Product Owner role and responsibilities are
the same as in regular one-team classic Scrum. What are those?
There is some confusion, so it may be worthwhile to review…

[The Product Owner] owns the vision for the total product port-
folio, the business plan, the road map, and the dates. They are
accountable for the revenue stream… [and are] business-focused
on the product, so there is not a one-to-one mapping to teams.
[Sutherland08]

The Product Owner’s focus is return on investment (ROI).
[Schwaber04].

The PO needs more support from the teams as the number grows.

For more on the PO role, see the Product Management chapter.

(Feature) Teams—These are the normal teams in Scrum that take
whole customer-centric features and complete them. They are self-
managing and cross-functional teams. Because they are feature
teams, there should be a reduced need for the teams to interact or
coordinate, except at the level of integration of code. And that is
resolved through continuous integration; see the Coordination and
Continuous Integration chapters for more. That said, multi-team
requirements and design coordination are required in a large sys-
tem; see the Test, Requirements & PBIs, and Design & Architecture
chapter for experiments when scaling. 

Teams in Scrum are explored in the Feature Teams and Teams chap-
ters of the companion book.

https://less.works For Gene Gendel only, id:gene-gendel



13

Frameworks for Scaling

For large groups that have many component teams, see the
“Try…Transition from component to feature teams gradually” sec-
tion on page 391.

ScrumMasters—These are regular ScrumMasters that (1) act as
Scrum coaches for their teams and the Product Owner, (2) help their
team become a real team by facilitating conflict resolution and
removing obstacles, (3) help the Product Owner, (4) remind the team
of their goal, and (5) bring change to the organization so that overall
product development is optimized and maximum ROI is realized. 

In the context of scaling and multiteam development, there are
many opportunities for a team to require a representative at meet-
ings. Avoid designating a ScrumMaster as team representative.
Why? See the Coordination chapter for details.

Artifacts

! Product Backlog

! Sprint Backlogs

! Potentially Shippable Product Increment

Product Backlog—Some scaling discussions advise that each team
have its own “Product Backlog” or “Team Product Backlog.” This is
not correct. As the Scrum Guide [Schwaber09a] explains4:

Multiple Scrum Teams often work together on the same product.
One Product Backlog is used to describe the upcoming work on
the product. (emphasis added)

See the Test, Requirements & PBIs, and Product Management chap-
ters for suggestions on content and priority and for analyzing and
splitting large requirements.

Sprint Backlog—Each team has its own regular Sprint Backlog.

4.  The Certified ScrumMaster course [Schwaber05] also asserts one 
Product Backlog for many teams.

https://less.works For Gene Gendel only, id:gene-gendel



14

2 — Large-Scale Scrum

Potentially Shippable Product Increment—One perfection
challenge in Scrum is that the output of each iteration is a poten-
tially shippable product increment. This is not a difficult goal in a
small product group, but requires a multiyear journey of improve-
ment in a gargantuan group that has institutionalized weaknesses.
See the Planning and Inspect & Adapt chapters for improving the
Definition of Done and other things over time, until it is really poten-
tially shippable.

Is test the same in large-scale Scrum? No. Its role changes from just
verifying to prevention by concurrent engineering with both accep-
tance- and unit- test-driven development—and that blurs the dis-
tinction between test, requirements analysis, and design, so
that…testing is no longer testing. See the Test chapter.

Large-scale design issues for the shippable product are covered in
the Design & Architecture chapter.

Releasing a large product is often so laborious that many special
release activities are necessary; see the Planning chapter for more.

Note that the product increment is not per team. Rather, all teams
need to integrate their output into one potentially shippable incre-
ment—within the iteration. This means the teams need to continu-
ously integrate their code and coordinate in any other way required.
These issues are explored in the Continuous Integration and Coordi-
nation chapters.

Events

Sprint Planning—For scaling, see tips in the Planning and Prod-
uct Management chapters.

Daily Scrum—This is the usual Scrum event. The Coordination
chapter has scaling-relevant experiments.

! Sprint Planning

! Daily Scrum

! Product Backlog Refine-
ment

! Sprint Review

! Sprint Retrospectives

! Joint Retrospective

https://less.works For Gene Gendel only, id:gene-gendel



15

Frameworks for Scaling

Product Backlog Refinement (also called backlog ‘grooming’
or ‘refactoring’)—This is the normal Scrum activity of refining the
Product Backlog, taking five or ten percent of each iteration for the
team, often in a focused workshop. See the workshop suggestions in
the Test and Requirements chapters. For initial Product Backlog
refinement, see Planning.

Sprint Review—See the Inspect & Adapt and Coordination chap-
ters for experiments when scaling.

Sprint Retrospectives—Each team has its own individual retro-
spective. See the Inspect & Adapt chapter for relevant tips.

Joint Retrospective (optional but recommended)—This is useful
for improving the organization as a whole. See the Inspect & Adapt
chapter for more.

Other Elements

Definition of Done (DoD)—The DoD applies to all Product Backlog
items for all teams. See Planning for DoD and Undone Work tips.

TRY…LARGE-SCALE SCRUM FW-2 FOR ‘MANY’ TEAMS

Large-scale Scrum framework-2 builds on—rather than replaces—
framework-1. In essence, it is a set of framework-1 sub-groups.

Beyond ten teams (or even fewer), the Product Owner cannot effec-
tively work with all the teams or all the details in the Product Back-
log. At this point it is useful to identify the major requirement
areas and then define the Product Backlog with separate views
called Area Backlogs, each with its own Area Product Owner
(APO) and its own dedicated Teams. This is explored in the Require-
ment Areas chapter of the companion book, the Feature Teams
Primer in this, and the Product Management chapter.

https://less.works For Gene Gendel only, id:gene-gendel



16

2 — Large-Scale Scrum

Figure 2.2 large-
scale Scrum FW-2

Potentially
Shippable
Product

Increment

Product
Owner

Area
Product
Owner

Area
Product
Backlog

Product
Backlog

S
pr

in
t R

et
ro

sp
ec

tiv
e

S
pr

in
t R

ev
ie

w

Jo
in

t R
et

ro
sp

ec
tiv

e

1 day

2-4 week
Sprint

Product Backlog
Refinement

      

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

(2-4 h)

  (5-10% of Sprint)

(Feature)
Team

+
ScrumMaster

Sprint
Backlog

Daily Scrum

https://less.works For Gene Gendel only, id:gene-gendel



17

Frameworks for Scaling

see Feature 
Teams Primer 
chapter

Consequently, framework-2 of large-scale Scrum introduces some
new terms: Area Product Owner, Product Owner Team (all
APOs and the Product Owner), and the Area Backlog. To be pre-
cise, the Area Backlog is not a separate backlog or new artifact; it is
simply a view onto the Product Backlog for one area.

There are some changes to events in framework-2:

Sprint Planning—There is separate Sprint Planning for each
requirement area. See “Try…Scaling Sprint Planning Part One” on
p. 163.

Sprint Review—There is a separate Sprint Review for each area.
Each involves the Area Product Owner and teams. The Product
Owner may attend particular reviews that he or she is especially
interested in. It is otherwise the same as framework-1.

(Joint product-level) Sprint Review (optional, recommended)—
To focus on the overall product and increase visibility of overall
progress, a joint Sprint Review for the entire system is possible—
and recommended. See Inspect & Adapt for more. 

Joint Retrospectives (optional but recommended)—These may
happen at the area, site, and/or overall product level. 

CONCLUSION

Framework-1 of large-scale Scrum involves a wide variety of prac-
tices expanded throughout this book, including experiments in Test,
Design & Architecture, Multisite, and many other chapters. 

Framework-2, for bigger groups, builds on the practices applied in
framework-1 and adds requirement areas as the key organizational
unit for larger assemblies. Framework-2 is essentially a set of many
framework-1 units for each requirement area.

The remaining chapters—Multisite, Offshore, Contracts—provide
suggestions related to these common contexts for large-scale Scrum.

All these practices build on the thinking tools and organizational
tools explored in the companion.

https://less.works For Gene Gendel only, id:gene-gendel



18

2 — Large-Scale Scrum

RECOMMENDED READINGS

! The companion book, Scaling Lean & Agile Development:
Thinking and Organizational Tools for Large-Scale Scrum,
focuses on foundations supporting the practices in this book.

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Action Tools

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Thinking About Testing 24

• Customer-Facing Test 42

• Developer Testing 72

• Example: Robot Framework 83

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



23

Chapter

3
TEST

Two things are infinite: the universe and human stupidity;
and I’m not sure about the universe.

—Albert Einstein

“If we advocate cross-functional teams, then we ought to have a
cross-functional adoption team,” said the manager of a centralized
process-improvement group in a company with perhaps twenty thou-
sand engineers. She put her money where her mouth is and formed
a team consisting of an agile development expert, a process architect
and CMMI coach, a program management adviser, a programmer,
and a testing specialist who was well-versed in test automation and
TPI1 assessments.

The shift in thinking between traditional and agile development was
perhaps the most difficult for the testing specialist. He knew every-
thing about testing, yet when it was discussed in an agile perspec-
tive, it appeared like a foreign language to him. He spoke fluent test
automation; nevertheless, test automation in an agile context
sounded alien.

For the first few weeks, he tried to map agile concepts to his tradi-
tional frame of reference. But after a couple of months he said, “I
don’t believe anymore in what I had been teaching for all those
years.”

His experience is not unique. Changing to agile and lean develop-
ment powerfully alters the way to think about testing and how to do
testing. As a result, this chapter is one of the largest and comprises
these sections:

1.  Test Process Improvement (TPI) is a model for assessing test pro-
cesses. It can also be used as a road map for improvements [KP99].

https://less.works For Gene Gendel only, id:gene-gendel



24

3 — Test

! thinking about testing

! customer-facing tests

! developer tests

! Robot Framework example

THINKING ABOUT TESTING

This section covers topics related to testing in general, such as ter-
minology, assumptions, and organizational issues.

Avoid…Assuming testing means testing

Confused? We can imagine! The purpose of testing used to be fairly
clear—“Testing is the process of executing a program with the intent
of finding errors” [Meyers79]. This changes when adopting agile and
lean development.

Concurrent engineering necessitates parallelizing work. Dedicated
cross-functional teams encourage single-specialists to broaden their
expertise. These cause the purpose of conventional development
activities—such as test—to shift.

At the code level, practices such as (unit) test-driven development
blur the division between test and design as is made explicit by agile
leader Ward Cunningham’s statement:

“Test-first coding is not a testing technique.” [Beck01]

Acceptance test-driven develop-
ment fuzzes the distinction
between test and requirements
analysis. In their IEEE Soft-
ware article, “Test and Require-
ments, Requirements and Test:
A Möbius strip,” Martin and
Melnik argue…

https://less.works For Gene Gendel only, id:gene-gendel



25

Thinking About Testing

… for early writing of acceptance tests as a requirements-engi-
neering technique. We believe that concrete requirements blend
with acceptance tests in much the same way as the two sides of a
strip of paper become one side in a Möbius strip. In other words,
requirements and tests become indistinguishable, so you can
specify system behavior by writing tests and then verify that
behavior by executing the tests. [MM08]

This blurring of boundaries is fraught with fallacies. Adopting (unit)
test-driven development as a testing technique misses the point and
drives superficial adoption. Likewise, we regularly need to clarify to
testing groups that they cannot adopt acceptance test-driven devel-
opment without involvement of others.

Try…Challenge assumptions about testing

see Lean Think-
ing in the com-
panion book

As touched upon, testing discussions are rife with assumptions.
Challenge these! To be clear, we are not saying that these assump-
tions are false, but that leaving them unchallenged will limit think-
ing and the ability to improve. Deeply rooted in the Toyota culture is
a pillar of the Toyota way: continuous improvement by challenging
everything. Taiichi Ohno (a founder of lean thinking) said:

If you’re going to do kaizen continuously… you’ve got to assume
that things are a mess. Too many people assume that things are
all right the way they are… Kaizen is about changing the way
things are. If you assume that things are all right the way they
are, you can’t do kaizen. So change something!

Testing is no longer testing.

https://less.works For Gene Gendel only, id:gene-gendel



26

3 — Test

What assumptions? Some of the beliefs we bump into:

Leaving these assumptions unchallenged retains in-the-box think-
ing. As long as you believe “Testing can only start after coding is fin-
ished,” you will never consider innovative ways of doing testing
earlier. But once you are conscious of your assumption, you can
question it and ask, “Is there any way I could work differently so
that testing starts before coding is finished?”

Avoid…Complex testing terminology

A question we enjoy asking big product groups is, “What do you all
need to do before you can ship your product?”2

Long ago, we learned that we need two columns: one for ‘normal’
activities, and a larger one for testing activities. The first column
fills up with items such as coding, creating the users documentation,
developing hardware, pricing, and training sales personnel. The sec-

• testing must be independent and 
thus separated from development

• testing cannot start before coding 
is finished

• testing follows the sequence of (1) 
test case design, (2) test case exe-
cution, (3) test case reporting 
(a test waterfall)

• there must be a separate test 
department

• there must be a test manager

• testing must be done at the end
• testing must be “well planned”
• there must be a “testing strategy” 

and a “master test plan”
• 100% coverage is too expensive
• 100% test automation is too 

expensive
• testing requires a sophisticated 

test-management tool
• testing must be done by ‘testers’

2.  Or, “What does potentially shippable mean?” since the outcome of 
every Scrum iteration is called a potentially shippable product incre-
ment.

https://less.works For Gene Gendel only, id:gene-gendel



27

Thinking About Testing

ond column comprises test activities, test levels, or test classifica-
tions. Common entries in the second column are shown below:

See “Avoid…A 
complex require-
ments meta-
model” on p. 233.

Elaborate terminology is not harmful by itself but it often leads to
test-level specialists located in test-specialist departments. For
example, the integration-test specialists in the integration team,
and the performance-testing specialist in the performance-testing
team. These specialist groups cause organizational constraints and
department suboptimizations.

Of course, all of these tests are probably compulsory, but compli-
cated classification is occasionally confused with comprehension and
capability. As Nobel Prize winner Richard Feynman observed:

You can know the name of a bird in all the languages of the
world, but when you’re finished, you’ll know absolutely nothing
whatever about the bird… So let’s look at the bird and see what
it’s doing—that’s what counts. I learned very early the difference
between knowing the name of something and knowing some-
thing.

Try…Simple testing classifications

Straightforward terminology inspires intelligent behavior. Brian
Marick, an Agile Manifesto author and testing authority, created the
simple test categorization shown in Figure 3.1 [Marick03].3

unit test
functional test
stress test
interoperability test
load test
installation test
monkey test
documentation test

module test
system test
stability test
compatibility test
traffic test
security test
exploratory test
acceptance test

developer test
integration test
regression test
reliability test
performance test
capacity test
usability test
user-acceptance test

3.  Variants exist in most agile testing-related literature [CG09, 
Poppendieck06]; [Meszaros07] extends it to six categories.

https://less.works For Gene Gendel only, id:gene-gendel



28

3 — Test

Figure 3.1 Marick’s 
test categories

Marick defines two dimensions:

! technology versus business facing—tests done from end-user
perspective are business facing, whereas tests concerning the
implementation are technology facing.

! supporting the team versus critiquing the product—tests that
aid the development by, for example, discovering the require-
ments or driving the design are supporting the team, whereas
tests done with the conventional purpose of breaking the sys-
tem are critiquing the product.

These two dimensions lead to four quadrants (see Figure 3.1); we
added an example in each quadrant. The quadrants are useful for
thinking about testing because each quadrant has a distinct purpose
and characteristic. For example, technology-facing tests that support
the team are normally done by programmers during coding, while
customer-facing tests that critique the product are usually done by a
person other than the original author and are executed right after
some user-functionality is implemented.

Our classification is even simpler! Two groups:

! developer test

! customer-facing test

Developer test—these are usually created by the person who is
implementing. The purpose is to check whether the code is doing
what the programmer wants. If the tests pass, it means that the sys-

e.g.,
functional

e.g.,
exploratory

usability

e.g.,
unit

e.g.,
non-functional

business facing

technology facing
su

pp
or

tin
g 

th
e 

te
am critique product

https://less.works For Gene Gendel only, id:gene-gendel



29

Thinking About Testing

tem does what the developer intended—but this does not necessarily
mean it does what the customers wants.

Customer-facing tests—these test whether the requirements are ful-
filled. They are frequently implemented and executed by a person
other than the one who wrote the code. In this grouping, non-func-
tional tests are classified as customer-facing tests because non-func-
tional requirements for large systems are typically explicit and the
most important.

Avoid…Separating development and testing

Bill Hetzel, the organizer of the first software testing conference,4

defined in The Complete Guide to Software Testing six principles of
testing. The sixth principles—test independence—is a common
theme throughout the history of software testing. Glenford Meyers,
author of the first book5 on software testing, stressed the indepen-
dence of testing in Software Reliability:

Testing should always be done by an outside party who is some-
what detached from the program and project… System testing
should always be done by an independent group such as a sepa-
rate quality-assurance department. [Meyers76]

Why is separation important? Some frequently stated arguments:

! Programming is constructive whereas testing is destructive—
thus, programmers cannot test.

! If programmers test their own code, then they will change the
test according to the implementation.

! When testing is done by the same group as implementation,
then they can meet their deadline by skipping testing.

4.  Computer Program Test Methods Symposium, organized at Univer-
sity of North Carolina in 1972.

5.  The Art of Software Testing. In fact, Program Test Methods
[Hetzel73] actually was the first but was a collection of papers and is 
therefore often forgotten [GH88].

https://less.works For Gene Gendel only, id:gene-gendel



30

3 — Test

The first two arguments assume single-specialist teams rather than
cross-functional teams. The last argument suggests a quick fix for
the much larger problem of quality-destroying shortcuts when pres-
suring developers.

In these arguments, test independence is equated to test separation
from development. However, Hetzel clarifies the principle:

The requirement is that an independence of spirit be achieved,
not necessarily that a separate individual of group do the test-
ing. [Hetzel88] (emphasis in original)

This point is reiterated in Agile Testing in which the authors also
point out the suboptimization created by separating testing:

Teams often confuse “independent” with “separate.” If the
reporting structure, budgets, and processes are kept in discrete
functional areas, a division between programmers and testers is
inevitable. Time is wasted on duplicate meetings, programmers
and testers don’t share a common goal, and information shar-
ing is nonexistent. [CG09] 

How to achieve test independence in spirit without separating test-
ing? By writing tests before implementing code. The test cannot be
influenced by the implementation, because it does not exist yet. This
way, test-driven development achieves the spirit of independence
without separation of departments.

Avoid…Test department

In Scrum, the Team is cross-functional, consisting of at minimum
developers and testers. 

We sometimes work with organizations where the test department
‘gives’ the testers to the team toward the end of the iteration. Not
recommended.

Test independence does not mean independent testers.

https://less.works For Gene Gendel only, id:gene-gendel



31

Thinking About Testing

see Organization 
in the compan-
ion for more on 
matrix organiza-
tions

Alternatively, some organizations have a matrix organization where
‘resources’ are ‘allocated’ to a Scrum project. When finished, the
‘resources’ are returned to their traditional functional organiza-
tion—the pool. The tester is full-time on the ‘team’ but will return to
the test department. This can work though is not recommended.

Having testers return to their test department often inhibits them
from broadening their skill and learning different non-test special-
izations. It leads to testers being testers on the team—the waste of
working to job title—instead of team members with their main spe-
cialization being testing.

Avoid having a test department. Dissolve the test group and merge
with the development department to create a “product development”
department consisting of permanent cross-functional teams. Also:
See “Avoid…Separate analysis or specialist groups” on p. 234.

See “Try…Prod-
uct-level Defini-
tion of Done” on 
p. 170.

A product group we coached in India had two separate testing
groups—an “end to end” testing group and a non-functional one.
When adopting Scrum, they dissolved the end-to-end testing group
and merged them into the cross-functional teams. However, even
after six months, they were still unable to disband the non-func-
tional testing group, because of its narrow specialization, interre-
lated work, and lack of automation. Last time we visited the product
group, they were automating the non-functional tests and doing pair
testing to broaden their skills; they estimated it would take another
six months before they could dissolve the non-functional testing
group.

Integrating all testing into Scrum teams is a gigantic step for many
big product groups. They do not yet have the capability to take that
step for example, because they do not have any test automation. In
this case, they might temporarily keep the test department for the
testing that is not yet included in their definition of done—the
“undone unit.” As the organization improves—the Definition of Done
expands—this department will gradually disappear.

Every now and then we hear, “We cannot integrate our testing with
the development!” Organizations should be able to at least integrate
their ‘functional’ testing with the development teams when starting
Scrum. We do promote incremental improvement, but integrating

https://less.works For Gene Gendel only, id:gene-gendel



32

3 — Test

development and testing is the minimal baby-step an organization
should take for their journey to a lean and agile development.

Avoid…Test department

In Scrum, the Team is cross-functional consisting of at minimum
developers and testers. Déjà vu? These are frequently recurring top-
ics. We would like to repeat them. Goto p. 29.

Avoid…TMM, TPI, and other ‘maturity’ models

See
“Avoid…Believ-
ing CMMI 
appraisal or cer-
tification means 
much in creative 
R&D work” on 
p. 489.

“Maturity Goal 3.1: Establish a Test Organization.” [Burnstein02]

An organization without a separate testing department is not a very
mature organization—according to the Testing Maturity Model
(TMM). The Test Process Improvement (TPI) model of assessing
organizational maturity also assumes a separate test function. A
truly cross-functional organization would be immature? Wrong.

These ‘maturity’ models invariably measure a complex system by
using a simplistic model6 and therefore provide a limited perspec-
tive. But can these models not be used for uncovering improvement
ideas? Yes, they can. However, they by definition consist of so-called
“best practices”7 and rarely novel ideas—therefore, for improvement
ideas, look for other, non-“maturity-assessment” testing literature.

Avoid…ISTQB and other tester certification

We were giving an introduction to agile development at a client in
Poland. Most people appreciated the ideas we introduced but there
was an unusually strong resistance from the testers—which puzzled
us. At the next-day workshop we had the opportunity to dig deeper

6.  The models are often very complex, yet in comparison with the over-
all development system and potential development contexts they 
are simplistic.

7.  The second principle of the context-driven school to software testing 
is “There are good practices in context, but there are no best prac-
tices” [KBP02].

https://less.works For Gene Gendel only, id:gene-gendel



33

Thinking About Testing

into the resistance and found one difference between them and other
groups…they were ISTQB-certified testers.

We promote learning better testing skills. However, a problem with
the ISTQB8 test certification is that it seems to assume a traditional
environment. For example, “For large, complex or safety critical
projects, it is usually best to have multiple levels of testing, with some
or all of the levels done by independent testers” [ISTQB07]. It also
seems to promote narrow role definitions. For example, “The respon-
sibility for each activity [debugging and testing] is very different, i.e.
testers test and developers debug.”

Try…Testers and programmers work together

Separating testing from development often leads to a conflict
between programmers and testers. Testers—hunting for bugs—try
to prove that part of the program is faulty. Programmers—with their
ego in their code—defend themselves, their code, and the program.
Probably everyone who has been in the role of a tester in a test
department has experienced this.

In a Scrum team, ‘testers’ are no longer testers but ‘simply’ members
of the team—with testing as their primary specialization. ‘Program-
mers’ are any members of the team who can code. Every member of
the team has a shared goal and is held—as a team—accountable to
that goal. Team members with different primary specializations
have to cooperate in order to reach that goal.

Try…Testers not only test

see Lean in the 
companion for 
more lean wastes

Specialization is good—it increases depth of knowledge, productivity
and pride in workmanship. Single specialization is harmful—it cre-
ates constraints, silos, waste of handoff, and mental communication
barriers.

8.  ISTQB stands for International Software Testing Qualifications 
Board. Information can be found from www.istqb.org.

https://less.works For Gene Gendel only, id:gene-gendel

www.istqb.org


34

3 — Test

The tasks for a team never exactly map to the specialization of its
members. There might be fewer testing tasks than testing special-
ists and the tasks will not be balanced over the iteration.

The “person with testing as a main specialization” could become a
part-time member of the team or could just wait for testing work to
become available. Not recommended. Instead, he picks up a non-test-
ing task and gradually broadens his specialization. For example, he
could pair-program with other team members—pairing with a test
specialist is likely going to increase the code quality. Or, he might
support the Product Owner or “the technical writer.”

Try…Technical writer tests

See “Avoid…Sep-
arate analysis or 
specialist
groups” on 
p. 234.

“Can a technical writer be a part-time member of multiple teams?”
we are occasionally asked. We typically reply that it is possible, but
we suggest they have a dedicated technical writer9 on each team.10

“But, there is not enough writing work for a full-time writer on each
team” is the predictable answer. 

Technical writers usually work from a customer viewpoint. This per-
spective is especially useful when discovering requirements and cre-
ating tests. Use their viewpoint and make them dedicated team
members who, like other team members, can broaden their special-
ization. We sometimes joke that its easier to teach a technical writer
to test than to teach a tester to write proper English.

Try…Educate and coach testing

Good testing skills come with deliberate practice and time. Unfortu-
nately, especially in large organizations, testing skills are not
respected. “Everybody can do that” is their belief, so they offshore it
to a company that grabs people randomly from the street and
assigns them to test. Random people hired to bang away on an appli-

9.  With “technical writer” in this section, we mean “person with techni-
cal writing as a primary specialty.”

10. This is not a novel idea. In fact, it is similar to the Mercenary Ana-
lyst organizational patterns described in Organizational Patterns of 
Agile Software Development [CH05].

https://less.works For Gene Gendel only, id:gene-gendel



35

Thinking About Testing

cation routinely see their job as a temporary stage they need to go
through before advancing to a “real job.” They do not bother deepen-
ing their testing skills and so contribute to the false belief that test-
ing is trivial.

Testers who don’t bother to learn new skills and grow profes-
sionally contribute to the perception that testing is low-skilled
work. [CG09]

Falling into the “testing is trivial” trap is costly. Support testing
mastery by providing self-study material, education, and coaching.
We have listed some general testing-skills literature in the recom-
mended reading section.

Of course, providing education and coaching in testing is also impor-
tant to traditional environments. In cross-functional teams, this
becomes even more relevant as testers at times feel marginalized.
Not having a testing functional organization may impact the feeling
of career progression and their interest in testing. And this is exac-
erbated if all education and coaching is related to development or
management practices. High test turnover during an agile transi-
tion is not uncommon 

They split up their test organization… However, they put the
testers into the development units without any training; within
three months, all of the testers had quit because they didn’t
understand their new role. [CG09]

Similarly, in an agile transition we worked with, many testers left to
different products because they felt they had lost their identity and
did not know how to work in a Scrum team. Prevent this by develop-
ing the team’s testing expertise.

Try…Community of testing

see Organization 
in the compan-
ion for more on 
Communities of 
Practice

Education and coaching are not the only ways to grow expertise.
Open discussion and experience-sharing foster learning. One pur-
pose of a functional unit—a test department—is to enable this learn-
ing. Without it, other means for discussion and sharing experiences
are needed. For instance, by establishing a Community of Practice
for testing. People interested in testing—not only those with testing

https://less.works For Gene Gendel only, id:gene-gendel



36

3 — Test

as their main specialization—meet every now and then to learn from
each other or discuss via a mailing list or wiki.

Test managers can play an important role in this community. They
can use their expertise in testing and management and become CoP
coordinators—in accordance with the lean principle of manager–
teachers.

Rather than keeping the testers separate… [think about] a com-
munity of testers. Provide a learning organization to help your
testers … share ideas and help each other. If the QA manager
becomes a practice leader in the organization, that person will
be able to teach the skills that testers need to become stronger
and better able to cope with the ever-changing environment.
[CG09]

Try…Recognize project test smells

A smell is an indication that something is not okay. In xUnit Pat-
terns, Gerard Meszaros defined a set of project test smells:

! buggy tests—defects are found that should be detected by auto-
mated tests. They were not found due to mistakes in the tests.

! developers not writing tests—no automated tests are added
while the developers are implementing functionality.

! high test maintenance—a lot of time is spent maintaining the
tests. And, when new functionality is implemented, most of the
effort goes to updating the automated tests.

! production bugs—many defects slip through the testing.

Meszaros calls these “project smells” because they are at a high level
and are easily recognized by the management. Smells signal that
something is wrong—they are not the cause themselves.

We should look for project-level causes. These include not giving
developers enough time to perform the following activities
 ! Learn to write tests properly.
 ! Refactor the legacy code to make test automation easier and 

more robust.
 ! Write the tests first. [Meszaros07]

https://less.works For Gene Gendel only, id:gene-gendel



37

Thinking About Testing

see Lean Think-
ing and Systems 
Thinking in the 
companionasdfm

The causes of these smells can be discovered with root-cause analy-
sis using tools such as Five Whys or Ishikawa diagrams. Alterna-
tively, causal loop diagrams are a great technique for exploring
system dynamics.

Avoid…Separate test automation team

see Legacy code 
chapter

We advise organizations to invest in test automation and create a
safety net of regression tests around their legacy code so that they
can gradually work themselves out of the mess. They listen, and
then create a separate test automation team.

Sometimes the test automation team tries to solve all world prob-
lems with their testware, and the effort produces only a lot of paper.
But, sometimes we encounter a more pragmatic test automation
team that actually creates testware such as an automation frame-
work. They release every couple of months and everyone is
impressed with the results.

What happens then? New functionality is implemented. Interfaces
change and the automated tests fail. The development teams are
upset and tell the test automation team to fix the tests. Or, the
development teams comment out the tests because they do not
understand them. Or, the testware is handed over to the develop-
ment teams who discover it is unusable or incomprehensible and
ignore it. Or… we have experienced a dozen different scenarios in
organizations. It never worked.

Why? The assumption that is the creation of the testware is the diffi-
cult part and the most important thing. But other important aspects
are under-appreciated:

! Creating testware requires deep understanding of the product.

! Maintenance and evolution is more effort than initial creation.

! Insights obtained during testware creation is perhaps more
important than the testware itself.

! Creating testware without using it leads to complex and unus-
able testware.11

https://less.works For Gene Gendel only, id:gene-gendel



38

3 — Test

Considering these aspects, a separate automation team causes addi-
tional complexity, the wastes of handoff, and knowledge scatter. No
wonder it so often fails.

Test automation should be the responsibility of the cross-functional
development teams—just as testing is also their responsibility. 

There is no shortcut to learning how to automate; a separate auto-
mation team is a quick fix—and harmful in the long run.

Try…Feature team as test automation team

A separate test-automation team has many drawbacks but also
some advantages. They can create the initial test framework, pro-
duce training material, and support the teams. 

How to get these benefits without the drawbacks?

A feature team can temporarily take on the role of test-automation
team. Advantages:

! They have a deep understanding of the system.

! They can take a small feature so that the automation is con-
crete and realistic.

! The learning created during test -automation will not be lost.

! There is visibility into test automation as the items go on the
Product Backlog.

Try…All tests pass—stop and fix

Test fails? 

Stop and fix it! 

11. The same is true for creating reusable components without having 
used them.

https://less.works For Gene Gendel only, id:gene-gendel



39

Thinking About Testing

see Continuous 
Integration chap-
ter

“What about your automated tests?” we ask product groups when we
visit them. Sometimes they reply, “We have 800 automated tests of
which 200 are failing right now.” This is a huge queue and causes a
complete lack of transparency in the development. When automated
tests fail, fix them immediately.

Avoid…Using defect tracking systems during the iteration

Fix bugs discovered in the work underway for the iteration immedi-
ately. If it takes a lot of work, create a task on the Sprint backlog.
However, there is usually no need to log this bug in the defect-track-
ing system. Logging it would only create another work queue and
more delay—a waste.

See
“Avoid…Defect 
items in the 
Product Back-
log—unless few” 
on p. 225.

On the other hand, defects found outside the iteration—by an
‘undone’ unit or the final users—are normally tracked in a defect-
tracking system.

Try…Zero tolerance on open defects

Why do people insist on creating defects? They spend effort to insert
a defect, then they need to search for it, prioritize it, and finally fix
it. Not creating the bug in the first place would be a lot less work.

We do believe it is possible to write bug-free code. We do not believe
it is easy or common. Still, focus on preventing defects.

“Zero tolerance on open defects” is a guideline used by one of our cli-
ents. If they find a defect, they fix it as soon as possible. This pre-
vents

! effort spent on tracking many defects

! effort spent on prioritization

! delaying the learning that happens when fixing a defect

! spending extra time on fixing because the developers do not
remember the code anymore

https://less.works For Gene Gendel only, id:gene-gendel



40

3 — Test

Delaying the fixing of bugs is a false economy inasmuch as they need
to be fixed anyway and the cost will be higher. Moving bugs from
queue to queue is fooling yourself—they are still there!

Avoid…Commercial test tools

We once coached at a company building a commercial “automated
testing” tool—a GUI testing tool. The requested coaching? To learn
how to do automated testing for developing their automated testing
tool…

A gazillion commercial test tools are available. We rarely meet peo-
ple who are actually satisfied with any of them. Most are overly com-
plex and focus more on reporting and ‘management’ than on robust
test automation. Favor free and open-source tools—made by devel-
opers solving real problems—over commercial tools.

Overview of testing in an iteration

What are the test-related activities in an iteration? This section pro-
vides an overview of these activities and a road map for the rest of
the chapter (see Figure 3.2).

Figure 3.2 testing 
activities in an 
iteration

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



41

Thinking About Testing

Testing activities in a typical iteration:

Before the iteration

! The Team and the Product Owner clarify the requirements by
writing example tests in a requirements workshop.

! After the workshop, a team member moves the examples on the
wall to the team’s wiki. The team might already distill tests out
of these examples and write them in their A-TDD tool.

Sprint Planning

! Additional requirements clarification may happen during
Sprint Planning part one, resulting in new examples and tests.

! The tasks for implementing the examples/tests are created
during Sprint Planning part two. Tasks are created for

– distilling tests out of the workshop artifacts

– creating more automated tests for unanticipated scenarios

– implementing glue code between the A-TDD tool and the
system under test

– manual tests that cannot be fully automated (yet), such as
usability tests or expensive tests

– timeboxed sessions for doing exploratory testing

During the iteration

! Example tests are the driver for implementing requirements.

! Glue code between the A-TDD tool and system under test is
developed.

! Tests that pass are added to the continuous integration system.
Long-running tests are also continuously executed—though in
a longer cycle.

! Manual tests—such as exploratory or usability testing—are
done right after the requirement is implemented.

https://less.works For Gene Gendel only, id:gene-gendel



42

3 — Test

Sprint Review

! The examples and tests created during the requirements work-
shop are executed and demonstrated to the Product Owner and
other stakeholders.

Before release

! Expensive tests that could not run frequently are executed in a
final test run before the release. There should be no surprises
anymore during this test run, because the risks have been
tackled during the iterations.

CUSTOMER-FACING TEST

This section covers testing focused on whether the product fulfills
the customer requirements: customer-facing tests. Most experi-
ments in this section are also applicable in single-team development
but, from our coaching experiences, these are especially relevant for
large organizations with many people involved in the development.

Try…Acceptance test-driven development

Acceptance test-driven develop-
ment (A-TDD)12 is a collaborative
requirements discovery approach
where examples and automatable
tests are used for specifying
requirements—creating executable
specifications. These are created
with the team, Product Owner, and
other stakeholders in requirements
workshops. 

12. Acceptance test-driven development [Hendrickson08] is also 
known as agile acceptance testing [Adzic09] or story test- 
driven development [Reppert04].

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



43

Customer-Facing Test

A-TDD integrates some major ideas:

! tests as requirements, requirements as tests

! workshops for clarifying requirements

! concurrent engineering

! prevention instead of detection

Tests as requirements, requirements as tests—In Exploring
Requirements: Quality before Design, authors Gause and Weinberg
investigate the link between requirements and tests, “one of the
most effective ways of testing requirements is with test cases very
much like those for testing the completed system” [GW89]. Melnik
and Martin extend this further and claim, “As formality increases,
tests and requirements become indistinguishable. At the limit, tests
and requirements are equivalent” [MM08]. Tests must be precise in
order to be automatable. A-TDD exploits this formality and formu-
lates requirements by writing automatable tests.

See
“Try…Require-
ments work-
shops” on p. 240.

Workshops for clarifying requirements—The sixth agile princi-
ple reminds us “The most efficient and effective method of conveying
information to and within a development team is face-to-face conver-
sation.” Face-to-face requirement clarifications in workshops have
been used since the invention of Joint Application Design (JAD)
[WS95]. And these are also used in Rapid Application Development
(RAD) [Martin91] and the agile method DSDM [Stapleton03]. A-
TDD similarly exploits face-to-face conversation by using workshops
for formulating requirements-as-tests.

See “Try…Two-
week iterations to 
break waterfall 
habits” on p. 394.

Concurrent engineering—The authors of Concurrent Engineer-
ing Effectiveness define concurrent engineering as follows: “There is
a tight link between participants in the product development process,
such that they can perform much of their work at about the same
time” [FL97]. The main driver of concurrent engineering is shorter
cycle times in development. Two-week iterations are fast and there-
fore the team needs to conceive a way to work concurrently—
sequential development in a short iteration does not work. We have
seen teams invent A-TDD again and again simply because they had
to answer the question: “How can we perform our work at the same
time.”

https://less.works For Gene Gendel only, id:gene-gendel



44

3 — Test

Prevention rather than detection—In one of the first studies of
Toyota, A Study of the Toyota Production System, Singeo Shingo
writes “The purpose of inspection must be prevention; however, for
inspection to have that function, we must change our way of think-
ing”13 [Shingo89]. Similarly, in “The Growth of Software Testing,”
the authors identify five periods in the evolution of software testing.
They call the latest period “The prevention-oriented Period” and
state, “Asking test-related questions… early is often more important
to software quality and cost-effective development than actually exe-
cuting the tests” [GH88]. This is exactly what A-TDD strives to do.
When including people specialized in test in the requirements work-
shop, they can ask the test-related questions, and in that way
improve the requirements and prevent defects. The Total Quality
movement—an influence to Toyota and lean development—also pro-
motes prevention over detection. 

How does A-TDD work? Figure 3.3 presents an overview.

Figure 3.3 A-TDD 
overview

A-TDD consists of three steps:

1. Discuss the requirements in a workshop.

2. Develop them concurrently during the iteration.

3. Deliver the results to the stakeholders for acceptance.

13. In manufacturing the term ‘inspection’ is used instead of test.

discuss
in

workshop

develop
in

concurrence

deliver
for

acceptance

https://less.works For Gene Gendel only, id:gene-gendel



45

Customer-Facing Test

Discuss—Requirements are discovered through discussion in a
requirements workshop14. Participants of a workshop are the cross-
functional team, the Product Owner or representative, and any
other stakeholder who potentially has information about the
requirements. A common question to ask during such workshops is
“Imagine the system to be finished. How would you use it and what
would you expect from it?” Such a question results in examples of
use, and these examples can be written as tests—the requirements.
The workshop focus ought to be on discussion and discovery of
requirements more than on the actual tests.

Develop—At the end of the workshop, the examples are distilled15

into tests and all activities needed to implement the requirement
are done concurrently. These include

! making the glue code between the tests and the system under
test (“test libraries” and “lower-level tables” in Robot Frame-
work or ‘fixtures’ in Fit)

! implementing the requirement so that the tests pass

! updating architectural and other internal documentation
according to the working agreement of the team

! writing customer documentation for the requirement

! additional exploratory testing

See “Try…Prod-
uct-level Defini-
tion of Done” on 
p. 170.

The exact list depends on the product, context, working agreements,
and the Definition of Done.

Deliver—When the tests pass, the requirement is reviewed with the
Product Owner and other stakeholders. This might lead to new
requirements or a change in the existing tests.

A more detailed way of describing A-TDD is shown in Figure 3.4.

14. Gojko Adzic calls these specification workshops [Adzic09].
15. [Hendrickson08] considers distill a separate step in A-TDD.

https://less.works For Gene Gendel only, id:gene-gendel



46

3 — Test

Figure 3.4 A-TDD 
in more detail

Avoid…Traditional requirement handoff

The collaborative style of discovering requirements in A-TDD is con-
trary to conventional serial development—where an analyst clarifies
requirements by herself, documents them in specifications, and
hands these off to a developer and tester.

The developer implements the software according to his understand-
ing of the specification. Afterwards, the tester tests whether her
understanding of the specification is the same as the developer’s
understanding—which often has nothing to do with the real wishes
of the customer (see Figure 3.5).

The amount of waste—handoff, delay, partially done work, and
knowledge scatter—in this document-centric way of development is
extraordinary. Avoid it.

example tests

create

sy
st

emtest
libraries

at the end of the 
requirements workshop, 
the tests can be 
executed but they fail

tests may be automated 
before code is ready and 
become a criteria for 
when the item is done

test fails--item not doneite
m

 d
on

e

all activities needed to 
implement the item are 
done concurrently

Team

discuss
in workshop

develop
in concurrence

deliver
for acceptance

develop, test, 
architect, and other 
needed activities

https://less.works For Gene Gendel only, id:gene-gendel



47

Customer-Facing Test

Figure 3.5 conven-
tional document-
centric style of 
requirements 
clarification

Avoid…Thinking A-TDD is for testers

“Our testers do A-TDD” we sometimes encounter at clients. Testers
cannot “do A-TDD” because it is a whole-team technique—including
people with testing as their primary specialty. If not the whole team,
including the Product Owner or representative, is involved, then
whatever they are doing might be useful—but it is not A-TDD.

Avoid…Confusing TDD and A-TDD

Test-driven development is a developer technique that drives the
design by a microcycle of test–code–refactor. Acceptance test-driven
development is a whole-team technique that drives the requirement
discovery by a cycle of discuss–develop–deliver. Both write tests
first, but their goals are unalike. Don’t confuse them.

Analyst

specification

Developer Tester

writes the 
specification
to how she 
understands the 
requirements

implements to 
how he 
understands the 
specification

tests to how she 
understands the 
specification

Traditional document-centric test only tests whether the 
interpretation of the specification of the tester is the same 
as the interpretation of the developer. This frequently has 
little relationship with the goal of the user. It promotes 
hand-over, delay, and faults due to misinterpretation and 
misrepresentation of requirements.

https://less.works For Gene Gendel only, id:gene-gendel



48

3 — Test

Both names unfortunately suggest testing techniques. Yet, even
though many16 have attempted to change the names, these are the
most commonly used terms—and thus we decided to use them.

Try…A-TDD match the iteration flow

The steps in A-TDD map nicely to the Scrum iteration cycle17

(Figure 3.6).

Figure 3.6 A-TDD 
steps mapped to 
Scrum iteration

Discuss in workshop—Before the detailed Sprint Planning18, the
team, Product Owner, and other stakeholders clarify the require-
ments collaboratively in a workshop.

Develop in concurrence—Tasks for implementing the tests/require-
ments are created in the detailed Sprint Planning and implemented
during the iteration. All activities happen “at about the same time.”

Deliver for acceptance—The working product increment—the pass-
ing acceptance tests—are delivered for acceptance to stakeholders
and discussed together in the Sprint Review.

16. For example, behavior-driven development [North03], story test-
driven development [IXP04], agile acceptance testing [Adzic09], 
example-driven requirements [Shore03], or example-driven develop-
ment [Marick03]

17. The Scrum iteration cycle and the A-TDD cycle are variants of the 
Deming/Shewhart PDCA cycle [Deming82].

18. In Sprint Planning part one or Product Backlog refinement.

requirements workshop:
clarify the requirements by 
writing example tests

iteration n iteration n+1

. . .

Sprint Planning:
create tasks for implementing 
the requirements

iteration:
develop in concurrence

Sprint Review :
deliver
for acceptance

https://less.works For Gene Gendel only, id:gene-gendel



49

Customer-Facing Test

A-TDD—Discuss in Workshop

The workshop-related experiments
are strongly connected to those in
the Requirements chapter. This sec-
tion covers A-TDD-oriented topics;
the Requirements chapter covers
requirements workshops in more
detail.

Try…Discuss in workshop during Product Backlog refinement

The team and Product Owner ‘inspect’ the Product Backlog during
the Product Backlog refinement to ensure it is in a good shape. This
activity includes the following:

! Estimate and clarify newly added Product Backlog items.

See “Try…Split 
Product Backlog 
items (such as 
stories)” on 
p. 247.

! Split large items into smaller ones so that they can be selected
for implementation.

! Clarify the imminent items so that the team understands them
well enough to implement them.

The clarification of imminent items can be done through A-TDD-
style requirements workshops. Just to be clear, Product Backlog
refinement is not only a A-TDD requirement workshops but it can be
part of the refinement activity. Other activities include estimation
and splitting.

Try…Clarification over writing tests

A-TDD is for collaboratively clarifying requirements. The emphasis
is on communication, collaboration, and learning through examples
and tests. Increased understanding is the goal, tests are the means
of getting there. The appropriately titled book on this subject, Bridg-
ing the Communication Gap stresses:

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



50

3 — Test

[Acceptance-test driven development] is not a programming
technique: it is a communication technique that brings people
involved in a software project closer. [Adzic09]

People are often so preoccupied with the tangible outputs of a work-
shop—the tests—that they forget about the intangible outcomes—
the learning. Understanding and clarity of the requirements is the
key output of a requirements workshop; the tests are an expression
of these.

see False Dichot-
omy in the com-
panion

This is not a false dichotomy. The tests are important and this tech-
nique is called acceptance-test-driven development. Without tests, it
would be just a requirements workshop—but avoid confusing means
with ends.

Try…Use examples

“Can you give me an example?”

This question can suddenly transform a vague and abstract discus-
sion into a clear and concrete one. When discussing new products,
people tend to end up talking in concepts and abstract terms. They
talk past each other without understanding—they are stuck. Asking
for examples brings the discussion back to reality.

For example, we hear assertions such as “The system needs to
recover from error situations.” This is vague, so we ask for examples
that transform the discussion. This could be “When we unplug the
cable, the system should not crash”—which is concrete and under-
standable. Examples are also used for further clarification, such as,
“How should the system recover if we remove a unit from the system
while it is running?”

Examples are not just useful for clarifying requirements but also for
clarifying ways of working. “We could never automate all our tests!”
is something we would follow up with “Can you give me an example
of a non-automatable test?” and that moves the discussion away
from principle and into practice.

https://less.works For Gene Gendel only, id:gene-gendel



51

Customer-Facing Test

Figure 3.7 relation-
ship between 
examples, tests, 
and requirements

Figure 3.719 shows the relationship between examples, require-
ments, and tests20. During requirement workshops, use examples to
elaborate requirements and transform these into tests.21

Try…Product Owner writes tests

Examples and tests express the requirements, and their leading
author ought to be the person who knows these requirements best—
usually the Product Owner, representatives, or future users. Not
someone specialized in testing.

Should people specialized in testing not be involved? On the con-
trary—they play an essential role. They are experts at critiquing the
system, which is exceptionally useful during requirements clarifica-
tion. They are asking the “what if” questions that the Product
Owner might not have considered—and that way prevent building
the wrong system.

Avoid…‘Optimizing’ the requirements workshop

When we were discussing A-TDD with a large product group, they
noted, “We improved the A-TDD workshop. Only three people partic-

19. Diagram from [Adzic09] who credits Jennitta Andrea for creating it.
20. In this chapter, we use the words test, example, and requirement 

almost interchangeably.
21. Talking about examples also might help when you encounter people 

who say, “I will not write tests, I’m a Product Owner.”

examples test

requirements

become

elaborate ve
rif

y

https://less.works For Gene Gendel only, id:gene-gendel



52

3 — Test

ipate: the Product Owner, the ScrumMaster, and a specialist in the
team.” We asked them how the other team members would under-
stand the requirements so that they can implement them and the
answer was, “The specialist will tell them.” They ‘optimized’ the
workshop by reintroducing traditional analyst-team handoff.

Avoid…Computers and projectors in the workshop

See
“Try…Require-
ments work-
shops” on p. 240.

Computers suck the lifeblood out of a workshop. They become the
center of the discussion. Other than reference checking, avoid the
need to ‘optimize’ the workshop by typing directly into the computer.
Instead…

Try…Condense workflow in business rules22

Requirements clarification in workshops often starts with abstract
concepts, and then when examples are put forth, it moves into work-
flow discussions—”When using the system I’d do step one, then step
two, and then expect X.”

These workflow examples may end up being similar with only a
slight variation in one or two steps. The workflow tests contain hid-
den business rules, which can be extracted and put into a data-
driven test. This centers the discussion on domain clarification and
reduces complexity by removing irrelevant details.

The Robot Framework example section in this chapter shows some
examples of business-rule tests. 

Try…Test the walls

The rightful home of tests is on the wall—well, with a whiteboard
between the tests and the wall. Big whiteboard spaces promote col-
laboration—the purpose of the workshop. The whiteboard sketches
are captured with photos. After the workshop, the tests may be dis-
tilled and written in a tool.23 See Figure 3.8.

22. We use the term “business rules” to be consistent with existing liter-
ature [MC05, Adzic09, Evans04] though the term is awkward and 
not frequently used in the context of some product development.

https://less.works For Gene Gendel only, id:gene-gendel



53

Customer-Facing Test

Figure 3.8 tests on 
the wall

Try…Use table format

Expressing business rules in tables makes them more comprehensi-
ble and assists in finding missing cases. Tables inspire clear think-
ing. Influential computer scientist David Parnas is a long-time
promoter of tables for documenting requirements.

23. There is a trade-off between doing this immediately—when the 
information is fresh—and delaying till near the actual imple-
mentation—avoiding potential waste. 

https://less.works For Gene Gendel only, id:gene-gendel



54

3 — Test

[When documenting requirements,] writing, understanding, and
discovery go on at the same time… Tabular notations are of
great help in situations like this one. One first determines the
structure of the table, making sure that the headers cover all the
possible cases, then turns one’s attention to completing the indi-
vidual entries in the table. [JPZ96]

Try…Workflow tests

Extracting business rules and using data-driven tests is not always
possible or desirable. Some requirements are just better expressed
in a workflow (multi-step scenario) example. Also, data-driven busi-
ness-rule tests can often be complemented with workflow examples
that, in a way, link them.

Caution: When most of your tests are workflow tests, then you prob-
ably missed some business rules.

The Robot Framework example at the end of the chapter shows an
example of a workflow test.

Try…Typical workshop agenda

How is an A-TDD requirements workshop structured? We fre-
quently use the following agenda:

1. Introduction—the Product Owner welcomes everybody to the
workshop and explains its purpose.

2. Selection—the team and Product Owner pick the items from
the Product Backlog that will be worked on.

3. Overview—the Product Owner or representative gives a short
overview of the selected requirements.

4. Diverge—the team splits into two or three subgroups that each
pick an item and start writing examples on whiteboards. The
Product Owner and representatives rotate between subgroups.

5. Merge—the subgroups combine and one at a time share their
work with the whole group.

https://less.works For Gene Gendel only, id:gene-gendel



55

Customer-Facing Test

6. Repeat—the diverge-merge cycles are usually 30–45 minutes
long. One workshop contains multiple cycles.

7. Conclude—the Product Owner summarizes the work. Then,
there is a brief reflection on the workshop.

8. Distill—participants take photos of all the work and put them
on the wiki. They might already distill some tests and docu-
ment them in their A-TDD tool.

A-TDD—Develop in Concurrence

After the requirements are clear,
they need to be implemented. The
different activities required for
implementation are done in concur-
rence.24 The team extends the tests
while at the same time implement-
ing the code, writing the documenta-
tion, updating the design
description, and so forth.

Try…Distill the tests

Many examples are created during the requirements workshop. Not
all of these become tests—only the essential parts of the require-
ments are distilled into tests. The nonessential or duplicate parts
are discarded—they have served their purpose for learning during
the workshop.

How to distill tests from examples? Some techniques:

! Duplication—Remove duplication among examples by writ-
ing the tests in a different form. For example, a set of workflow
tests might be combined into a business-rule test. Most of this
should have happened during the workshop.

! Equivalence class—Some examples are part of the same
equivalence class and therefore it is enough to keep one test.

24. “In concurrence” has a double meaning: 1) at the same time 2) in 
agreement.

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



56

3 — Test

People with a testing speciality are especially valuable since
equivalence-class partitioning is a classic testing technique.

! Acceptance—Since not all examples are of equal importance,
ask the Product Owner, “What set of examples do you want to
see running at the end of the iteration?”

Avoid…Multiple requirement descriptions

The tests act as the living documentation of the requirements. Addi-
tional documents for the same requirements are probably redundant
waste. They are a duplication of the same description in a different
format, leading to additional cost for maintaining them.

At the risk of being redundant: When the requirements are clarified
by tests, then additional specification is a redundant waste. Avoid
other requirements specifications when there are tests—executable
specifications.

When additional clarification of the requirement is needed, then A-
TDD tools such as Fit and Robot Framework support adding clarifi-
cation text and images around the tables. This clarification is not in
a separate document but is stored along with the test.

Try…Use A-TDD coaches and facilitators

A-TDD is easy to do, and hard to adopt. It requires challenging
deeply rooted assumptions and changes in habit. An (external) coach
with experience in A-TDD and organizational change is frequently
needed for this. Find a coach.

It is important to realize that the skills of a good A-TDD coach are
different from those of a good TDD coach. TDD coaching is more
technical, and focused on individual developers, whereas A-TDD
involves the whole team. In additional to technical skills, a good A-
TDD coach has excellent workshop-facilitation skills.

https://less.works For Gene Gendel only, id:gene-gendel



57

Customer-Facing Test

Try…Fit or FitNesse

Fit is perhaps the most widely used tool for A-TDD. It was developed
by Ward Cunningham in 2002. Fit tests consist of HTML tables that
are executed by a piece of glue code—called a fixture. Micah and Bob
Martin created a extension of Fit called FitNesse in which the tables
are written in a wiki. Fitnesse also includes Slim—a slimmer execu-
tion model that offers better portability and the flexibility to explore
new test syntaxes. More information can be found in the recom-
mended readings at the end of this chapter.

Try…Robot Framework

Robot Framework originates from Nokia Siemens Networks and was
developed by Pekka Klärck. It was open-sourced in 2008. Robot has
some similarities to Fit, such as tabular structured tests and glue
code between the tables and the system. However, it also has unique
features such as layering tables (user keywords). The last section of
this chapter shows examples of Robot Framework tests.

Try…Other A-TDD compatible tools

Robot Framework and Fit are not the only tools suitable for A-TDD.
Any tool that allows for customer-understandable, executable speci-
fications is okay. Most such tools are open source…

For example, Cucumber25 uses the “behavior-driven development”-
style of specifications—given X when Y then Z. Cucumber tests are
readable sentences in plain text. Concordion26 reads specifications
written in HTML that are instrumented with tags. These tags are
used by the fixture classes to execute the specification.

Avoid…Conventional test tools for A-TDD

Some product groups we worked with try to use their conventional
test tools such as Lisp-based scripts or TTCN27 for A-TDD. This

25. Cucumber can be found at http://cukes.info.
26. Concordion can be found at http://www.concordion.org.

https://less.works For Gene Gendel only, id:gene-gendel

http://cukes.info
http://www.concordion.org


58

3 — Test

invariably fails. Why? A-TDD-style tests are created so that the Prod-
uct Owner or user can read and understand the tests. But the test
format—scripts—of these conventional tools are created for testers
and are thus unsuitable for documenting requirements. It is nearly
impossible to involve the Product Owner in writing examples using
such tools.

Try…Wrap conventional test tools under an A-TDD tool

Should you throw away all conventional test tools when adopting A-
TDD? Perhaps not.

A graphics product group we worked with had spent years building a
scripting language for automating their tests. It would take an addi-
tional few years to develop the glue code (test libraries or fixtures)
between the A-TDD framework and their system under test—most
of it is the same work they did with their scripting language.

An alternative is to let the glue code wrap their test scripting lan-
guage and reuse their earlier work. Conventional test tools are not
necessarily bad tools, but they just provide the wrong format—the
wrong language—for executable specifications.

For example, Robot Framework has wrappers for Selenium and
Jemmy28.

27. TTCN—testing and test control—is a programming language used 
for testing protocols and web services.

28. Selenium is a web application testing system; more info at seleni-
umhq.org. Jemmy is a Java UI testing tool; more info at 
jemmy.dev.java.net.

https://less.works For Gene Gendel only, id:gene-gendel



59

Customer-Facing Test

A-TDD—Deliver for acceptance

The code is implemented and all the
tests pass. What’s next? The A-TDD
cycle, like Scrum, contains an
inspect–adapt cycle where the
results are delivered to stakehold-
ers, who inspect the outcome using
the tests and decide how to pro-
ceed—which requirements to imple-
ment next. 

Try…Show tests in Sprint Review

In a Sprint Review, the team demonstrates visible progress to the
Product Owner by showing the output of the iteration. 

We worked with some groups that defined the demo steps during the
Sprint planning. The team would spend an inordinate amount of
time in demo preparation.29 A complete waste.

During Sprint Planning, an alternative is to define the examples
that need to pass and show the progress by using these tests in the
Sprint Review.

Avoid…Confusing acceptance and user-acceptance test

In the ideal situation, acceptance test and user-acceptance test are
the same, but…

Agile development literature uses the term “acceptance tests,”
where we use the term “customer-facing tests.” However, in tradi-
tional development, “acceptance test” often means “user-acceptance
test,” which might be different. Avoid misunderstandings.

29. Scrum actually defines no more than one hour of preparation time 
for the Sprint Review [Schwaber04].

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



60

3 — Test

Figure 3.9 UAT is a 
subset of 
acceptance tests

Figure 3.9 expresses the rela-
tionship in a diagram. User-
acceptance test (UAT) is a part
of acceptance testing in agile
development. But acceptance
test might also include non-UAT
tests such as traditional func-
tional or system test created by
the team.

See “Try…Prod-
uct-level Defini-
tion of Done” on 
p. 170. 
See “Try…Man-
ual (if you must) 
UAT each itera-
tion” on p. 463.

Ideally, all the acceptance testing—including UAT—is done within
the iteration. However, getting the UAT in the iteration may be diffi-
cult because it requires active end-user involvement and not all cus-
tomers are ready for that. In that case, UAT is excluded from the
Definition of Done until the product group improves their relation-
ship with the customer so that they can expand their Definition of
Done.

Manual Tests

Agile developers emphasize the
importance of automated tests. With
short cycles, manual regression test-
ing is nearly impossible. Does that
mean there is no manual testing at
all? No. Some manual testing is still
recommended, though such testing
differs from the traditional script-
based manual testing.

Try…Automate all tests

Product groups often claim “It is impossible to automate tests
related to a lost network connection” or “You can’t automate tests
related to hardware failure” Our answer usually is “No, it is not” or
“Yes, you can.”

Elisabeth Hendrickson, the author of the mini-book Exploratory
Testing in an Agile Context, dares to state that:

acceptance tests

user
acceptance

tests

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



61

Customer-Facing Test

I do think that if you can write a manual script for a test, you
can automate it. [Hendrickson09]

It may be difficult to automate a test in exactly the same way as it
would be carried out manually. For example, it is nearly impossible
to remove the network cable automatically in a connection-lost test
case.30 Therefore, the automated test is usually done in a different
way. Instead of the cable being physically detached, the automated
test instructs the driver to respond as if the cable were removed.

Is automating all tests worth it? According to Hendrickson:

If it’s a test that’s important enough to script, and execute, it’s
important enough to automate. [Hendrickson09]

Why is this? Iterative and incremental development implies that
code is not frozen at the end of the iteration but instead has the
potential to be changed each iteration. Therefore, manual regression
testing would mean rerunning most of the manual test—every itera-
tion. Automating the tests therefore pays back quickly.

Especially in large-scale development with feature teams and
shared code-ownership, the safety net provided by automated tests
is of paramount importance. Automating tests is well worth the
effort.

Try…Manual tests

Automating all tests might not be worthwhile or even possible.
These tests may need to be done manually:

! Tests requiring human opinion and creativity—A person is
needed to judge whether the interface looks good—usability
testing. Exploratory testing by definition needs someone to
decide the next step to explore.

! Tests requiring physical movement—For example, tests with
the system in different physical configurations. These can be

30. This is not true. It is possible, but requires ingenuity because it 
would involve robots. For example, a test lab at Xerox had a robotic 
arm that removed paper from a printer.

https://less.works For Gene Gendel only, id:gene-gendel



62

3 — Test

automated with simulation, but the real configuration might
be needed for the final test run.

! Expensive tests—Running capacity tests on the production
environment may be too expensive and is therefore done only
once or twice. This delays risk. These risks should be tackled
early with cheaper tests—for example, running capacity tests
on a simulated environment—so that running the expensive
test is merely a final check.

No false dichotomy: Try to automate all tests, but do not forget to do
the manual tests when needed.

Try…Write “A-TDD tests” for non-automatable requirements

Tests that cannot be automated (yet)—because they are expensive or
require physical movement—can still be clarified using tests and
examples in an A-TDD requirements workshop. They can also be
written as automated tests in an A-TDD tool. The only difference
between these and fully automated tests is that the glue code
between the test and the system under test is not (yet) implemented.
Partially automating tests has a few advantages:

! These difficult tests are no different from a requirements-clari-
fication perspective and therefore are treated the same.

! All tests, automated or not, are stored and managed in the
same way.

! They can easily be automated once someone discovers how.

Caution: This is not an excuse to avoid automating tests “because we
are rushed.”

Try…Exploratory testing

Testing can be used very convincingly to show the presence of bugs,
but never to demonstrate their absence.

—Edsger Dijkstra

https://less.works For Gene Gendel only, id:gene-gendel



63

Customer-Facing Test

In Perfect Software and Other Illusions about Testing, Gerald Wein-
berg calls it, “The Exhaustive Testing Fallacy, that it’s possible to test
everything!” [Weinberg08]. It is not. The number of possible scenar-
ios to test is infinite and therefore automating all tests means infi-
nite automation effort. Instead, automate all the anticipated tests
and spend time as efficiently as possible on manual exploratory test-
ing to find unforeseen cases.

Figure 3.10 over-
view of exploratory 
testing

What is exploratory testing? “Simultaneous learning, test design,
and test execution” [Bach03]. This is in contrast to traditional
scripted testing (see Figure 3.1131) where test-case design and exe-
cution are separated and sequential steps—first design then execu-
tion. Exploratory testing32 aims at fully utilizing human creativity
during test execution, using feedback and observations rather than
mindlessly following a script. In exploratory testing, the tester is
exploring the system, learning about it and using that information
to make test-design decisions (see Figure 3.10). It is best explained
by an example.

31. This figure is based on James Bach and Michael Bolton’s rapid soft-
ware testing course material [BB09].

32. The amount of exploration during testing is a scale from blindly exe-
cuting a script to just exploring. We use the term exploratory testing
for exploring the system guided by a charter.

determine
next step
(design)

do an 
experiment
(execute)

observe
the result

(learn)

Charterguides

heuristics
human creativity
test techniques

simultaneous exploration and learning cycle

knowledge and 
learning for

further improvement

results in

https://less.works For Gene Gendel only, id:gene-gendel



64

3 — Test

Imagine that Gita is testing a 2D modeling application. First, she
defines the goal of her test session—in exploratory testing this is
called a mission or charter.33 Her charter is “Explore changing
shapes by dragging the control points.” She takes a shape, drops it
on the canvas, and creates a couple of control points on it. She drags
one of them and observes what happens. Based on this observation
(learning), she determines the next step (design) and performs it
(execute). The shape takes its new form, though she notices—while
dragging the control points—that the shape temporarily took a form
that it probably should not have. Therefore, she continues dragging
it and moving it around until she can reproduce the accidental
transformation.

In the example, there is no detailed preconceived script or test case
but instead an area of focus—a charter. The first step is to observe
the system, and the next action is determined from that observa-
tion—this is test design. All traditional test techniques and heuris-
tics are applied during this design step.

Figure 3.11 differ-
ence between 
scripted and 
exploratory testing

Try…Plan and time-box exploratory test sessions

If it is possible to explore a system indefinitely, then how plan explo-
ration in an iteration?

33. To be clear, exploratory testing does not mean aimlessly banging on 
a keyboard.

scripts

product

product

test
ideas

scripted testing exploratory testing

https://less.works For Gene Gendel only, id:gene-gendel



65

Customer-Facing Test

Exploratory testing can be planned and managed through sessions
[Bach00]. An exploratory testing session is a timeboxed period,
guided by a session charter, for exploring the system. In Sprint Plan-
ning the team answers the question, “How much time do we want to
invest in exploratory testing?” and then creates session tasks
accordingly.

When a team member picks up an exploratory testing task, he
explores the system until the time is up. Then he decides whether it
was enough or not. If more time is needed, he adds a new explor-
atory testing task—with timebox and charter—to the Sprint Back-
log.

Continuously Run All Tests

Q: When to run the automated tests?
A: All the time.

This section covers experiments
related to automated test execution
and several connected ideas such as
maintaining tests and traceability.

Try…Continuous Integration System

If the automated tests need to be run manually, that means they are
not automated. Automated tests ought to run automatically. This is
exactly what a continuous integration system does. CI is a big topic
and has a dedicated chapter: Continuous Integration.

Try…Maintainable tests

“Automated tests will increase our test maintenance load” is a com-
mon objection we hear. Test maintenance will cost some effort, but a
few straightforward techniques can minimize this cost:

! remove duplication in and between tests

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



66

3 — Test

! delete tests

! do not test through the UI

! run tests frequently

The next sections dive into more detail.

Try…Refactor 
tests

Avoid…Duplication in and between tests

Code duplication causes extra complexity, obscurity, and defects—
resulting in extra maintenance effort. This is as true for test code as
it is for production code. Avoid this by removing the duplication.

Workflow tests are a common cause of duplication. They often con-
sist of one mother scenario and multiple derived cases with only
slight variations in them. When one step changes, all these workflow
tests need to be updated. This duplication can be avoided by data-
driven tests that focus on business rules or by separating the dupli-
cation into test libraries or fixtures.

We coached a team that made a common mistake—they delayed
their test automation until the end of the iteration. Four days
remaining and only automation tasks left. In the previous itera-
tions, these tasks were done by the test specialist, but now they had
to be done by the whole team.

They started with a one-day workshop in which the one specialist
coached the other team members. After that, they split into two
pairs and one triplet working in parallel on automating the tests.
Something interesting happened: The team members who were
experienced in programming complained about the extra effort
needed because of the duplication in the tests. Previously, none of
them had noticed it and the test specialist—who did not have much
programming experience—never cared. Now that the whole team
was involved, they cared and the quality of the tests improved
immensely.

Try…Delete tests

Tests serve multiple purposes. They act as requirements, as verifica-
tion, and as a safety net preventing system regression.

https://less.works For Gene Gendel only, id:gene-gendel



67

Customer-Facing Test

When an existing test is not needed anymore—because it is a subset
of another test—then delete it. Leaving unnecessary tests brings no
benefit but still increases maintenance effort and lowers test execu-
tion speed.

Avoid…Test through the UI

User interfaces (UIs) tend to change frequently. Running your tests
through the UI makes them vulnerable to these changes—even
when there is no change in test logic. This increases the test mainte-
nance effort.

Therefore, avoid testing through the UI and instead call the applica-
tion logic directly through an API. Another advantage of doing this
is that it speeds up your test since testing through the UI is slow.

Try…Run tests frequently

Long ago, we worked with a large group following waterfall develop-
ment. Traditional test automation advice is to select and automate
only the most important cases—with a separate automation team—
after the release. So they did. At the end of the next release, they
executed the tests and… they all failed. Updating them would take
much time, so they decided to do all testing manually.

see Continuous 
Integration chap-
ter

Executing tests once or twice a release seems efficient—fewer CPU
cycles are wasted—but much will have changed and therefore many
fail and cause a large batch of maintenance work. Alternatively, exe-
cuting tests frequently—using a continuous integration system—
uses more CPU cycles but results in less maintenance work since
the effort to fix failing tests is small and straightforward. If you have
a high test-maintenance load, chances are you are not executing the
tests frequently enough.

Avoid…Traceability

“What about traceability?” we are asked every now and then. Trace-
ability34 seems a universal good thing—like happiness—though few
are able to explain why they must have traceability.

https://less.works For Gene Gendel only, id:gene-gendel



68

3 — Test

When they can explain why, we then explore alternatives for reach-
ing the same goal. A common goal of traceability is to “discover
which tests need to be run when a certain requirement changes.” An
alternative is to automate all tests so they can all be executed—
eliminating the need to know which one must be run.

Traceability is a solution to a problem, and there may be simpler—
less effortful—solutions.

Try…Traceability

Traceability is not a universal bad thing—like pollution—either.
Avoiding it may not be an option, because it is sometimes required
by standards or contracts. The key problem in achieving traceability
is that keeping the needed information up to date costs a lot of work.
Automation can help here.35

Once tests and requirements are the same thing, then traceability
between them is trivial. Traceability to code is more difficult but can
be automated with tags in the tests or in the SCM system.

One of our clients builds nuclear-power con-
trol systems. They were audited by NUPIC
(a USA nuclear agency) because they were
the first project using agile development in
the nuclear industry. The audit result: “no
findings” (somewhat rare in a nuclear
audit). NUPIC even used them as an exam-
ple to others of how development should be
done. Traceability was a must in this indus-
try. How did our client achieve traceability? Requirements-as-exe-
cutable-tests was a key solution; the auditor understood that this
solved most traceability problems. Our client also tagged every
acceptance test and unit test with its associated requirement ID.

34. The many definitions and types of traceability make the topic diffi-
cult to discuss. Here, traceability means being able to trace tests to 
code and requirements, and vice versa.

35. Automating traceability is the goal of many requirement manage-
ment tools. However, they often lead to more time spent rather than 
less.

https://less.works For Gene Gendel only, id:gene-gendel



69

Customer-Facing Test

Then, as a part of the continuous build, they created a table showing
the mapping from requirements to their tests, the test state, and
related the code coverage metrics.

Run Long-Running Tests

In large-system development, the
non-functional requirements are fre-
quently the most important, and
implementing them takes the major-
ity of the development time. 

The non-functional tests are expen-
sive and often take long to run. This
section covers some experiments
related to that issue.

Try…Treat non-functionals the same as functionals

Automating and continuously running non-functional tests is essen-
tial. Delaying them to the end means moving one of the biggest risks
to where they hurt most. For example, if the system needs a certain
performance level, test early to reach it early, and continuously run
the test while new functionality is added to ensure that the system
does not regress from its performance target.

Non-functionals are often treated exotically—people believe they
cannot be specified and cannot be tested. This is unfortunate. In a
requirements workshop, non-functionals can be considered the same
as functionals, and example tests are created for clarifying them.
Figure 3.12 shows two examples of non-functional tests.36

36. This might seem simplistic, but the highest-level A-TDD-style test 
cases are often that simple. The complexity of automating the non-
functionals is hidden in the glue code between the test and the sys-
tem under test.

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



70

3 — Test

Figure 3.12 simple 
capacity and 
stability test

Try…Requirement area for non-functionals

The main requirements for a network element in a radio network
are capacity and reliability. Radio networks are not an exception; it
is common for non-functional requirements to be major require-
ments for large embedded products. How to deal with that?

see Require-
ments Areas in 
the companion

See “Try…Split 
Product Backlog 
items (such as 
stories)” on 
p. 247.

Dedicate a requirement area to certain non-functionals. For exam-
ple, a performance requirements area deals with system perfor-
mance. The teams in this area take large-system performance
requirements, split them, and implement them incrementally.

Is there any difference between non-functional requirements areas
and regular ones? Not in how they are organized. The key difference
relates to the type of work. Implementing non-functionals usually
involves a broader part of the system and a larger focus on study
and test activities. For example, the performance area use the
majority of their time in creating tests, profiling the system, and cre-
ating spike solutions—tasks focused on finding bottlenecks and
improving performance. Similarly, the stability area create long-run-
ning stability tests, tests for different hardware configuration, and
implements system recoverability.

Try…Continuously run long-running tests

Non-functional tests frequently cannot be run in the normal contin-
uous-integration-system cycle because they may take too long to
execute—a stability test might take two weeks. Some product
groups delay them until near the release—creating a delayed feed-
back cycle. Not a good idea.

https://less.works For Gene Gendel only, id:gene-gendel



71

Customer-Facing Test

Run the long-running tests all the time in a slower continuous-inte-
gration-system cycle. Treat them as any other tests. When they fail,
inform all people who checked in code. After they pass, get the latest
build and immediately run them again. This way the feedback cycle
is as short as it can be.

Expensive Tests

Some tests are expensive to run.
Maybe they must be run on a pro-
duction environment, maybe they
require expensive (and often shared)
testing equipment, or perhaps they
require an expensive configuration—
such as a whole nuclear power plant
or ship.

How do these tests fit into iterative
development?

Avoid…Expensive tests

Whenever possible, avoid expensive tests completely. How? Analyze
the tests to find out what makes them expensive, and come up with
a way of doing them differently—cheaper. Some typical examples:

! Use virtualized hardware—When it is the hardware itself
that is expensive, look for virtualization technology. A product
group we worked with had proprietary hardware and so the
test environments were sparse. To solve this, they ran the tests
on virtual hardware.37

! Create simulators—When the test environment is expensive,
create simulators. For example, one of our clients builds ship
control systems. It is much cheaper and more convenient for
them to simulate the ship systems rather than…

37. For example, Virtutech.com provides virtual hardware for embed-
ded software. See also 
en.wikipedia.org/wiki/Comparison_of_platform_virtual_machines

developer tests

continuously run all tests

. . .
iteration

N
iteration

N - 1

. . .
iteration

N + x

deliver for
acceptance

develop in 
concurrence

discuss in
workshop

manual tests

run long-running tests

expensive
tests

https://less.works For Gene Gendel only, id:gene-gendel



72

3 — Test

! Create similar environments—When there is only one real
environment and it is not available—the one and only produc-
tion environment—create a low-cost similar one. 

Try…Expensive tests

The cheaper tests provide quicker feedback but they are not exactly
the same as the expensive ones—which are still needed, though they
ought to be ‘merely’ a final check. Run them as often as possible—
unfortunately, that may mean only once before the release.

Try…Automate expensive tests

An expensive environment may be only available for a limited
amount of time, or the cost increases over time. Automating these
tests optimizes the time used on the expensive environment.

However, the expensive environment is sometimes needed to auto-
mate the tests. This may make automation not worth it because the
tests are run infrequently. An alternative is to automate the tests on
the cheaper environment instead—then run them on the expensive
environment.

DEVELOPER TESTING

This section covers testing done by and for developers. These focus
on whether the system does what the developers intend it to do.

Try…Unit testing

Unit testing is not a new concept. But, to our surprise, we regularly
visit companies that are not doing any unit testing. This leads to
problems because unit tests provide a safety net around the code
that gives developers the confidence to make changes and refactor.
Without refactoring, the quality of the code and design gradually
degrades.

https://less.works For Gene Gendel only, id:gene-gendel



73

Developer Testing

Unit tests are written by a developer while he is implementing func-
tionality. They are usually in the same programming language as
the production code and are, by definition, automated. Michael
Feathers, author of Working Effectively with Legacy Code, created a
useful set of rules for unit tests [Feathers05]. A test is not a unit test
when…

! it talks to the database

! it communicates across the network

! it touches the file system

! it can't run at the same time as any of your other unit tests

! you have to do special things to your environment (such as
editing config files) to run it

Try…CppUTest 
for C and C++

Usually, unit tests are written in an xUnit framework such as JUnit
for Java, CppUTest or GoogleTest for C/C++, or NUnit for .NET.38

Avoid…Unit testing by a separate person

Implementation and unit testing are not separate phases—they are
done at the same time. Avoid separating unit testing from imple-
mentation.

Unit testing is done by the developer who does the implementation
while he does the implementation. Separating them would lead to
many small handoffs—enormous waste.

Try…C++ xUnit framework for C

Avoid…CUnitUse a C++ xUnit framework, such as CppUTest39, for testing C code.
These frameworks use static initialization for automated registra-
tion of tests. This makes adding new tests easier. C xUnit frame-
works either require changes at three places for adding a test or a
script for generating that code.

38. JUnit — www.junit.org; CppUTest — www.cpputest.org. Search the 
Web, and en.wikipedia.org/wiki/List_of_unit_testing_frameworks

39. CppUTest uses a restricted C++ set making it portable even to old 
embedded C++ compilers.

https://less.works For Gene Gendel only, id:gene-gendel

www.junit.org
www.cpputest.org


74

3 — Test

The only reason for using a C xUnit framework is when the cross-
compiler does not support C++ and you wish to run the unit tests on
the target environment.

Try…Test-driven development

Test-driven development is a development style that drives the
design40 by tests developed in short cycles of:

1. Write one test.

2. Implement just enough code to make it pass.

3. Refactor the code so it is clean.

In a language such as Java, this cycle is as short as
five minutes. In older languages, with slower compilation and less
automated refactoring support, this cycle is longer—perhaps twenty
minutes.

Is test-driven development different in large product development?
No. It is an individual developer practice and the number of people
in the development does not matter. 

The amount of legacy code, old technology, and embedded develop-
ment does have an impact on unit testing and test-driven develop-
ment. Therefore, most experiments in this section are related to
these.

Try…Use TDD coaches

When a client of ours reviewed a draft of the companion book, he
mentioned that we ought to stress coaching more. “One of our mis-
takes is that we didn’t provide enough coaching,” he said. Though we
agreed with him, we pointed out that since we are both consultants

40. It does not drive the design by tests alone. Developers who use TDD 
still have design discussions around whiteboards to talk about the 
overall design structure and to create a common understanding. See 
the Design chapter for more.

https://less.works For Gene Gendel only, id:gene-gendel



75

Developer Testing

and provide such coaching, this advice would not be very credible.
We might as well add an experiment “Try…Hire us.” Thus, we mini-
mized the advice related to hiring coaches.

But related to test-driven development, we cannot stress strongly
enough: Hire coaches! Adopting TDD means unlearning traditional
programming and relearning how to design and code. We rarely
meet people who were able to adopt this by self-education. Most
developers need a coach to pair-program with them for days or
weeks. The coach constantly reminds them to write the tests first
and to really clean up the code—including the test code. He helps
them apply TDD and refactoring to their real code.

Test-driven development might be the hardest agile practice to
adopt, but it is also one of the biggest opportunities for improving
the quality of the design and code. Hire coaches!

Try…Internal and external coaches

External coaches are needed when adopting TDD because the com-
petence does not yet exist inside the company. But, over time, grow-
ing internal coaches reduces the dependence on externals and the
cost of coaching.

That said, we have seen several attempts fail to develop internal
coaches. Some reasons:

! No structure was in place to decide when and with which
teams to work.

! No time was reserved for coaching. Instead the internal
coaches were asked to do normal development.

! Developers were less eager to learn from internal coaches…you
are never a prophet in your own land.

! Coaching skills were not appreciated and further developed.
The result is that skilled internal coaches often leave to be an
external coach.

Choose both internal and external coaching. Depending on either of
them alone is risky but combining them can lead to good results.

https://less.works For Gene Gendel only, id:gene-gendel



76

3 — Test

Avoid…Write your own xUnit framework

“Why reuse if you can write it yourself?” seems to be the motto of
some large product groups.

We have encountered several product groups that write their own
unit test framework. At best, this is a waste of time. But often, the
framework was buggy, slow, and led to skepticism toward unit test-
ing. Avoid this and instead use an open-source framework.

Try…Use a unit 
test framework in 
a compatible lan-
guage

Try…Write your own xUnit framework

A group we worked with had a 30-year-old codebase of which large
parts were written in their own proprietary programming language.
The code in this language could be called through a C interface and
therefore it was possible to write unit tests in C. But it was uncom-
fortable for developers to write their unit tests in a different pro-
gramming language. Instead, they built their own xUnit
framework—when none is available, build your own.

Try…Dual targeting

See “Try…Create 
a low-level hard-
ware abstraction 
layer (HAL) API” 
on p. 320.

Design your code to target multiple hardware platforms—dual tar-
geting [Grennings10]. How? Separate hardware-dependent code,
third-party library calls, and inline assembler. When the code runs
on multiple platforms, then you can…

Try…Run tests on the development environment

The development environment and the target environment are dif-
ferent when you are creating embedded software. Code is cross-com-
piled and executed on either a simulator or the real hardware—the
execution speed is slow.

To speed this up, run the unit tests on the development environment
instead of on the real hardware. This speeds up the development
cycle, which in turn makes test-driving your code more enjoyable.

We coached a team that developed digital signal processing (DSP)
software for a Texas Instruments DSP processor. We suggested they
run their tests on Linux. They proclaimed we were nuts. For two

https://less.works For Gene Gendel only, id:gene-gendel



77

Developer Testing

days we worked with them to separate their hardware dependencies
and they were able to run their unit tests on their development envi-
ronment.

Another advantage of running tests on the development environ-
ment is that it allows more control over the environment. This
makes it possible to test failures cases that are difficult to produce
in the real hardware, such as hardware failure or out-of-memory
tests. One of the first tests we wrote for the DSP processor was an
out-of-memory test where we let malloc return NULL. The software
crashed. We asked the team whether this scenario could ever hap-
pen in real life on the real hardware. They answered, “All the
time…”

Try…Run tests on the real hardware

Running tests on the development environment can give a false
sense of security that everything works. Therefore, also run the tests
on the real environment to discover these differences…

! Size of data types—The size of basic data types is not always
the same on different hardware. This leads to range overflows
and problems when overlaying memory.

! Endian—The byte-ordering is frequently different between a
development environment and the real hardware. This might
result in defects when data is extracted from a byte-stream
message—a common action. 

! Compiler differences—Compilers generate different code. Usu-
ally this does not create problems but… compilers have bugs,
especially small-market embedded compilers. These differ-
ences—especially those due to bugs—create nasty defects that
can cause days of debugging. Extra caution: Legacy code might
depend on a compiler bug and stop working when ported to the
development environment or when the compiler is upgraded.

! Memory models—Intel processors are excellent in backwards
compatibility—they support many memory models. Legacy
code might still use a segmented memory model with different
pointer sizes and different ways to access memory.

https://less.works For Gene Gendel only, id:gene-gendel



78

3 — Test

! Data alignment—Compilers pad structures in order to align
data access on processors word boundaries for faster memory
access. Differently aligned memory can cause problems when
raw memory is converted into data types.

! C library—The C library is perhaps the most standardized
software in the world. Still, different C libraries behave differ-
ently. For example, CppUTest stopped working on Apple’s Mac
OS Snow Leopard while it worked on the previous release. On
the new release, the vsnprintf behavior was slightly different.

Developers can find many of these
incompatibilities by running the unit
tests every now and then on the target
hardware. This running of unit tests on
the real hardware can be done auto-
matically by the continuous integration
system so that developers are informed
quickly when they check in code with a
portability issue.

Doing this sometimes requires extra work. For example, the target
hardware usually has less memory than the development environ-
ment. Linking all unit tests into one executable might cause them to
use too much memory. In this case, the tests need to be split into
multiple executables—painful but worth doing.

Try…Function-to-function-pointer refactoring

It is more difficult to add tests to C legacy code. It is all tangled up.
The C language does not have a way of overriding methods—as used
in object-oriented languages for breaking dependencies. But the
same dynamic flexibility is possible in C by applying the function-to-
function-pointer refactoring.

This refactoring changes a function to a function pointer so that it
can be replaced at run time. The refactoring can be done safely with-
out other changes because a function-pointer call is syntactically the
same as a function call and the function pointer can be initialized by
the default implementation.

For example, this header file

https://less.works For Gene Gendel only, id:gene-gendel



79

Developer Testing

int send_message(int number, message_t* msg);

and the related C file

int send_message(int number, message_t* msg)
{

/* do something */
}

After the function-to-function-pointer refactoring is applied, the
header file becomes

extern int (*send_message) (int number, message_t* msg);

and the related source code becomes:

int send_message_impl(int number, message_t* msg)
{

/* do something */
}

int (*send_message)(int, message_t*) = send_message_impl;

The rest of the code is not impacted and now the function call can be
replaced at run time.

One danger in replacing the function at run time is forgetting to
restore it. As a result, the fake function would be called in all the fol-
lowing tests. There are solutions; for example, CppUTest can set
pointers in the setup such that they are automatically restored to
their original value in the teardown.

void setup()
{

UT_PTR_SET(send_message, send_message_fake);
}

This simple but powerful refactoring makes it easier to gradually
cover legacy C codebases with automated unit tests.

Try…Learning tests

Learning tests are tests written with the sole purpose of learning
about the system. We sometimes see developers stare at code for
hours wondering what it does, while they could discover this by writ-
ing a small test, running it, and observing the result.

https://less.works For Gene Gendel only, id:gene-gendel



80

3 — Test

One time, we programmed with a developer who needed to use a
new XML parser with an awkward interface. 

The previous days he had read the documentation and the code, but
he still could not understand how to use it. He random-pro-
grammed41 for a while but could not get the code to work.

After observing him for a few hours, we suggested that he write
learning tests for the XML parser. 

He answered, “It’s not my job to test the XML parser.” 

We clarified that learning tests are not for testing but for learning.

He reluctantly agreed to try it out. After one hour of writing learn-
ing tests, we learned enough and felt confident enough to switch to
using the parser in the production code.

Should you throw away learning tests after you learned? 

Though they served their primary purpose, it might be beneficial to
keep them. Running them checks that all you have learned about
the system is still true. 

For example, when upgrading the XML parser, run the learning
tests to discover what assumptions have changed.

Try…Learning tests for hardware

Hardware documentation is often incomplete and hard to under-
stand.

Embedded-software developers sometimes base their work with
hardware on trial-and-error—call the hardware and observe what
happens. This takes a lot of time, and the learned behavior is not
documented after the discovery.

41. Random-programming—Randomly trying out things without think-
ing, in the hope that they will work.

https://less.works For Gene Gendel only, id:gene-gendel



81

Developer Testing

Learning tests are excellent for learning about the hardware.
Instead of experimenting with the hardware in production code, try
writing learning tests for the hardware.

A major benefit of this is that you can rerun the tests when you
receive a new version of the hardware. 

This is important: traditionally, embedded developers are often hesi-
tant to upgrade because the new hardware might contain bugs they
must chase for days. 

Now they can run the learning test to check whether all the assump-
tions they have about the hardware are still valid. 

This creates confidence that results in more frequent software-hard-
ware integration—eventually becoming continuous hardware inte-
gration.

Try…Refactor tests

“Ouch, that code does not look very clean,” we said to a developer at
the start of a pairing session. “Yes, but that’s test code!” he replied.

In response, we suggested: 

The same standards of cleanliness need to be applied. 

Therefore, refactor test code as much as production code. We often
encounter groups spending an extraordinary amount of time main-
taining the tests. This sometimes results in the developers not
updating them anymore. 

The cause: ugly, messy, dirty test code. Treat test code well.

Test code is as important as production code. 

https://less.works For Gene Gendel only, id:gene-gendel



82

3 — Test

Try…Small tests that test only one thing

Tests should test one thing.42 A unit test is usually not longer than
10 lines of code (LOCs). Larger tests probably contain duplication or
are multiple tests written as one.43

“Wow!” we exclaimed while looking at a 5000-LOC test file while
pair-programming with a developer. Most individual tests were
larger than 150 LOCs—they were huge! Worse, they were so unread-
able that we had no clue as to what they were testing. We decided to
clean them up.

42. This does not necessary mean having only one assertion. See 
[Meszaros07] for further discussion.

43. An awkward unit test framework is sometimes the cause. For exam-
ple, CUnit requires a change at three places (source, header, regis-
tration) to add test. The result is that developers make larger tests.

Duplication

Taiichi Ohno considered overproduction the worst of all manufacturing wastes—
it hides the other wastes [Ohno88]. In software development, duplication is the
worst of all the code smells. According to software craftsman Bob Martin, “Dupli-
cation may be the root of all evil in software” [Martin08].

Duplication is the number one trigger for refactoring. Learn to see duplication. It
does not just mean the copy-paste-modify variety (probably the most common way
of producing code in many companies) but also means the duplication in logic.
Two pieces of code can do the same thing in different ways and that would still be
duplication.

Some things to look for:

This it not an exhaustive list. As Toyota teaches “eyes for waste,” so should you
develop “eyes for duplication.”

! similar values

! similar variable names

! similar code structures

! loops of the same length

! duplication between test and production code

! similar error handling clauses

https://less.works For Gene Gendel only, id:gene-gendel



83

Example: Robot Framework

Two days later: There were 1500 LOCs left in the file. Several tests
turned out to test the same thing but nobody had noticed because of
the complexity and duplication. Two tests did nothing—we deleted
them. The average LOCs per tests was seven lines and most impor-
tantly, we could understand them—and maintain them.

Avoid…Slow unit tests

Slow tests cause developers to stop executing them. Therefore, make
sure the tests run in seconds.

We noticed the developer we paired with did not run his tests fre-
quently. The reason: they took thirty seconds. We persuaded him to
find out why they were so slow and quickly discovered that a three-
megabyte structure was allocated in all setups and freed in all tear-
downs, yet most tests did not even use it. After refactoring, the tests
ran in eight seconds—still too long—but the developer started run-
ning them again in the compile cycle.

Pay attention to the speed of the tests. Frequently, test runs can be
optimized with just a little extra effort—and the payback is enor-
mous.

EXAMPLE: ROBOT FRAMEWORK

This section presents a brief example of Robot Framework that uses
a system we worked on years ago. The original development did not
use A-TDD or Robot Framework—the example is new, the system is
old. The system is medium-sized,44 yet the example demonstrates
the key points that are also valid in larger development. 

Robot Framework is a keyword-driven45 test automation framework
created by Pekka Klärck46 [Laukkanen06] at Nokia Siemens Net-

44. Larger products tend to come from a more complex or unfamiliar 
domain—making it hard to use as an example in a few pages.

45. Keyword-driven test frameworks use keywords in data to determine 
the action to take on the data [FG99]. Keywords are sometimes 
called action words [BJP02].

46. Formerly known as Pekka Laukkanen.

https://less.works For Gene Gendel only, id:gene-gendel



84

3 — Test

works in 2004. One of its early design goals was A-TDD support. It
was open-sourced in 2008 and is available at www.robotframe-
work.org.

The product used in this case study is a conference information sys-
tem built for a convention center. Access to the system is available at
“information pillars” distributed throughout the convention center.
Visitors can use it to find information about the current conference
or the convention center, such as

! Where can I find the booth of vendor X?

! How do I get there?

! Where is the nearest restaurant?

! What did other visitors have to say about the conference?

These pillars are maintained and controlled centrally. The informa-
tion inside the system must come from the existing conference prep-
aration process. Not much additional preparation work is allowed
when the system is updated for a new conference—the new system
must adapt to the existing systems and ways of working. And, of
course, the system must be flashy and shiny—sound, graphics, and
other bells and whistles.

Example One: The Vendor List

The first example is simple but demonstrates some key points. The
customer requested the ability to list all the vendors and display
them in “a nice list.” After abstract discussion about what “a nice
list” means, we asked for an example. The first example was a work-
flow, one (Figure 3.13) with three vendors in the database shown in
an alphabetically ordered list with three columns.

https://less.works For Gene Gendel only, id:gene-gendel

www.robotframework.org
www.robotframework.org


85

Example: Robot Framework

Figure 3.13 work-
flow example for 
selecting vendors

After asking for more examples
(not shown), we discover that the
provided data in the supplied
database is not consistent—the
information system will have to
compensate for that because we
have no control over the database.
For example, there can be dupli-
cate entries with minor differ-
ences (with and without a logo).

Describing all the data compensations with workflow examples leads
to myriad similar tests, so we switch to data-driven tests for these
particular business rules by asking, “What data in the database will
lead to what nice vendor list?” The results are shown in Figure 3.14
and include examples for alphabetical sorting, removing duplica-
tions, and preferring logo over no-logo entries.

Figure 3.14 data-
driven test for 
vendor lists

Intermission—Robot Framework overview

The next step is to distill these examples into Robot Framework
tests. But how does Robot Framework work?

https://less.works For Gene Gendel only, id:gene-gendel



86

3 — Test

Robot tests are written in tables with HTML, TSV, reST47 or plain
text. HTML is the most commonly used format whereas Robot
Framework uses only the tables and ignores all the additional text—
which can be used for documentation. There are four types of tables:

! Test case tables—contain the actual test cases. The first field of
these tables must contain “Test Case” or “Test Cases.”

! Keyword tables—contain lower-level user keywords that can be
used to construct test cases. The first field must contain ‘Key-
word’ or “User Keywords.”

! Settings table—allows for importing files and defining meta-
data. The first field must contain ‘Setting,’ or ‘Settings.’

! Variable table—declares variables containing global data that
can be used elsewhere. The first field must contain ‘Variable,’
or ‘Variables.’

Figure 3.15 coffee 
table test

Figure 3.15 shows a test case
table with two test cases in
it—the first column. The sec-
ond column contains the key-
words, and the remaining
columns are for passing argu-
ments to these keywords. 

Robot Framework has two types of keywords: user keywords and
library keywords. A user keyword is implemented in a keyword
table, whereas a library keyword is implemented in a piece of glue
code between the test and the system under test—called a test
library. Executing Figure 3.15 fails because it contains three unde-
fined keywords—Drink coffee in liters, Is physical health, and Drink
over max amount of coffee.

47. TSV are tab-separated-values files. ReStructuredText (reST) is a 
markup language commonly used for documentation in Python 
projects.

https://less.works For Gene Gendel only, id:gene-gendel



87

Example: Robot Framework

Figure 3.16 key-
word table for max 
coffee

Figure 3.16 implements
the “Drink over the max
amount of coffee” user
keyword as drinking one
liter more than the maxi-
mum. ${MAX COFFEE}
is a variable defined in a variable table (not shown).

Executing Figure 3.16 fails because two keywords are undefined.
These are low level and implemented as library keywords in Java (or
alternatively, in Python).

public class CoffeeTestLibrary 
{

Human humanUnderTest = new Human("Bas");

public void drinkCoffeeInLiters(Integer liters) {
humanUnderTest.drinkCoffee(liters);

}

public void 
isPhysicalHealth(String expectedHealth) throws Exception 
{

if (!expectedHealth.equals(humanUnderTest.checkHealth()))
throw new Exception("Health problem. Expected health: " + 

expectedHealth + " but actual health was " + 
humanUnderTest.checkHealth());

}
}

Figure 3.17 is an overview of Robot Framework. Test case and user
keyword tables are fed to Robot Framework. The framework calls
the test libraries, and they call the system under test. More informa-
tion can be found in the user guide [Robot09].

Figure 3.17 Robot 
Framework 
architecture

test cases and user keywords

test
libraries

Robot Framework

product

https://less.works For Gene Gendel only, id:gene-gendel



88

3 — Test

Continuation—List the vendors

We distill the test from the example on the whiteboard. The ‘normal’
example is removed because it is of the same equivalence class as
the ‘sorted’ test.48

These test cases are executable—but they fail. Robot Framework
complains that the keywords “Stand input,” “Is stand output,” and
“Has No Extra Stands” are undefined.

Figure 3.18 lists all 
vendor test case 
table

48. The keyword-driven nature of Robot Framework is evident from the 
repeating keywords in data-driven tests. In Fit this would not be 
necessary. This will be enhanced in the future versions. 

https://less.works For Gene Gendel only, id:gene-gendel



89

Example: Robot Framework

The keywords can be implemented as user or library keywords. We
chose to implement the “Is stand output,” and the “Has No Extra
Stands” as user keywords (Figure 3.19).

Figure 3.19 list all 
vendors user 
keyword table

The first row declares the three arguments of the “Is stand output”
keyword. The next rows assign the output of the “get current logo”
keyword to the ${actual_logo} variable and compare that with the
expected_logo. The same steps are repeated for the other expected
values. At the end, we increment the stand index.49

When we now run the tests, Robot Framework complains about five
undefined keywords: stand input, get current logo, get current
name, get current place, and stands left. These keywords will be
implemented in a test library.

Our system under test is written in C. We can call it through the
user interface (not recommended), or we can call C code directly. We
chose the latter and implemented the test library in Python because
we can easily call C code directly from Python by using the ctypes
foreign library.50 The test library code:

49. This is a side effect in the keyword implementation which should be 
there but is there to keep the higher-level table simpler

https://less.works For Gene Gendel only, id:gene-gendel



90

3 — Test

from ctypes import *

class conferencekeywords:

def __init__(self):
self.conf = cdll.LoadLibrary("stands.so")
self.conf.init()
self.stand_index = 0
self.logo_mark = ["", "x"]
self.conf.get_place_at_index.restype = c_char_p
self.conf.get_name_at_index.restype = c_char_p

def increment_stand_index(self):
self.stand_index = self.stand_index + 1

def stands_left(self):
return self.conf.stand_output_at(self.stand_index)

def stand_input(self, logo, name, stand):
has_logo = logo == "x"
self.conf.add(has_logo, c_char_p(name), c_char_p(stand))

def get_current_logo(self):
logo = int(self.conf.get_logo_at(self.stand_index))
return self.logo_mark[logo]

def get_current_name(self):
return self.conf.get_name_at_index(self.stand_index)

def get_current_place(self):
return self.conf.get_place_at_index(self.stand_index)

The code is trivial—the only thing it does is call the C interface.

The system under test is linked into a shared library and loaded by
the cdll ctypes call. The output is assigned to the conf variable and is
used to call the C functions in the shared library. The additional
code specifies the parameter and return types; this must be done
when they are not integers—the default. 

When we run the tests, they will pass—if the functionality is imple-
mented.

Example Two: Importing AutoCAD Files

The floorplan department uses AutoCAD to create conference lay-
outs. These contain the location of the stands and everything else
related to the conference—including weird symbols and electrical

50. Works excellently for C. For C++ you may prefer to use SWIG or 
Boost Python.

https://less.works For Gene Gendel only, id:gene-gendel



91

Example: Robot Framework

outlets. These CAD drawings, however, were made for humans to
read.

A requirement for the conference information system was to show a
conference map. Visitors can select a location on the map and the
system will show them the vendor. The convention center required
the system to import the AutoCAD DWG files that were created by
the floorplan department. Reading AutoCAD files is slow, so the files
are converted to an internal format that stores only the needed
information—it discards noise such as electrical outlets.

The DWG contains lines that form shapes. A shape with a number
written in it is probably a stand. The system needs to read the file,
form the shapes, recognize the stands, and discard irrelevant infor-
mation. This is not too hard… except that the data is inconsistent—
not made for computers. The shapes are not always exactly closed,
the number is not always exactly in the stand, and so forth. 

In a requirement workshop, we discussed the different possible
inconsistencies that the system should support. We started with
abstract descriptions and moved toward examples, as shown in
Figure 3.20.

Figure 3.20 exam-
ples of rectangular 
stands

https://less.works For Gene Gendel only, id:gene-gendel



92

3 — Test

The examples are drawings of shapes. The discussion was about dis-
tinguishing stands from noise and dealing with inconsistencies in
the drawing.

The tests distilled from the examples are shown in Figure 3.21. The
tests contain an AutoCAD input file and the expected output file. We
added the pictures to the tests for documentation. Robot Framework
ignores all information except for the text inside the table. This
allows us to add documentation to our specifications tests.

Figure 3.21 tests 
for stand recognition

The “Detect and check stands” keyword is implemented as a user
keyword shown in Figure 3.22.

https://less.works For Gene Gendel only, id:gene-gendel



93

Example: Robot Framework

Figure 3.22 stand 
recognition user 
keywords

The test library calls the C interface of the system under test (not
shown).

Example Three: Leaving Messages

This last example is an example of a workflow test. Visitors need to
be able to leave messages for one another on the conference informa-
tion system. During a discussion in a requirement workshop, we
moved from the abstract description into workflow examples. The
results are shown in Figure 3.23.

Figure 3.23 exam-
ples of messaging 
workflow

The distilled tests ended up the same as the wall-workflow exam-
ples. They are shown in Figure 3.24.

https://less.works For Gene Gendel only, id:gene-gendel



94

3 — Test

Figure 3.24 work-
flow example

These actions were each implemented as user keywords so that they
can be reused for future workflow tests. This minimizes the duplica-
tion between workflow tests and reduces the maintenance effort. We
skip the user keywords and the test libraries; they are similar to the
previous examples.

Robot Framework conclusion

These examples showed some core features of Robot Framework.
Some other features worth mentioning are

! Ability to classify tests by using tags. These can be used for
reporting, statistics, or selective test runs.

! Clear logs and reports that make it easy to discover what hap-
pened.

! Easy integration with other systems such as SCM systems.

! An IDE for developing the tests—RIDE.

CONCLUSION

This is a long chapter, but testing is not what it used to be. The bar-
riers between testing and programming have to be demolished. Test-
ing and programming are two sides of the same activity done by the
same people. The purpose of the tests changes from finding defects
to preventing them by writing the specifications as tests; and from
checking the implementation to driving the design. This fundamen-

https://less.works For Gene Gendel only, id:gene-gendel



95

Example: Robot Framework

tally different perspective leads to vital changes in the way people
work—and work together.

We categorize testing as customer-facing and developer tests.

The focus of customer-facing tests changes from traditional testing to
collaboratively clarifying the requirements with techniques such as
A-TDD. These techniques are used not only for simple requirements
but also for complicated non-functionals—common in large-scale
development. These automated tests become the executable specifi-
cations. Nobody is perfect—people make mistakes. Techniques such
as exploratory testing harness creativity and are a more human
approach for finding defects than the traditional design-a-script-
then-manually-run-the-script approach.

The focus of developer tests changes from traditional testing to driv-
ing the design. The distinction between testing and implementation
disappears. Test-driven development turns traditional development
upside down and uses the tests to incrementally drive the design.
These techniques are widely used in modern programming lan-
guages, but are just as applicable and valuable for large legacy code
products with proprietary programming languages and embedded C
software. The practices are slightly different, the cycle is slower, but
the concepts are exactly the same.

Robot Framework is a promising open-source tool that supports an
A-TDD style of requirements clarification. Worth trying out.

RECOMMENDED READINGS

A vast number of books and articles exist on the subject of testing in
agile development. We grouped recommendations into similar cate-
gories as the structure of this chapter.

Some recommendations related to “thinking about testing”:

! Agile Testing, by Lisa Crispin and Janet Gregory. A great over-
view of the role of testing in agile development. It covers the
challenges organizations face when adopting agile develop-

https://less.works For Gene Gendel only, id:gene-gendel



96

3 — Test

ment and also describes the concrete role of testing during the
iteration.

! Lessons Learned in Software Testing, by Cem Kaner, James
Bach, and Bret Pettichord. This book describes the lessons
learned from decades of experience in testing and also intro-
duces the context-driven school of thinking in software testing.

! Agile Testing Directions, by Brian Marick. A series of blog posts
wherein Brian Marick introduces the agile testing quadrants.

Some texts about general testing techniques for improving testing
skills. These are unrelated to agile development:

! A Practitioner’s Guide To Software Test Design, by Lee Cope-
land. An easy-to-read catalog of test design techniques.

! Software Testing: A Craftsman’s Approach, by Paul Jorgensen.
A thorough coverage of different test design techniques. Starts
off with mathematics for testing.

Not very much has been written on the subject of A-TDD and related
tools. The following books are recommended, though:

! Bridging the Communication Gap, by Gojko Adzic. At this
moment, Gojko’s book is the only book purely on the subject of
A-TDD (which he calls agile acceptance testing). It has a strong
focus on requirements clarifications and workshops.

! Acceptance Test Driven Development: An Overview, by Elisa-
beth Hendrickson. A blog post and related paper providing an
overview of A-TDD by giving a detailed example of using Robot
Framework.

! Fit for Developing Software, by Rick Mugridge and Ward Cun-
ningham. This book has a strong focus on improving the com-
munication of requirements by means of Fit tables.

! Robot Framework User Guide. Does not cover A-TDD but does
provide an excellent introduction to the Robot Framework tool.

! Test-Driven .NET Development with FitNesse, by Gojko Adzic.
This book has less emphasis on A-TDD and more on FitNesse.
But it does a good job in describing the tool.

https://less.works For Gene Gendel only, id:gene-gendel



97

Example: Robot Framework

Exploratory testing is also a topic rarely covered in literature. Some
recommendations related to this:

! Exploratory Testing Explained, by James Bach. An article
available on the web; it is the classic reference related to this
subject. Definitely worth reading.

! Exploratory Testing in an Agile Context, by Elisabeth Hen-
drickson. A freely available mini-book related to the role of
exploratory testing in agile development. Easy to read.

A lot has been written on the subject on developer testing and test-
driven development. Our recommendations:

! Test-Driven, by Lasse Koskela. A well-written thorough book
on the subject. It uses Java and also covers A-TDD.

! Test-Driven Development, by Kent Beck. A classic and one of
the first books on the subject.51 It uses Java.

! Test-Driven Development in Microsoft .NET, by James Newkirk
and Alexei Vorontsov. A good introduction to TDD in .NET.

! xUnit Test Patterns, by Gerard Meszaros. More than you ever
wanted to know about xUnit.

! Test-Driven Development in C: Modern C Programming for
Embedded, Mobile, Open Source and You, by James Grenning.
Does this work for embedded software? Yes. James discusses
how to use TDD when developing embedded software. Not yet
published.

! Growing Object-Oriented Software, Guided by Tests by Steve
Freeman and Nat Pryce reinforces the value of evolving design
based on feedback from tests.

51. The first book about test-driven development was in German, writ-
ten by Johannes Link and published at the end of 2001 [Link01].

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Thinking about Product Management 100

• Product Owner 120

• Many products 128

• Many Teams 132

• Prioritization 139

• Customers and R&D 145

• Change and Improvement 147

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



99

Chapter

4
PRODUCT MANAGEMENT

He taught me housekeeping; when I divorce I keep the house.
—Zsa Zsa Gabor

Sun streamed in through the windows while about 300 people at a
client settled in for an introduction to large-scale Scrum and lean
thinking. We discussed how these change the opportunities not only
for R&D but also for business as a whole, including product manage-
ment. Afterwards, one of the in-house agile coaches was summoned
before the person “responsible for the product-management process.”
The process ‘owner’ threatened to have the coach fired if “agile peo-
ple” mentioned such ideas again. “I am in charge of how product
management works, and there should be no interference between
departmental processes!”

That silo mentality does not best serve a business or its customers;
agile and lean principles and practices can be applied not only in
development, but also in product management—and beyond.

Chapter scope—This is not a primer on product management or even
agile product management; most—not all—topics are at the inter-
section of product management, scaling, and Scrum. For more, see
the recommended readings at end of chapter.

Terminology—In this book—and this chapter—product management
(P-M)1 refers to one of

! when it exists, true product management

! a marketing group that fulfills P-M responsibilities

1.  ‘P-M’ is also used to denote product manager.

https://less.works For Gene Gendel only, id:gene-gendel



100

4 — Product Management

! when Scrum is used for internal products or applications,
someone from the business unit that represents the customers
or users as Product Owner 

Research and development (R&D) refers to the organization usually
called R&D, engineering, development, or IT.

On to the first experiment…

THINKING ABOUT PRODUCT MANAGEMENT

Try…Exploit business advantages of Scrum & lean thinking

Distinct functional departments are the norm in big organizations.
A P-M group separate from R&D may assume that when R&D starts
adopting Scrum, that it is for them and has little or no relevance to
P-M…“You guys are welcome to Scrum. We hope you’ll be more effi-
cient.” However, there is a bigger picture…

Although an oversimplification, a summary of the purpose of lean
thinking is this well-known quote by Taiichi Ohno:

All we are doing is looking at the time line from the moment the
customer gives us an order to the point when we collect the cash.
And we are reducing that time line by removing the non-value-
added wastes. [Ohno88]

There are twelve agile principles; the first is

1. Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.

These phrases are business themes: order, cash, satisfy the customer,
early, valuable. Some people, as in the chapter-opening story, believe
lean and agile principles are solely aimed inward. Not so. 

Lean thinking and agile principles are customer-focused 
for business success; they are not “development processes.”

https://less.works For Gene Gendel only, id:gene-gendel



101

Thinking about Product Management

These principles intersect with P-M, development, operations—and
more as explored in Organization in the companion book. They
reflect systems thinking and cross-functional integration.

Figure 4.1 busi-
ness-facing change- 
opportunities when 
adopting Scrum

There are many sides to the Scrum coin and to lean thinking
(Figure 4.1); they intersect with business factors and offer new
kinds of control—arguably increased control—over these. This con-
trol and flexibility comes from these key Scrum elements:

! Short iterations increase transparency and control.

– replaces sequential life-cycle development

! Adaptive planning (inspect and adapt) increase flexibility.

– replaces predictive planning: the Contract Game, traditional
project planning, …

! Product management steering development increases busi-
ness-centric control, and increases R&D teams’ appreciation of
customer needs.

– replaces the Contract Game and layers of indirection

Agile product management is akin to driv-
ing an all-terrain vehicle to explore new
uncharted territory: P-Ms have the steering
wheel of product creation in their hands,
are driving a vehicle with a clear view and
responsive steering, and are adapting as

customers
and market Teams

operations, HR, 
manufacturing,
management, ...

product content
release date
investment

business risk
. . .

Scrum, lean thinking, and agile principles 
can and should be exploited for their 

business advantages 

https://less.works For Gene Gendel only, id:gene-gendel



102

4 — Product Management

they drive and discover new easy paths or roadblocks. Plus,
although they originally planned to stop at that big mountain, they
discovered this mountain along the way—and it satisfied their latest
goals of tranquility, fish, and cold beer.2

Magic-free zone

We do not mean to imply a simple relationship between Scrum ele-
ments and meeting business objectives; there are few guarantees to
success in a complex system. That said, these elements can influ-
ence various business factors, and maybe—just maybe—contribute
to major objectives (Figure 4.2).

Figure 4.2 Scrum 
may contribute to 
business objectives

2.  Traditional development is like [product management] being the 
passenger on a bus tearing down a serpentine mountain road while 
being driven by a drunk. [Schwaber07c]

P-M can adjust 
content priority 
each iteration

small customer-
centric goals

well-done and 
potentially
shippable each 
iteration

short iterations

time to 
market

satisfaction
in product

customer loyalty
& trust
competitive
advantage

risk mitigation

strategic alignment

predictability

Business
Objectives

Scrum
Element

profit

Business
Factor

Legend: A may influence B

customer
relations

...

...

- this is an example
- Scrum elements can influence factors that may influence business objectives
- this is neither certain nor easy

...

https://less.works For Gene Gendel only, id:gene-gendel



103

Thinking about Product Management

Areas and opportunities

What areas may intersect with Scrum? Here is some of the territory
of P-M, as summarized in Product Management [LW05]: 

The following table considers some of these areas, asking where the
flexibility and control offered by Scrum may have a positive impact.

product vision business plan customer relations profitability

sales support ideation, innovation market testing risk management

marketing planning financial analysis market research product review

requirements pricing product launch forecasting

channels advertising supply chain competitor analysis

product vision, ideation business plan, market testing

• Early demonstration and field testing either 
validate the vision or provide feedback for 
changing it. Adaptive planning supports 
adjusting the product vision.

• Vision improved by increased collaboration 
with teams, including during initial creation.

• The vision may be ‘great,’ but what revenue 
will it actually pull? Is the business plan 
realistic? Early release or early market test-
ing provide data to support or invalidate a 
business thesis.

customer relations profitability

• Customers or potential customers can pro-
vide early, repeating feedback, and see the 
results of their feedback in future demos. 
This may support positioning, satisfaction, 
and buy-in.

• Increased transparency, responsiveness, and 
collaboration can build trust. Transparency 
improves by progress measured and demon-
strated in terms of customer-centric features 
(that they care about), not technical tasks.

• Early confirmation of problems that will 
impact customers (such as delay) offers more 
degrees of freedom: timely internal experi-
ments to improve, or prompt communication 
with customers to seek alternatives.

• Fine-grained re-prioritization occurs each 
iteration to front-load the product with items 
that help drive profit for the least cost. These 
adjustments are based on estimates revised 
each iteration and on customer feedback.

• Low-impact items become low-priority items; 
so it may be possible to avoid their creation—
steering clear of the cost of their creation and 
the cost of their long-term care and feeding.

• Time to market improves since the product 
may ship any iteration (from the first), which 
could support earlier revenue or capturing 
market sharea.

https://less.works For Gene Gendel only, id:gene-gendel



104

4 — Product Management

Exploiting the business advantages means some changes in behav-
ior for product management. What are these?

Try…Understand the changes with Scrum & lean thinking

“We don’t have time to meet with teams; we meet customers.” 

This was said to us by one P-M group we worked with. Customers
are important, and yet they might be even better served by directly
connecting them and teams, and by P-M collaborating regularly
with teams. These are example adjustments when adopting Scrum.

Predominately, the changes involve an increase in transparency, col-
laboration, inspect and adapt, and control. Plus, working or making
decisions in small batches and short cycles. Concretely, what are
some changes in behavior or responsibility for P-M? See Table 4.1.

These changes imply on a larger scope that the product manage-
ment and R&D relationship shifts from contract negotiation to cus-
tomer collaboration, as explained in the next two suggestions:

! “Avoid…Product management negotiating a “release contract”
(scope & date) with R&D” section on page 106

! “Try…Product management collaborates with R&D each itera-
tion, adapting release scope or date” section on page 116

sales support risk management

• Suppose that closing a a major deal is aided 
by either the existence or soon-existence of a 
specific feature or theme of features. Raising 
their priority is simple.

• High-risk items increase in priority and are 
implemented early, attacking the risk before 
it attacks.

a. For embedded-software products adopting Scrum, the constraint of release date will 
depend on the agility of hardware engineering and manufacturing. And, operational 
or field support… One of our clients builds ship-control systems; even if the system is 
ready, an installation crew may not be. But in real cross-functional spirit, this client 
is exploring R&D members joining installation crews on the ship to increase learning 
and reduce bottlenecks.

https://less.works For Gene Gendel only, id:gene-gendel



105

Thinking about Product Management

Table 4.1 changes

product vision, ideation customer relations

• Broadly, an increase in testing and adjusting 
the vision, based on customer, market, and 
team feedback, or field testing. For instance, 
customers can participate more frequently in 
concrete product evaluation, since the prod-
uct is shippable from the first iteration. 
Based on their feedback, P-M re-prioritizes 
and strengthens outstanding themes in the 
backlog. Or, learns to quickly abandon a 
deeply flawed vision (“fail fast”) and start 
afresh.

• Include the cross-functional development 
teams in early vision workshops, rather than 
only engaging them later.

• Re-prioritize items based on customer feed-
back each iteration.

• Ask for earlier pilots at client sites.
• Investigate with clients how to reduce the 

impact of more-frequent pilots or upgrades.
• Invite customers to Sprint Reviews.
• Invite teams to collaborate with clients.
• Increase transparency: Show customers the 

current Product Backlog priority and Release 
Burndown. Alert early when a problem (such 
as delay) is identified. Ask for feedback.

• Increase transparency: Ensure the Product 
Backlog contains customer-centric features 
(not technical tasks), so that progress is mea-
sured in terms relevant to customers.

release date profitability

• Since product is potentially shippable each 
iteration, P-M adjusts release date to learn 
fastera, or to fit changing company, market, 
or competitor conditions.

• Attention shifts from “Is it all ready?” to, “Is 
now the right time to ship?” and “What to 
add next to get closer to minimal marketable 
feature set (minimum viable product)?”

• As the product is always shippable, a recur-
ring question is “Is now the time to start gen-
erating revenue and/or to learn about the 
revenue streams and profit potential?” 

• Each iteration, revisit the Profit Drivers and 
their weights in the Product Backlog, and 
update these. Feedback from Business Plan 
tests (revenue tests, …) is salient input.

• Each iteration, re-prioritize the backlog to 
drive more early profit.

• Each iteration, ask the teams to refresh the 
Product Backlog estimates of cost for high-
priority items.

https://less.works For Gene Gendel only, id:gene-gendel



106

4 — Product Management

Avoid…Product management negotiating a “release contract” 
(scope & date) with R&D

This idea starts with the “story of the traditional game of large-scale
product development.” 

(Backing up, there is often a pre-game involving customers, Sales,
and Product Management, in which the latter get their own ‘con-
tract’ of “customer promises” pushed on them from Sales. For more,
see the “Avoid…Fixed content with unrealistic deadlines” section on
page 335 and “The Problem” section on page 111.)

This traditional game is described in a lighthearted tongue-in-cheek
way; we do not really mean to imply in the upcoming story-telling
that things are black-and-white or to point fingers. 

Plus, “not blaming” is especially noteworthy in the context of sys-
tems thinking and lean thinking: In the Systems Thinking chapter
of the companion book, we shared the “laws of systems thinking”
described in The Fifth Discipline [Senge94], and shown in Table 4.2.

Why no blame? Because people—and the policies created by them—
behave in ways shaped by the system they work within. This ‘law’
does not literally imply no personal responsibility, but reminds us to
be slow to judge; in a workplace system there are complex dynamics
behind what appears…odd. 

We are not always successful at applying this advice ourselves—we
have a lot to learn, too.

marketing team relations

• Marketing plans and materials start earlier, 
in a small batch. Feedback is used to evolve 
them incrementally in short cycles with 
small sets of decisions.

• Invite teams to collaborate with clients.
• Meet with teams each iteration to (1) explain 

iteration goals, (2) refine the Product Back-
log, and (3) review the product.

a. “By far the dominant reason for not releasing sooner [at the startups I worked at] was 
a reluctance to trade the dream of success for the reality of feedback.” [Beck09]

https://less.works For Gene Gendel only, id:gene-gendel



107

Thinking about Product Management

Table 4.2 laws of 
systems thinking

In this vein, W. Edwards Deming wrote, in his well-known 14 points
for management, that, “…the bulk of the causes of low quality and
low productivity belong to the system and thus lie beyond the power
of the work force.” [Deming82].

And blaming is arguably waste, both for the previous reason and
because it just sheds more heat than light on problem solving.

All that said, “poetic license” usually makes a better, direct story! On
to the traditional game… 

The traditional game of development

In game-theory terms it is a two-person competitive game. The play-
ers: 

The two key events—both fixed—start and end:

• Today’s problems come from yes-
terday’s ‘solutions.’

• The harder you push, the harder 
the system pushes back.

• Behavior will grow worse before 
it grows better.

• The easy way out usually leads 
back in.

• The cure can be worse than the 
disease.

• Faster is slower.

• Cause and effect are not closely 
related in time and space.

• Small changes can produce big 
results…but the areas of highest 
leverage are often the least obvi-
ous.

• You can have your cake and eat it 
too—but not all at once.

• Dividing an elephant in half does 
not produce two small elephants.

• There is no blame.

R&DProduct
Management

Product
Management

R&Dstart end
(release)

https://less.works For Gene Gendel only, id:gene-gendel



108

4 — Product Management

Then, there is a third event between start and end—an arbitrary
point in time—called The Content Milestone3 (or milestone) at
which time agreed scope and date details are recorded in The Con-
tract.4

The Contract is not a commercial contract, rather, it is an internal
agreement between P-M and R&D.

The Content Milestone is often a fixed arbitrary date decided at
The Start: Thursday is an excellent day for a milestone! Sometimes
the milestone is a sliding point defined by some arbitrary presumed
state; for example, The PRD is 80% complete or Janet is anxious.

The first move is played by product management. Because they have
one big chance to (1) squeeze as much as they can from R&D and (2)
establish means to deflect blame—also known as “assigning respon-
sibilities”—if the customers are unhappy, there are therefore various
fears and odd behaviors at play (whose exact nature we leave a mys-
tery). So, the first move is to push as much content as possible into
The Contract—and hence, product release. 

3.  The Content Milestone is also called content freeze, release agree-
ment, product definition done, or sign-off.

4.  The Contract is also called program contract, project contract, the 
specification, the product definition, the product requirements, or a 
whole alphabet soup of document acronyms: MRD, PRD, SRS, FSD, 
and/or PSD. None of these are used in their traditional way in agile 
development because all assume (1) (big) define it, (2) negotiate it 
with R&D, (3) ‘freeze’ it, and (4) develop it.

Product
Management

R&Dstart end
(release)

content freeze
(release contract agreed)

The Milestone point is arbitrary

The Contract

https://less.works For Gene Gendel only, id:gene-gendel



109

Thinking about Product Management

(After The Content Milestone, change is still possible, but involves
hard work.5) This first move is called this is your last chance to spit
it out. Here’s how it’s played: 

This is also called local optimization.

The second move is played by R&D. Since they have to ‘commit’ to do
what they negotiate in The Contract—after, change is possible, but
involves hard work—here’s how it’s played: 

This is a second local optimization.

These moves repeat until (1) Thursday! (the random date), (2) the
PRD is (believed) 80% ‘complete,’ (3) the players think they have suf-

5.  Also known as change management; it too includes many acronyms: 
CR, CCB, … The traditional approach to change management is not 
necessary in agile development.

Product
Management

R&Dstart end
(release)

content freeze
(release contract agreed)

more,
more,
more!

1

The Milestone point
is arbitrary

The Contract

Product
Management

R&Dstart end
(release)

content freeze
(release contract agreed)

The Milestone point
is arbitrary

more,
more,
more!

less,
less,
 less!

1 2

The Contract

https://less.works For Gene Gendel only, id:gene-gendel



110

4 — Product Management

ficiently protected themselves in case something goes wrong, (4) the
executives (referees) decide “it’s enough, move forward,” or (5) they
are really tired: 

At this point they declare successful release contract agreement and
The Contract is finalized. In some versions of the game, there is a
ceremony: signing rituals or declarations of “we commit.” Sometimes
a talisman is offered: the Bonus If You Meet the Contract.

This is called the belief in magic.

No one is to blame in this game; actors are stuck in the system.

Key Point: After The Content Milestone, P-M has finished their con-
tent-and-date move in this game, so they go away. They have won
poker chips, and wait to cash them in at The End, to get the prize.

The next move is played by R&D, to implement The Contract during
the Development Phase. P-M waits (increasingly anxiously) for The
End. Note that they have money and hope—and fear—invested in
The Contract, but little control. 

Note: Delivery—and the path to delivery—is in the hands of R&D. 

Worse, visibility of progress is low, especially if a sequential life cycle
is used, and this exacerbates a lack of effective business control. 

less,
less,
 less!

more,
more,
more!

Product
Management

R&Dstart end
(release)

content freeze
(release contract agreed)

more,
more,
more!

more,
more,
more!

less,
less,
 less!

less,
less,
 less!

https://less.works For Gene Gendel only, id:gene-gendel



111

Thinking about Product Management

Finally, The End. P-M cashes in the chips they won. Did the prize
description match what they really got? Sometimes yes.6 And some-
times no—in which case the final moves in the game are 

The Problem

It is a silly story, but so what? Since it is a competitive game, both
players are locally optimizing. The focus is not on optimizing the
system to quickly deliver the best customer value, in the context of
learning and a changing world. Rather, the focus is on departmental
goals, avoiding being “assigned responsibility” for problems, and
perhaps getting rewards, even though these practices are established
with good intentions.

6.  Delivering The Contract is not necessarily related to business suc-
cess or customer satisfaction, as is explored next.

Product
Management

R&Dstart end
(release)

content freeze
(release contract agreed)

* Development Phase for The Contract is controlled by R&D.
* The order of work is decided by R&D.
* Product Management does not have control, and there is low 
visibility into the status of true progress.

The Contract

ineffective bonus schemes and "tracking 
to plan" behaviors are injected, since 
there is no real control or visibility

your faultyour fault

Product
Management

R&Dstart end
(release)

your fault your fault

The Contract

https://less.works For Gene Gendel only, id:gene-gendel



112

4 — Product Management

There are several core assumptions behind this traditional game:

see Queuing 
Theory in 
companion book

! It is not efficient, given the way we are currently working and
organized, to release early with a subset of features, or to man-
age fine-grained features; to be efficient (in our current sys-
tem), it is important to work in big batches.

! The whole solution needs to be “thought out first,” and then big
customer features need to be split into architectural tasks.

– one consequence of the prior assumption is that there is no
satisfying measure of progress from the customer or P-M
perspective; R&D ‘progress’ is related to technical tasks, not
customer value, and so there is lower transparency

! As a result of these assumptions (and others), there is no rele-
vance in product management directing development—that is
the job of R&D management (for example, a project manager).

System Dynamics

The system dynamics and assumptions behind this game are fuel for
a firestorm of problems, so understanding the system is important.

It often starts with the pre-game mentioned earlier. Many product
groups participate in a competitive features race that leads to an
increase in difficult-to-achieve promises: 

# difficult-to-achieve
promises to customers

development
speed

Goal:
get sales 

commissions

customer
satisfaction
& trust in us

O

O

Goal:
meet competitor 
offer to get deal

competitors promise 
matching plus extra

features

customer wants 
"everything" from usGoal:

differentiate to 
compete

O

same dynamic 
in competitors

P-M
collaboration
& trust with 

R&D

customer
collaboration

how this may improve the situation is explored in 
the following diagrams and discussion

https://less.works For Gene Gendel only, id:gene-gendel



113

Thinking about Product Management

Notice variables that can influence the central, painful feedback
loop: development speed, customer satisfaction and trust in us, and
the P-M collaboration and trust with R&D.

Faced with the challenge of meeting all these ‘promises,’ and the
belief that the key problem is the speed of development—which is
the responsibility of R&D—compounded with a lack of trust and
poor visibility or transparency into the work of R&D, a quick-fix
response to the situation is to negotiate The Contract with R&D,
shifting the commitments to them: 

As illustrated, interesting dynamics then ensue, which boil down to
this: development and the product get worse, and customer satisfac-
tion and trust degrades further.7 This leads to a vicious cycle of
graceful degradation. But since there are significant delays in these
causal links, the frog does not notice it is being slowly boiled to
death.8

handing over 
commitments
by negotiating 

a contract 
with R&D

# difficult-to-achieve
promises to customers

development
speed

# of quality-destroying  and 
other shortcuts to apparently 

meet the contract

difference
between

R&D
capability

and
commitment

R&D expected to 
"meet their 

commitments"

customer
satisfaction
& trust in us

- bad quality
- # defects
- # good people 
  who quit

O

O

O

QF

O

QF

transparency
in R&D

time until 
feedback

sequential life-
cycle practices

O

O

QF

O

O

P-M
collaboration & 
trust with R&D

7.  Plus, other quick fixes to ‘solve’ the problem then ensue, as explored 
in the Systems Thinking chapter of the companion book: Adding 
more people, leading to an increase in cost, leading to a quick fix to 
hire more low-cost people, leading to offshore outsourcing and multi-
site development, leading to more delay and reduction in quality.

https://less.works For Gene Gendel only, id:gene-gendel



114

4 — Product Management

See
“Avoid…Fixed 
content with 
unrealistic 
deadlines” on 
p. 335.

And there are other problems with boiling the frog this way. The
cheapest system to build and maintain has no code; beyond that it
gets worse. One metasurvey of maintenance studies summarized
that at least 50% of cost is not during original development, but dur-
ing later maintenance [Koskinen03]. 

Consequently, the waste of overproduction of extra features in the
traditional Contract Game not only has short-term but also long-
term downside because making more stuff today probably means
making less new stuff next year, due to “care and feeding” costs.
Plus, to meet the content-heavy deadline, opaque (in the short term)
quality-reducing actions occur within R&D. Worse, sometimes those
extra features were only requested by a few customers—adding to
the sub-optimization… 

There are ways to cool the waters and save the frog. Figure 4.3 illus-
trates key dynamics in the market and within one company—for
good or ill. A product manager who grasps the implications of
Figure 4.3 holds one key to unlocking improved long-term ROI, bet-
ter product management, and better relationships with customers.

8.  For another source of aggravation, see “Avoid…Short-term product 
managers or focus” section on page 123.

- # of features
- lines of code

# difficult-to-achieve
promises to customers

(new feature)
development

speed

difference between 
R&D capability 

and commitment

O

O

QF

O

effort dedicated 
to maintenance 
of existing code

customer
satisfaction
& trust in us

O

O
handing over 
commitments
by negotiating 

a contract 
with R&D

transparency
in R&D

O

P-M collaboration 
& trust with R&D

O

https://less.works For Gene Gendel only, id:gene-gendel



115

Thinking about Product Management

Figure 4.3

# difficult-to-achieve
promises to customers

(new feature)
development

speed

# of quality-destroying  and 
other shortcuts to apparently 

meet the contract

Goal:
get sales 

commissions

difference
between

R&D
capability

and
commitment

customer
satisfaction
& trust in us

- bad quality
- # defects
- # good people 
  who quit

O

O

O

QF

O

O

P-M
flexibility and control 
of product content, 
release date, and 

investment

Goal:
meet competitor 
offer to get deal

ROI of resource 
allocation
decisions

competitors promise 
matching plus extra

features

customer wants 
"everything" from usGoal:

differentiate to 
compete

QF

transparency
in R&D

O

O

O

O

time until 
feedback

O

sequential life-
cycle practices

O

O

QF

O

same dynamic 
in competitors

P-M
collaboration
& trust with 

R&D

- # of features
- lines of code

O

effort dedicated 
to maintenance 
of existing code

customer
collaboration

handing over 
commitments
by negotiating 

a contract 
with R&D

R&D expected to 
"meet their 

commitments"

transparency in 
organization

https://less.works For Gene Gendel only, id:gene-gendel



116

4 — Product Management

If R&D can potentially ship a well-done product each iteration, and
if P-M (rather than R&D) adaptively steers the choice of features to
develop each iteration (with fresh insight based on learning and
feedback) and enters into a collaborative and transparent relation-
ship with customers and R&D, then there is a Goldilocks solution—
a product management balance neither too hot nor too cold.9

Keys to the improvements possible in Figure 4.3 come from…

Try…Product management collaborates with R&D each iteration,
adapting release scope or date

The third agile value is customer collaboration over contract negotia-
tion.10 This refers not only to commercial contracts, but also to the
internal ‘contracts’ between parties within the product-creation
company, as explored in the previous topic. 

In Scrum, the voice of the customers to the teams is the Product
Owner from product management,11 and they enter into a

two-person cooperative game of invention and communication

as explained by Alistair Cockburn in Agile Software Development:
The Cooperative Game [Cockburn07]. This is a paradigm shift; a new
game for P-M and R&D. The Product Owner (PO) and R&D partici-
pate in the game of Scrum, and the PO adaptively steers R&D each
iteration by re-prioritizing the Product Backlog and by collaborating
with teams during Sprint Planning and Sprint Review.

9.  We recognize that this solution makes an assumption that itself may 
be flawed: that the product management and R&D leader are sepa-
rate people. Although that may remain true in Scrum, at least sepa-
ration and us-them mentality is reduced by including the Product 
Owner in the Scrum Team. See also the lean idea: “Try…Overall 
product manager is chief engineer” section on page 128.

10. No false dichotomies. Recall the agile values postscript: That is, 
while there is value in the items on the right, we value the items on 
the left more. It is common in Scrum to start with a target Release 
Backlog, with a specific long-term release date and product content 
in mind; however, this evolves every iteration.

11. Or for internal applications, the business area.

https://less.works For Gene Gendel only, id:gene-gendel



117

Thinking about Product Management

Further, the PO and teams enter into a cooperative game of ongoing
invention and communication with the customers or users that the
PO represents to the teams.

The system dynamics in Figure 4.2 illustrate some of the deeper
forces at play in the collaboration game. Tip: By looking backward
through the causal links from customer collaboration, P-M and R&D
can experiment with changes to strengthen the system, starting
with understanding the dynamics that influence customer satisfac-
tion and trust in us. For instance, that is influenced by increasing
transparency in the organization.

The Product Owner has business responsibility—The PO is responsi-
ble for the product profitability, has the business view, and talks to
real customers. So, with a clear understanding of the traditional
Contract Game and its problems discussed in the previous section, it
should be clear why the Product Owner cannot be someone from
within R&D (unless that person had business responsibility). A crit-
ical rule and dynamic in this game is that the steering of develop-
ment is not in the hands of R&D, but in the hands of product
management—those responsible for profit, release content, and
talking to the customers.

Try…Challenge traditional product-management assumptions

A new product manager may have been exposed to books or educa-
tion that convey traditional assumptions. Know and question these:

Assumptions: Life cycle and contracts

In The Product Manager’s Handbook [Gorchels06], the “product
development process” is defined with sequential stages. Stage four is
Definition, whose definition is

Establishment of clear functional specifications… [R&D] Team
agreement on the requirements for the product.

The Handbook explains “the new product project” in more detail:

https://less.works For Gene Gendel only, id:gene-gendel



118

4 — Product Management

Freeze the product concept (i.e., obtain commitment on what
benefits it will provide the customer) after the concept develop-
ment phase. Freeze the product specification after successful
prototype development.

In Product Management [LW05], step six in the “product manage-
ment planning process” is Negotiate Final Plan.

The last stage in the Handbook is Project/Process Evaluation: Only
after launch, consider improvements “for future projects.” 

All this assumes the traditional Contract Game and sequential life-
cycle development.

Assumptions: P-M does not direct product development

The quotes above, and other conventional literature on P-M assume
or assert that the product manager does not drive development of
the product:

…the product manager’s control over the internal groups [R&D,
marketing research, …] may be less than over an external group
because she lacks direct authority. [Gorchels06]

Outward—Part of the rationale behind this assumption is good: the
product manager’s (Product Owner’s) major focus should be outward
to the market, not inward, and include acting as a cross-functional
leader between R&D, manufacturing, and so forth. For instance,
Product Management by Lehmann and Winer contains not a single
word on the subject of developing the product; it addresses the cus-
tomer, market, and channels. We agree with that outward focus—
and have a section emphasizing it later in this chapter. 

Outward and inward—However, that does not necessitate a false
dichotomy in which P-M cannot drive development. It boils down to
the degree of time and attention. Balance. Scrum responsibilities do
not demand all of the Product Owner’s time; there is Sprint Plan-
ning on the first day, Sprint Review on the last, and some time in
between, but certainly not all the time.

https://less.works For Gene Gendel only, id:gene-gendel



119

Thinking about Product Management

And this involvement is vital; in Product Strategy and Management,
which surveys the success and failure research into successful prod-
uct management and development, the view of P-M well divided into
a separate silo apart from R&D is rejected:

…all the performance indicators in new product development
point to the need for [cross-] functional integration. [BH07]

Assumption: P-M is not chief engineer

Finally, an unspoken assumption in organizations is that the overall
product manager and the chief engineer are separate people. This is
discussed further in the “Try…Overall product manager is chief
engineer” section on page 128.

Challenging these assumptions: New trends in product management

Some product managers, aware of the change in P-M assumptions
and behavior with the introduction of Scrum, are challenging old
assumptions. For instance, in the product management guide
Inspired, Marty Cagan (VP of product management at eBay) writes

R.I.P. PRD: I think the product spec is long overdue for renova-
tion. Some would argue that agile methods accomplish this by
doing away with the spec altogether.12 While there are other
issues with that, in many respects I think they are on the right
track.

Replace heavy PRDs and functional specs with prototypes and
user stories. [Cagan08]

In fact, Inspired includes the chapter Succeeding with Agile Meth-
ods. Another sign of changing times in product management is The
Art of Product Management by Rich Mironov [Mironov08], devoting

12. This is a common “false dichotomy” misunderstanding of agile 
development by Mr. Cagan. The second agile value is working soft-
ware over comprehensive documentation, which is quite different 
from “doing away with specs altogether.” His point still holds.

https://less.works For Gene Gendel only, id:gene-gendel



120

4 — Product Management

twenty pages to the changing assumptions, behaviors, and business
opportunities when adopting agile methods. For example:

I continue to see that Agile delivers more and better software;
that product managers are an irreplaceable part of that
improvement; and the P-M function needs to be champion of
business improvement.

PRODUCT OWNER

Try…Product 
Manager is 
Product Owner

Avoid…Product Manager is not Product Owner

In early Scrum practice and writings, there was no special title
Product Owner, and the common title product manager or product
marketing manager was used: 

Only one person prioritizes work. This person is responsible for
meeting the product vision. The title usually is product man-
ager, or product marketing manager. [BDSSS99]

Don Roedner, the first Product Owner, did not move to VMARK.
I specifically took the best person out of Product Marketing at
Easel and assigned him [Don] the team and he had total control
of the backlog. [Sutherland09c] (emphasis added)

We sometimes visit groups adopting Scrum where the separation
between P-M and R&D is so ingrained that no one could conceive
that the real product manager can serve as the real Product
Owner—interacting with the teams and directing the priority of
development. Rather, the so-called Product Owner role is delegated
to a project manager or program manager within R&D who is not
responsible for the product profitability.

This is a misunderstanding;13 the Product Owner has business
responsibility, not “project execution.” In Scrum, the Product Owner
has these responsibilities [Schwaber05]:

13. An exception to this is the lean development practice of entrepre-
neurial chief engineer in which the chief engineer and product man-
ager with business ownership are one and the same.

https://less.works For Gene Gendel only, id:gene-gendel



121

Product Owner

! decides on release date and content

! is responsible for the profitability of the product (ROI)

! prioritizes features according to market value

! can change features and priority every iteration

! accepts or rejects work results

! defines product features

And in Agile Project Management with Scrum [Schwaber04]: 

The Product Owner’s focus is return on investment… The Prod-
uct Owner represents all stakeholders [customers, funders]

These are the remit of product management. Therefore, the Scrum
Guide [Schwaber09a] suggests:

For commercial development, the Product Owner may be the
product manager.

Avoid…Fake 
Product Owner

If there is a fake “Product Owner” who does not have this authority,
a vital essential dynamic of Scrum is missing: that business steers
product direction each iteration, not R&D, and that there is an end
to the Contract Game; rather, there is a shift from contract negotia-
tion to customer collaboration.

Avoid…Business manager is not Product Owner

This is a retelling of the previous idea, expressed in terminology
used for internal products or applications (as in a bank). To quote
the Scrum Guide:

For in-house development efforts, the Product Owner could be
the manager of the business function that is being automated.

Once again, the real Product Owner is not a project manager from
IT or engineering; rather, he or she is a business person from the
area the application is created for. If the so-called Product Owner
was a project manager from IT, the Contract Game remains; and
nothing has really changed for the better in the relationship and

https://less.works For Gene Gendel only, id:gene-gendel



122

4 — Product Management

dynamics between business and IT, because “nothing needs to
change.”14

Try…Product 
management 
owns the product

Try…Product Owner owns the product

When we coach, we may ask the product manager(s), “Are you
responsible for the ROI of the product, and do you have independent
authority to make decisions related to this responsibility?” “Do you
choose the release date and content?” Sometimes—especially in very
large product companies—the answer is “No.” A common situation is
responsibility without authority—a recipe for problems in most con-
texts. For instance, perhaps they are responsible for the ROI but do
not decide the content, or they have proposals approved or amended
by a committee. 

Independent of Scrum, this is a problem because it often reflects

! no unity of vision or constancy of purpose

! sub-optimizing goals pushed by competing factions: Sales, Mar-
keting, and more

– these two points lead to products that are less likely to meet
the highest-priority business objectives

! someone else—often Sales or Marketing—imposing the Con-
tract Game onto both product management and R&D

The name “Product Owner” was coined by Jeff Sutherland (the co-
creator of Scrum). His intention, while working in a commercial
product company, was straightforward: that the Product Owner
really own the product and have responsibility and decision-author-
ity related to profit, business case, pricing, release date, and content
[Sutherland09a].

14. This is a shallow Scrum adoption, in which only the surface words 
and actions appear to have changed (holding a daily stand-up meet-
ing, having a backlog, …), but the underlying dynamics that are the 
root causes of the problems have not been tackled. This happens 
because “it’s easy”—the status quo organizational design is not chal-
lenged or significantly improved.

https://less.works For Gene Gendel only, id:gene-gendel



123

Product Owner

Avoid…Short-term product managers or focus

Sometimes the pivotal role of product management is unfortunately
viewed as a short-term engagement that potential executives step on
during their climb up the ladder. Or, product management (and
quality management) is viewed as a place where people go when it is
not clear where else they should work. This weakens the system
because people may not be strongly motivated by a desire to excel in
product management, or they may make short-term decisions with-
out facing the outcome of those in future releases, and do not
develop deep skill over many years. For example, quality may be
sacrificed and there is low motivation to invest in improving.

(This same short-term-view problem exists when program or project
managers are responsible for delivering a release—since they usu-
ally are finished when the ‘project’ is finished. Scrum eliminates this
problem with a Product Owner from business driving development.)

Try…Fake Product Owner

Sometimes the person who should rightfully serve as Product Owner
(such as the product manager with the business view) is not yet
interested in participating in Scrum. Or, that person may be inter-
ested, but the teams are new to Scrum and expect awkward Scrum-
adoption learning in the first few iterations—and there is valid con-
cern that on seeing this awkwardness, the new PO would be scared
off. In either of these cases, a pseudo Product Owner is a temporary
option.

When there is no interest (yet) by the rightful
PO, teams can work with the pseudo PO, and
invite the potential PO to attend Sprint Reviews
to gain informal feedback and to attract him or
her to participate. By demonstrating skill and
responsiveness, the team—and the advantages

of acting as PO—may become attractive. Or when working through
extremely awkward learning, a pseudo PO can collaborate with the
teams for a few iterations until the teams are fluid. 

https://less.works For Gene Gendel only, id:gene-gendel



124

4 — Product Management

Try…Business 
manager is 
Product Owner

Avoid…Believing Product Owner is just an analyst role

There are misconceptions and incorrect statements that have been
written about the role of Product Owner. Here is one:

Product Owners sit with their development teams full-time,
elaborating user stories, managing sprint-level backlogs, …

This is not correct; it is inconsistent with the definition
[Scwhaber05, Schwaber09a]. The Product Owner meets with the
Team during Sprint Planning on the first day, during Sprint Review
on the last, and some time in between, but not as described above.
Also, the PO does not manage the Sprint Backlog, which is solely
created and used by the self-managing Team. 

More broadly, the PO is responsible for product profitability and for
deciding release date and product content—business-oriented prod-
uct management responsibilities.

Most incorrect descriptions relegate the role of “Product Owner” to
some minor variation of business or requirement analyst. That
might only happen as a temporary stop-gap measure, as described in
the “Try…Fake Product Owner” section on page 123.

Avoid…Believing Product Owner must attend the Daily Scrum

We encourage Product Owners to help reduce us-them culture and
to practice Go See by observing Daily Scrums—at least sometimes.
However, a variant of the misunderstanding that “Product Owner is
just an analyst role” is that he is required to attend the Daily Scrum.
Not true [Schwaber09a]. The incorrect notion that the Product
Owner must do so is a reflection of a larger problem to avoid…

Try…Product 
Owner product 
manager focuses 
outward to the 
market and 
channels

Avoid…Too ‘inward’ product management & Product Owners

“Before we adopted Scrum I never met the customer and never saw
the product. Now that we use Scrum, at least I see the product every
iteration.” This was said by a “product manager” in a group we were
coaching. We felt sad to hear this, but happy that things were
improving. 

https://less.works For Gene Gendel only, id:gene-gendel



125

Product Owner

We sometimes work with a product management group that spend
almost all of their time writing PRDs, clarifying specifications,
attending Product Backlog refinement workshops with teams, and
interacting with other internal departments. While these activities
are within the remit of P-M, and the product manager has a central
role as cross-functional leader between different departments, it is
too inward.

A great product-manager Product Owner also pays attention out-
ward to the customers and market. Consider this partial list of
major responsibilities, described in Product Management [LW05]: 

The Product Owner meets with the Team during Sprint Planning on
the first day, during Sprint Review on the last, and some time in
between; there is—and there must be—time to focus on market- and
customer-facing outward activities. 

Avoid…Too ‘outward’ product management & Product Owners

“Our product management is not involved in Scrum because they
talk to customers” is a refrain we sometimes hear. It reflects no rela-
tionship with teams and high levels of handoff. It leads to the Con-
tract Game and/or other issues explored in “The Problem” section on
page 111.

The role of Product Owner implies a balance between outward and
inward focus, in which the Product Owner commits to at least spend
some time each iteration with teams.

Avoid…Us-Them: Product Owner versus Team

We were facilitating a group’s first requirements workshop that
included both development team members and product manage-
ment. We were at a whiteboard with one team, listening while they

product vision business plan customer relations

competitor analysis ideation, innovation market testing

channels pricing market research

profitability risk management product review

https://less.works For Gene Gendel only, id:gene-gendel



126

4 — Product Management

discussed an unclear requirement. The product managers that
(everybody knew) could clarify were two meters away, sitting on a
sofa and wondering why they were in the workshop. The team mem-
bers never thought to walk over and ask them—they had never
talked to product management before. And the product managers
never thought to join the team members at the walls to collaborate.

Especially in a large organization, departmental silos with us-them
culture is common. When Scrum is adopted in such an environment,
it is predictable that attitudes will, at first, remain the same… I am
the Product Owner, not involved with teams. We are the team, not
involved with the Product Owner.

ScrumMasters in large-scale Scrum adoptions need to pay special
attention to breaking down the old walls. A change in title does not
result in a change in behavior. 

Avoid…“Product Owner”

For commercial products, the term product manager is long-estab-
lished, and arguably the new term Product Owner is not mandatory
in this context if the product manager truly fulfills the PO role. Plus,
as already mentioned, in the early Scrum literature, the term prod-
uct manager (not ‘PO’) was used:

Only one person prioritizes work. … The title usually is product
manager, or product marketing manager. [BDSSS99]

(The Product Owner term is, in general, useful because it signifies a
special role with Scrum behaviors and responsibilities and because
Scrum is also applied to internal products or applications, where
there is no “product manager.”)

For a group with a bona fide product manager, a critical point of
Scrum is to end the Contract Game, and have the existing person
with real responsibility for product profitability, release content, and
release date take on the behavior of Product Owner, steering devel-
opment. Unfortunately, the introduction of the term “Product
Owner” sometimes creates confusion…maybe the Product Owner is
just some requirements analyst, maybe the Product Owner can be
delegated to an R&D project manager, or other misunderstandings. 

https://less.works For Gene Gendel only, id:gene-gendel



127

Product Owner

In that sense, if you are an agile coach, experiment with avoiding
the term Product Owner (if it is adding confusion) and instead focus
on what is really important: the change in behavior that the product
manager needs to make in the role of Product Owner.

A product manager acting as Product Owner does have expanded
Scrum-related responsibilities; this experiment is not about avoid-
ing these, it is about being sensitive to the impact of terminology.

In Agile Project Management with Scrum, Ken Schwaber makes a
similar point:

It isn’t always necessary to make a big deal out of the role of
Product Owner. Sometimes it makes sense to lowball the whole
thing and propose something casual instead, like getting
together and talking about what to do next. People are often sus-
picious of new jargon and new methodologies—and not without
reason. [Schwaber04]

Try…“Product Owner”

For internal applications, people often—unfortunately—think of
projects with a beginning and end. In contrast, product companies
understand their product may last for years, and it benefits from a
consistent team of product manager and developers that support it.
Problems with “project mindset” were considered in the Organiza-
tion chapter in the companion book. The same point is reiterated by
Roman Pichler, author of Agile Product Management with Scrum:

Having one person in charge across releases ensures continuity
and reduces handoffs, and encourages long-term thinking.
[Pichler10]

In reality, internal applications made at a bank or energy company
are products—internal products. They do not just disappear when
the first release is deployed. So what? Overlaying a short-term
project view on a product introduces various sub-optimizations. For
instance, after project release, the project team is disbanded; when a
new release is required, a new project team is formed—with many
wastes from loss of consistency and knowledge handoff. Or, since

https://less.works For Gene Gendel only, id:gene-gendel



128

4 — Product Management

each project release is led by a different project manager, they
locally optimize for this release and sacrifice long-term quality.

In this situation, introducing a long-term product paradigm to
replace the short-term project culture is a good thing. As a coach
introducing Scrum, emphasize the notion of a stable Product Owner
from business, managing a long-term Product Backlog. Call your
systems internal products. Experiment with removing or downplay-
ing project terminology and mindset.

Try…Overall product manager is chief engineer

Both Toyota and Honda apply the lean development practice of
entrepreneurial chief engineer (“large product leader” in Honda
terms). One person with technical excellence as a master engineer
who also has business acumen (and education) is the leader of prod-
uct management, market research, and product development. Com-
mon in small start-ups, this is all-too-rare in large establishments.

It is most appropriate for products that are strongly technology-
driven, such as a new car or a software-intensive system. For cus-
tomer-driven products where technology is a minor player, a separa-
tion between product management and R&D is less a problem.

MANY PRODUCTS

Portfolio management was discussed in the Organization chapter of
the companion book. This section covers more specific experiments.

Avoid…Platform 
group with a 
“shared
infrastructure”
backlog

Try…Add and do a cross-product common goal

When we start coaching a big organization, one group we are guar-
anteed to find is…the Platform Group. The conventional idea is to
collect requests for shared components or services from across sev-
eral products, which are then implemented by the Platform Group
“for efficiency.” 

Alternatively, sometimes the idea is that the Platform Group specu-
latively create the Grand Frameworks (the “business object frame-

https://less.works For Gene Gendel only, id:gene-gendel



129

Many products

work,” …) that are pushed on to product groups, who are forced to
use what frequently turns out not grand, but grandiose.15

Figure 4.4 take on 
a common goal 
rather than create a 
platform group

When an organization with a platform group adopts Scrum, a com-
mon notion is to create a “shared infrastructure” backlog for the
group, fed from the products. The Product Owner from business
needs to understand the implications of this common—but expen-

15.  Because the designers are not involved in using the frameworks to 
build real product features—eating their own dog food. We recom-
mend, “No reuse before use.”

Product-A

Product-B

Product-A
Backlog

Product-B
Backlog

common goal: 
component,
framework,
service, ...

Platform Group

Infrastructure
Backlog

Infra-
structure
Owner

Product-A

Product-B

Product-A
Backlog

Product-B
Backlog

common goal: 
component,
framework,
service, ...

Product-A wants the 
common goal first;
they take it on

avoid this, unless there is an existing large 
platform group that cannot be quickly dissolved

try this...

shared code (platform)

shared code (platform)

https://less.works For Gene Gendel only, id:gene-gendel



130

4 — Product Management

sive and value-delaying—organizational design within large-scale
R&D, challenge the assumption it optimizes the system, and guard
against its weaknesses.

In contrast, this experiment means that a Product Owner from a
real product—not a platform group—will be taking on a shared
infrastructure goal (Figure 4.4).

What are the weaknesses associated with a platform group and
shared infrastructure backlog? A platform group is one large compo-
nent group, and all weaknesses with component teams identified in
the Feature Teams chapter16 of the companion book exist at a macro
scale: delayed delivery, handoff, lack of visibility of R&D work to
P-M, delayed integration and testing, and more. To be clear, in this
design there are at least two “component teams” involved in deliver-
ing customer value: the product and platform groups. 

The conventional thinking behind a platform group, “for efficiency,”
is based on local optimization thinking—that a group specialized on
one component produces the best design and is fastest17—rather
than delivering value fast to customers. In short—to repeat the
opening metaphor of the Lean Thinking chapter in the companion
book18—it was created by a focus on the runner rather than the
baton.

The alternative? See Figure 4.4. Avoid platform groups; instead, the
Product Owner of the product (Product-A) that most quickly wants
the common goal (item-X) adds it to their Product Backlog and cre-
ates the shared code in the common platform. The Product-A Scrum
feature team that implements item-X collaborates with stakeholders
from other products to learn and account for cross-product support.
Item-X is created quickly by the group that wants it most, and other
products benefit from their effort. 

Furthermore, the people creating item-X are the ones also using it.
Good things come from eating your own dog food—in software, poli-
cies, and processes.

16. The Feature Teams chapter is available on the web.
17. Assumptions not even guaranteed true with component teams.
18. A close variant of the Lean Thinking chapter is available as the 

Lean Primer, at www.leanprimer.com.

https://less.works For Gene Gendel only, id:gene-gendel

www.leanprimer.com


131

Many products

See “Try…Plan 
infrastructure 
items by regular 
teams” on p. 168.

Platforms, not platform groups—Just as it is possible to have compo-
nents without component teams, it is possible to have a platform of
shared code without a platform group. Plus, a high-quality platform
is supported with a design community of practice and joint design
workshops.

See “Try…Joint 
design 
workshops for 
broader design 
issues” on p. 298.

Transitioning from a large platform group—At the clients we work
with, merely the platform group itself (below the product groups)
may be 200 to 1,000 people. It will not disappear quickly. In this case
experiment with this transition strategy:

1. Temporarily maintain the platform group, but gradually (and
permanently) move members into product groups.

2. Create a shared infrastructure backlog; apply Scrum in the
platform group with this backlog.

– note: items in this backlog are not customer requirements

3. Do some common infrastructure goals in the platform group,
and some in product groups—with coaching and review from
current- and ex-platform group members; this also implies
abolishing private code ownership.

4. Gradually reduce the platform group as the product groups
learn to effectively take on more shared platform goals.19

Try…Product Owners work together to maximize company ROI

The previous experiment demonstrated one Product Owner taking
on work that benefits other products. Systems thinking suggests a
perspective and actions that maximize ROI and sustainability for
the company, not just one product. How can Product Owners work
together to support this?

! Shift teams (not individuals) to the products that currently
have the most to gain from an increase.

– avoid frequent shifts; there are overhead costs: learning, …

19. Platform groups are often an internal cost center funded by the 
product groups. As it shrinks, so does the cost to product groups. 

https://less.works For Gene Gendel only, id:gene-gendel



132

4 — Product Management

! Do an important item for another product when your product
group has the skill or slack.

! Do a common item that benefits several products.

! Challenge one another’s business cases; reduce wishful think-
ing by encouraging other products to get earlier feedback.

! Share improvement experiments—for P-M, not only for R&D.

MANY TEAMS

Try…One and only one Product Backlog

Some “scaling Scrum” descriptions advise that each team have their
own Product Backlog. This is not correct. There is only one Product
Backlog for the overall product, regardless of the number of teams.
The Scrum Guide explains:20

Multiple Scrum Teams often work together on the same product.
One Product Backlog is used to describe the upcoming work on
the product. (emphasis added)

This is necessary for focus on the whole product and to optimize the
overall priority of features for the product—to avoid local sub-opti-
mizations by separate teams.

Avoid…Fake 
team-level
“Product
Backlogs”

In product groups with many component teams or single-function
teams (such as design or testing), these teams do technical tasks—
partial work for a feature—rather than a complete feature. Some-
times, rather than transitioning to Scrum feature teams (that do
complete features), these existing teams have team-level so-called
Product Backlogs that contains these tasks. Avoid that.

We visited several companies that had team backlogs and the result
was always the same: The team and their local PO always focused
on their separate work, causing problems for the product as a whole

20. The Certified ScrumMaster course [Schwaber05] also presents one 
Product Backlog for many teams.

https://less.works For Gene Gendel only, id:gene-gendel



133

Many Teams

and an uncooperative attitude across teams. The local optimizations
were not hard to detect.

For more, see

! “Avoid…Try…‘Easy’ agile or lean adoption” section on page 386

! “Avoid…Technical task ‘requirements’ (PBIs)” section on
page 237

! “Avoid…Technical task PBIs in team-level “Product Backlogs””
section on page 238

Try…Area Product Owners when many teams

see Feature 
Teams Primer 
chapter

Area Product Owners (APOs) are applicable to large-scale devel-
opment involving many teams, such as 50 teams for one product.
Briefly, the (large) Product Backlog is subdivided into requirement
areas; these are major areas from the customer perspective, such as
color workflow, transaction printing, and security. Each area has its
own Area Backlog21 and APO, and is served by many teams that
specialize in that one requirement area. An APO (and requirement
area) has many teams, never (or at least extremely rarely) only one. 

Is an APO the same as a supporting Product Owner for one or two
teams? No. When there are many teams, one overall Product Owner
and several supporting POs (or “PO representatives”) can help,
when there is too much work or too many people for a single person
to act effectively as Product Owner towards all teams. However, the
overall APO responsibilities and focus are different than a support-
ing PO. Table 4.3 shows some of these differences. Note: they are not
mutually exclusive—both may be useful. But, in most product
groups we have worked at, a supporting PO was not needed and
would be unnecessary overhead. Challenge the need of supporting
POs and avoid them if an overall PO plus APOs are enough.

21. An Area Backlog is not a separate Product Backlog; it is a view into 
the one Product Backlog, filtered by requirement area.

https://less.works For Gene Gendel only, id:gene-gendel



134

4 — Product Management

Table 4.3 Area 
Product Owner and 
supporting PO

This is an important scaling idea, worth closer study and experi-
mentation if applicable.

Try…Product Owner Team

The overall Product Owner and Area Product Owners may be called
a Product Owner Team; they collaborate to deliver the product.

Try…Map different scaling terms

When scaling to a Product Owner Team—because the product needs
a team of product managers, and there are too many teams for one
person to act as their Product Owner—it is common (not required) to
distinguish a single ‘overall’ Product Owner who has overall vision,
and final say on prioritization, to prevent sub-optimization. In fact,
there is no Scrum rule that an overall PO exist; the Product Owner
Team can collaborate to globally optimize product development. 

Still, an overall PO is common. For example:

Area Product Owner Supporting PO

(similar to the overall Product 
Owner) is part of Product Man-
agement and has an ROI focus

probably in R&D, though may 
be part of Product Management; 
does not have ROI responsibility

main focus is on customer-cen-
tric requirements, not on teams

main focus is toward the team(s)

the number of teams per area is 
dynamic; it changes over time 
but not at every iteration

stable for team(s)

works with 4–10 teams works with 1–2 teams

overview across many teams, 
focus on product-level priorities

focus only on the team’s work; 
overview often lost

https://less.works For Gene Gendel only, id:gene-gendel



135

Many Teams

The chief product owner guides the other product owners. The
individual ensures that needs and requirements are consis-
tently communicated to the various teams, and that the project-
wide progress is optimized. This includes facilitating collabora-
tive decision making as well as having the final say if no con-
sensus can be reached. [Pichler10]

Different groups have explored scaling Scrum, in parallel at differ-
ent organizations. Thus, alternative but equivalent terms emerged.
Additionally, there are some nonequivalent terms. Here is the basic
mapping, followed by comments: 

Note that some groups have scaled down the terminology, and others
have scaled up, each with the same underlying intentions. For
instance, most of our clients use “Product Owner” to mean the one
overall Product Owner and then scale down the terminology to “PO
representative” or “PO proxy” for the many supporting POs. Other
groups use “Product Owner” for the supporting POs and scale the
name up to “lead PO” or “chief PO” for the one overall PO.

Overarching principles when scaling:

! Who does one Team meet with?—Regardless of name, a Team
needs a consistent person to act in the role of Product Owner. 

! Who does one PO meet with?—One PO (or supporting PO) may
be able to work with more than one team.

! Who ensures overall product vision?—If many supporting POs
have different top priorities or product visions, there will be
conflict and sub-optimization. Although the Product Owner
Team can in theory collaborate to avoid this (without a top per-

[LV08] various [e.g., 
Cottmeyer09]

[Schwaber07a] [Pichler10]
[Cohn09] 

[Eckstein10]

overall Product Owner 
(PO)

PO overall PO chief PO lead PO

support-
ing

PO representa-
tive, Area POa

PO proxy PO PO PO

a. Area POs are a unique concept, different from other kinds of supporting POs.

https://less.works For Gene Gendel only, id:gene-gendel



136

4 — Product Management

son), it is common that a single overall PO ultimately crafts
overall product vision and prioritization.

Area Product Owners are different

As explored in the Feature Teams Primer chapter, an Area PO is dif-
ferent from the simple concept of a sub-PO that meets with a team.
Area POs are only used in relatively large-scale development, with
perhaps 30 teams or more, and are tied to the idea of requirement
areas and Area Backlogs.

If there is one Area PO for one team, there is misunderstanding; one
Area PO is responsible for an area served by many teams. 

Try…Better behavior over ‘better’ PO scaling definitions

Q: What’s the difference between a terrorist and methodologist?
A: You can negotiate with a terrorist.

Shared understanding of method terms reduces the friction of mis-
understanding. But we suggest not spending energy on the trivia of
different Scrum scaling terms. What is important is a change in
behavior—from the Contract Game between product management
and R&D to a cooperative game of invention and communication.

Avoid…Try…“Product Owner Team”

See “Try…Large-
scale Scrum FW-
2 for ‘many’ 
teams” on p. 15.

In a very large-scale product group with requirement areas, the
Product Owner Team includes the (overall) Product Owner and Area
Product Owners. A team is needed because there are too many
Scrum teams and too much product management work for one per-
son to handle as Product Owner. This suggestion is not about having
or avoiding such a team, it is about terminology.

Product Owner Team [LV08] is an unofficial but common phrase
used in Scrum scaling contexts.22 Avoiding the phrase “Product

Area Product Owner is not another name for a supporting PO.

https://less.works For Gene Gendel only, id:gene-gendel



137

Many Teams

Owner Team” reflects the same terminology-confusing dynamics as
“Avoid…Product Owner” (p. 126) but at scale when a team of prod-
uct managers is needed. Embracing the phrase “Product Owner
Team” reflects the same dynamics as “Try…Product Owner” (p. 127)
when building internal products or applications (such as at a bank).

Avoid…Too inward-focused Product Owner Team

See
“Avoid…Product 
Owner Team as 
separate analysis 
group” on p. 236.

This suggestion reflects the same point as the “Avoid…Too ‘inward’
product management & Product Owners” section on page 124.
Whether it is called the product management team or the Product
Owner Team, their attention needs to include an outward-to-the-
customer and business focus.

Suspicious too-inward-activity smells include23

Suspicious too-inward-composition smells include24

These activities and people are meant to be within the cross-func-
tional teams in Scrum. Scrum is not a sequential process in which
the Product Owner Team hands off requirements to the Scrum
teams for implementation; rather, the regular teams (that contain
analysts, UI designers, architects, and system engineers) are
involved in this work—usually during ongoing Product Backlog
refinement—in collaboration with guidance from an outward-look-
ing product-management “Product Owner Team.”

22. The term was first used by Scrum co-creator Jeff Sutherland in the 
1990s at IDX [Sutherland09b].

writing specifica-
tions

designing user 
interfaces

defining architec-
ture

23. ‘Smell’ does not assure a problem; it is a signal worth investigating.

business or require-
ment analysts

UI designers architects or system 
engineers

24. People previously working in these roles may make great P-Ms (or 
not); the point is that product managers are product managers.

https://less.works For Gene Gendel only, id:gene-gendel



138

4 — Product Management

Try…Product Owner representative (supporting PO)

Consider this example:

! a single product group with 100 teams and 30 people in product
management (common, for example, in telecom products)

! one product manager playing the role of ‘overall’ Product
Owner

! fifteen requirement areas, each with an Area Product Owner
from the product managers

On average, each Area Product Owner is then served by seven
teams. That one person cannot effectively spend time with each
team acting in the role of Product Owner—giving full attention to
each team during Sprint Planning, helping to refine all the backlog
items, and so on. Someone else needs to serve as Product Owner
(supporting Product Owner or Product Owner representative) in rela-
tion to the team. This PO representative may rotate over time and
may help multiple teams. 

A PO representative is either a product manager or team member,
and is distinguished from a general subject-matter expert in that
she can make fine-grained decisions regarding requirement details.
For instance, if team members ask, “Should we consider this rare
edge case?” Then, a PO representative can decide. However, PO rep-
resentatives do not make larger decisions, such as priority. 

In some multiteam Scrum implementations, this person is simply
called the “Product Owner.” We avoid this because it is inconsistent
with the true Scrum role of Product Owner; for more, see

! “Avoid…Product Manager is not Product Owner” section on
page 120

! “Try…Product Owner owns the product” section on page 122

! “Avoid…Believing Product Owner is just an analyst role” sec-
tion on page 124

https://less.works For Gene Gendel only, id:gene-gendel



139

Prioritization

PRIORITIZATION

Try…Value

For a long-lived big product such as a ship-control system or printer,
the Product Backlog contains thousands of items. 

Fact: During initial Product Backlog creation (when Scrum is first
adopted), the Product Owner is responsible for prioritizing many of
these items in some way to try to improve ROI or to improve delivery
of ‘value.’ That suggests a measure of ‘value’ for each item. 

Problem: What is ‘value’ and how to estimate it quickly—especially
when there is a pile of items? 

A deeper discussion of value is deferred until the following topics.
Yet, with relative value points (RVPs) as a lightweight proxy for
‘value,’ use planning poker to experiment with relative value points
(RVPs) and their estimation. For example, a scale 1–7 of relative
value points assigned by business people (the Product Owner, other
product managers, marketing, …). 

It is fun and simple to estimate
RVP with planning poker:25

The technique looks as shown
in this photo. The details are
beyond the scope of this intro-
duction; ask a ScrumMaster.

Prioritization—When finished,
all items have an RVP. They
also have an effort or cost esti-

mate that was provided by the teams. This somewhat guides prioriti-
zation: All other things being equal (they never are), the Product
Owner increases the priority of items with high RVP and low effort
estimate—more bang for the buck.

25. Planning poker is a technique most ScrumMasters can teach to the 
Product Owner. A subtle but important dynamic in planning poker 
is that it stimulates conversation and learning among people.

https://less.works For Gene Gendel only, id:gene-gendel



140

4 — Product Management

Trade-offs—This relative point estimate, a proxy for ‘value,’ reflects
an informal collage of factors in the minds of estimators: revenue
attraction, current market desirability, strategic alignment, and
more. It is a fuzzy technique, but with the singular merits of simplic-
ity, speed, and fun—planning poker is a surprisingly enjoyable way
to estimate and to learn-through-conversation while doing so. The
Product Owner quickly makes progress at prioritization, at the
expense of fidelity or insight into the underlying “value factors.”

Other techniques—This is but one of several lightweight methods.
ScrumMasters should know—or should be able to quickly find—
other agile value estimation methods. These include bidding with
limited capital, distributing 1000 points, and more.

Since RVP is so fuzzy, it might be better to…

Avoid…Value

‘Value’ is not a simple attribute or number—without context, the
term is almost meaningless. And value—as with ‘quality’—is in the
eye of the beholder. Therefore, advice such as “prioritize the Product
Backlog by business value” feels warm and fuzzy, but has no teeth—
just like Grandma. 

Furthermore, concrete value-oriented measures for one specific item,
such as an estimate of one item’s total life-cycle profit contribution,
are wicked hard and mighty expensive to estimate. The contribution
of one item independent of others is seldom clear, and even if it were,
the market analysis cost to obtain an estimate is non-trivial—and
the thesis behind the estimate will be quickly invalidated.

RVP can be one input, but consider moving beyond the simplistic
notion of ‘value’ to…

https://less.works For Gene Gendel only, id:gene-gendel



141

Prioritization

Try…Prioritize with multiple weighted factors

The product manager of a big product has many factors to weigh and
balance when prioritizing (and re-prioritizing) the Product Backlog.
These include [Hohmann08]: 

These can be modeled with weights in a backlog spreadsheet…

Stakeholder preferences—“All customers are equal, but some are
more equal than others.” Plus, there are internal stakeholders…Pro-
duction support is interested in some items. And the ‘system’ itself
(voiced by a technical leader) has a special stake in some: 

Strategic alignment—Alignment with major objectives—often estab-
lished by the leadership group. For instance: 

Drive profit—This includes revenue attractors, expense repellers, and
expense attractors.

• stakeholder preferences • drive profit

• strategic alignment • risk

• relative points (value and effort)

Item stakeholder
weighted sum

customer-1 customer-2 production
support

the ‘system’

weight >>>>> 50 30 10 30

M 80 1 0 0 1

C 30 0 1 0 0

Item strategic
weighted sum

new regulatory 
compliance

reduce cus-
tomer cost

touch-based 
interface

transaction-fee
based

weight >>>>> 100 40 30 60

M 100 0 1 0 1

C 130 1 0 1 0

https://less.works For Gene Gendel only, id:gene-gendel



142

4 — Product Management

Try…Include 
total life-cycle 
cost of an item

Expense attractors lead to a related suggestion: Consider the life-
cycle cost of building an item, and model it in the Product Backlog.
For instance: extraordinary maintenance or licensing fees, service
preparation, change in manufacturing, or operational delivery. 

Risk—This includes uncertainty related to business risk and techni-
cal risk [Reinertsen97]. The weighting typically reflects two ele-
ments: Probability multiplied by Impact. Noteworthy categories of
impact include loss of money, loss of life …

There is no point including risk attributes unless something is to be
done. The well-known quote by Tom Gilb applies: If you do not
actively attack risks, they will actively attack you [Gilb88]. Thus,
increase the priority of heavily weighted risks, implementing
(attacking) them early rather than late. Fail fast. For example: 

Relative Points—Items in the Product Backlog have effort estimates,
often expressed as story points (relative effort points). All other
things being equal, items of higher effort or cost should be lower pri-

Item profit
weighted sum

motivates 
upgrade

hot! annual OPEX 
reduced > $1M

annual extra 
costs > $100K

weight >>>>> 50 20 100 -50

M 100 1 0 1 1

C 20 0 1 0 0

Item risk
weighted sum

new technology difficult perfor-
mance targets

lack of consen-
sus on meaning 

of item

very uncertain 
market reac-

tion

weight >>>>> 30 30 80 60

M 170 1 0 1 1

C 30 0 1 0 0

https://less.works For Gene Gendel only, id:gene-gendel



143

Prioritization

ority—they need more bucks for bang. And, if relative value points
are used, high value points raise priority. For instance: 

Other—Input from other product-feature prioritization systems,
such as Kano model and Quality Function Deployment, can likewise
be captured in this approach.

Prioritization—The separate weighted sums are added. In this
example: M = 330, C = 230. As a first-order approximation, backlog
priority reflects overall score. However, prioritization requires
judgement and manual adjustment by the Product Owner to balance
soft factors not captured in this model.

Trade-offs—This technique takes more effort but offers more fidelity.
Watch out for illusions of accuracy in the weightings and numbers.
Precision and accuracy are not the same thing… “Pi equals
3.14158265359” is precise; it is also inaccurate.26

There’s no sense being exact about something if you don’t even
know what you’re talking about.—John von Neumann 

Avoid…Feature priority categories

We joined a meeting with product management and some R&D
teams in a group starting Scrum adoption. “Can you tell us how you
prioritize features?” we asked. “Well, we have ‘mandatory’ features,”
someone answered. “Okay, so your top-priority items are classified

Item points
weighted sum

efforta

a. copied from the “new estimate of effort remain-
ing” for each item in the Product Backlog

value

weight >>>>> -20 20

M -120 8 2

C 20 5 6

26. See [Cockburn97] for more on this illusion.

https://less.works For Gene Gendel only, id:gene-gendel



144

4 — Product Management

mandatory, right?” “No, no,” they replied, “We also have absolutely
mandatory.” Everybody laughed—we wondered how much more
mandatory than mandatory can get. “So, your top-priority items are
classified absolutely mandatory, is that correct?” They all smiled,
“No, that’s not it. The top priority is deal breaker!”

What is wrong with the following feature-priority categories? [A, B,
C], [mandatory, absolutely mandatory, deal breaker], [breakable,
unbreakable], or MoSCoW.27 All these schemes are based on big cat-
egory groups, and frequently associated with the Contract Game in
which a big feature set is pushed to R&D for the Development
Phase… “Well, maybe at least we will get all the ‘A’ categories items
at the end.” These schemes (1) reduce visibility of progress, flexibil-
ity, and control because of their coarseness, (2) they are based on big
batch thinking with big queues, and (3) as in the case of [mandatory,
absolutely mandatory, …28] they are inherently flawed—there could
always be something more important. They reflect a belief in magic
or—in lean thinking terms—the waste of wishful thinking.

Traditional product management use priority
categories, so when they shift to Scrum and
first create the Product Backlog, this categori-
zation (inappropriately) continues. The novice
Product Owner is not yet thinking in the fine-
grained control model of Scrum: items ordered
[1, 2, 3, 4, 5, 6, 7, …]29.

Nor is the new Product Owner thinking of con-
tinually re-prioritizing the backlog and apply-
ing adaptive iterative planning. This is a
significant shift in mindset and behavior.

27. MoSCoW—Must have, Should have, Could have, Will not have.
28. This group’s scheme did not start out like this.
29. The Queuing Theory chapter in the companion book discussed why 

it is not necessary to prioritize all items in the Product Backlog, but 
only those in the clear-fine subset of the Release Backlog.

Item Order

M 1

C 2

T 3

K 4

… …

https://less.works For Gene Gendel only, id:gene-gendel



145

Customers and R&D

CUSTOMERS AND R&D

Avoid…False dichotomy yes/no answers to customers

When a customer asks, “Can we have everything ready by May of
next year?” it seems to beg a yes/no answer—given far too fre-
quently. He wants to hear ‘yes’ as he expects that solves his prob-
lems, but if ‘yes’ ignores reality, it does not really solve them—and
‘yes’ introduces new ones that in the worse case devolve into a lose-
lose situation for both customer and product company. This is the
waste of wishful thinking in lean.

There is a lot in between ‘yes’ and ‘no.’ In a probabilistic world, an
answer based on probability is more realistic and transparent: “We
estimate there is a 40% risk of not doing everything in this goal.
Here’s our reasoning and numbers.”

In addition to answering with probabilities, steer toward more col-
laboration, including more fine-grained prioritization for ‘partial’
solutions of the most important elements in their major goal. For
example, rather than discussing coarse-grained groups such as
“must have,” move the discussion to a force-ranked 1–N priority list
of more fine-grained goals.

Try…Involve real users or customers in Sprint Review

Since every Scrum iteration ends in well-done features, there is
opportunity for early and ongoing customer involvement, every
Sprint Review from the first. Try that! This leads to increased feed-
back about what is important and attractive, new and better feature
ideas, earlier testing of the business case, better insight about the
usability, improved customer engagement, and more. 

After attending, one customer said, “The Sprint Review provides an
excellent occasion to share opinions and influence the products to be
closer to what we really need.”

This suggestion may seem obvious, but in traditional development
(with long-delayed or unstable features) some product managers
were not used to this—and could be hesitant to try. 

https://less.works For Gene Gendel only, id:gene-gendel



146

4 — Product Management

Try…Product management connects teams and customers

Avoid…Product 
management or 
Product Owner 
between teams 
and users

The advantages of hands-on development people directly interacting
with real users are numerous… (1) handoff waste is dramatically
reduced, (2) the team’s appreciation of the customer context
improves—leading to better judgement about solutions, (3) custom-
ers see increased engagement and responsiveness—leading to
higher levels of satisfaction, and more. A bonus for product manage-
ment is that some work previously done by them shifts to the teams.

In traditional large-scale development, a team seldom does complete
end-to-end customer goals. For example, a component team only pro-
grams a fragment; a test team does not do requirements analysis.
Consequently, the notion of putting a development team in direct
contact with customers is unfamiliar. All this changes with the tran-
sition to feature teams that do complete end-to-end work. In this
case, what a team does is profoundly relevant to real users, and by
connecting teams and users, good things ensue. Try it. 

Avoid…Multi-level P-M indirection from customers to teams

We encourage product management to connect teams directly with
real customers; that said, P-M is a valid voice of the customer to the
teams. However, when acting as “the voice,” stay away from more
than one level of indirection. For instance, avoid

1. product manager Jack talks to customers

2. product manager Jill talks to Jack

3. Jill talks to teams

Jack needs to talk directly with teams!

Try…Shift R&D language toward P-M and user language

Encourage a shift in the R&D mental model and language towards
P-M, business, and real customers. How?

https://less.works For Gene Gendel only, id:gene-gendel



147

Change and Improvement

See “Try…Split 
Product Backlog 
items (such as 
stories)” on 
p. 247.

See “Try…Ask, 
“Would users 
understand every 
PBI?”” on p. 238.

! Write Product Backlog items that are understandable and
meaningful to users, if they read them.

! Write items in a format that includes user motivation.

! Ensure split, smaller items remain customer-centric.

! Connect teams with users.

! During Sprint Planning and Sprint Review, encourage the
Product Owner to share customer and business perspectives.

! Promote feature teams that do end-to-end customer goals.

By these actions, teams can relate better to customers, and make
decisions and suggestions that are more appropriate for the busi-
ness and users—improved R&D alignment with business.

Why bother? Traditionally in large product groups, R&D people
speak a very different—and technical—language because of their
education, lack of direct engagement with users and P-M, splitting
of tasks into architectural components, and more.

CHANGE AND IMPROVEMENT

Try…Extra help for product-manager Product Owner

The positive value of product management directly steering develop-
ment (in their role as Product Owner) through their time with teams
has been established. It brings with it one key complication: 

Before Scrum, product management was already busy, and now they
have additional responsibilities. Where can they get help, if needed? 

product management
responsibilities

Scrum-specific
Product Owner 
responsibilities

when the product manager 
takes on Scrum Product 
Owner responsibilities, they 
have new work

they may need help from 
others

https://less.works For Gene Gendel only, id:gene-gendel



148

4 — Product Management

First, ask the Teams. The pivotal notion of a cross-functional team is
part of a larger picture of cross-functional integration across many
traditionally separate departments: Marketing, Sales, and more.
Challenge the assumption that no Team could learn requirements
directly from customers, or help with marketing—you might be sur-
prised. Challenge the assumption that no Team should help with
sales. And if P-M connects teams directly with customers, teams
may be able to take on some work previously done by P-M.

Second, ask the ScrumMasters. But do not ask them for help with
the hands-on work—because that is not what ScrumMasters do.
Rather, ask them for help analyzing why there is overburden, help
in understanding Scrum, and help in creating experiments to
improve.

Scaling—The need for help is proportionate to the number of teams
that one Product Owner (or supporting PO) serves. For instance, one
Product Owner collaborating with five teams needs support from
several subject matter experts (SMEs) so that during Sprint Plan-
ning or Product Backlog refinement, the five teams are not blocked
waiting for feedback or clarification. 

Where do subject matter experts come from?—The Product Owner
may find other product managers to serve as SMEs. Or, a member of
a regular team for supporting PO John may be an expert, and tem-
porarily help supporting PO Jill as an SME with her teams.

Avoid…SMEs 
not talking to 
customers

Caution: People outside of regular Scrum teams—A subject matter
expert who is not a product manager or Product Owner should be
part of a regular cross-functional Scrum team, not part of a special-
ist separate group. And watch out for SMEs who are disconnected
from talking to customers.

Try…Product Management inspect and adapt

R&D and production workers, especially workers in software devel-
opment, are relatively avid students of improvement ideas, and tend
to experiment frequently. In Scrum and lean environments, frequent
kaizen is the norm; Scrum teams hold a formal improvement work-
shop at the end of every iteration. 

https://less.works For Gene Gendel only, id:gene-gendel



149

Change and Improvement

In contrast to this, we observe fewer improvement experiments
among product management groups. 

Ask a ScrumMaster to facilitate an improvement retrospective for
product managers. And don’t stop: As Scrum teams do, hold a retro-
spective to inspect-and-adapt improvement experiments regularly.

Try…Product management education

This experiment is related to the “Avoid…Too ‘inward’ product man-
agement & Product Owners” section on page 124. Some commercial
product managers we meet have not been educated in the subject,
and are not aware of P-M books, learning resources, or communities.
Partly as a consequence of this, some product managers focus on
inward activities such as writing product specifications. 

In the case of internal products or applications, almost certainly the
Product Owner (for instance, a business-area manager) has not been
exposed to product-management education. While there are aspects
of P-M that are not relevant to them (such as pricing and channel
management), some aspects are, including product vision, ideation,
and (internal) customer relations.

See the recommended readings for suggestions.

Try…Product Managers study Scrum & attend a course

Since P-Ms are entering the two-person cooperative game of Scrum,
they need to understand the game rules and deeper dynamics. It is
not enough have a vague notion of Scrum. At the most successful
Scrum-adopting groups we have coached, product managers actively
read Scrum books and attended a ScrumMaster course. Product
Owner courses are also available, but we observe that things go best
when the product management and development people are learn-
ing together in the same ScrumMaster course. 

Try…Product managers Go See

A central lean principle is Go See at gemba frequently. Rather than
sitting at a desk and looking at reports or emails, managers in a

https://less.works For Gene Gendel only, id:gene-gendel



150

4 — Product Management

lean enterprise “look with their feet” at the place where hands-on
product-creation value work is being done. In an interview, Toyota’s
chief engineer quoted Taiichi Ohno, who insisted on managers prac-
ticing Go See at gemba: 

Don’t look with your eyes, look with your feet… people who only
look at the numbers are the worst of all. [Hayashi08] 

This applies to product managers—and all other management in a
lean organization.

Try…Senior product managers coach 

The foundation of lean is manager-teachers who are experts in the
work and in lean thinking and who coach and mentor others. When
we work with product managers, it is rare for us to observe a culture
of mentoring or pair work, or of long-term senior product managers
focusing on coaching. Try more of that.

Try…Invite displaced people to join product management

When moving to Scrum, certain roles are no longer needed, such as
project managers. Product management is often chronically under-
staffed and can benefit from more people—especially those already
with knowledge of the product and organization. We have seen suc-
cessful transition of displaced (valuable, experienced) people moving
into product management. 

Toyota emphasizes stable employment—somewhere in the organiza-
tion—as an important part of continuous improvement. Without
that, people avoid improvements that may eliminate positions. And
it is simply an element of respect for people.

Caution—People joining product management need to act as product
managers—and need genuine interest in this crucial area. If an ex-
project manager joins and attempts to continue doing project man-
agement, there is misunderstanding.

https://less.works For Gene Gendel only, id:gene-gendel



151

Change and Improvement

CONCLUSION

Scrum, lean thinking, and agile principles involve product manage-
ment—and many other business functions. 

In traditional organizations there are systemic barriers created
between P-M and R&D: from a business perspective there is a lack
of visibility, real control, and flexibility. Both parties locally optimize
in a competitive Contract Game that inhibits building the right
thing and building the thing right—although the policies and prac-
tices behind these barriers were added with good intentions. 

Key to dissolving the barriers between P-M and R&D and collabo-
rating to deliver value to customers is this: end The Contract Game
and move to a cooperative game of invention and communication.

This collaboration means that the product manager or business-area
manager—in the role of Product Owner—and teams are directly
interacting during the Scrum events. In that sense, the Product
Owner is spending some time focusing inward—towards the teams.
But a skillful Product Owner balances this with focusing outward—
towards the customers and market. And they directly connect
hands-on team members with real customers, encouraging the
Scrum feature teams to help with some product management work,
so that teams learn what is important to customers, and so that the
Product Owner is not overburdened—one of the sources of wastes in
lean thinking.

When scaling Scrum to multiple teams, there is only one Product
Backlog per product; this is important to focus on optimizing the
overall system, increasing visibility, and avoiding a fake or “water-
fall Scrum” in which the old, slow team structure remains the
same—merely overlaid with agile words. Scrum implies cross-func-
tional teams that do complete end-to-end customer features; that
has a non-trivial impact on most existing organizational designs—
and it is critical for the Product Owner to grasp this point.

Finally, when scaling Scrum to a multi-hundred person product
group, experiment with Area Product Owners and Product Owner
representatives. But do not fixate on terminology; far more impor-

https://less.works For Gene Gendel only, id:gene-gendel



152

4 — Product Management

tant than choosing overall Product Owner, chief Product Owner, or
alternative titles, is choosing to end the competitive Contract Game.

RECOMMENDED READINGS

! The Product Development and Management Association
(www.pdma.org) offers online and printed learning resources
(such as The PDMA Handbook of New Product Development),
and an online list of classic P-M literature. Some of the mate-
rial assumes the traditional Contract Game or sequential life
cycle development, but much is still worth investigation.

! Innovation Games by Luke Hohmann emphasizes simple, cre-
ative, and collaborative techniques—applicable in workshops—
for customer-focused product definition. 

! Agile Product Management with Scrum by Roman Pichler
explores envisioning a product in the context of Scrum develop-
ment, the role of the Product Owner, and more.

! The text Product Strategy and Management is written by
researchers with long in-depth study into product management
and development. It contains many solid suggestions, and a
vast number of references to the major papers and researchers
in this field. This book is an excellent window into the breadth
and depth of P-M-related research.

! Product Management by Lehmann and Winer is a solid intro-
duction to market analysis, product strategy, pricing, distribu-
tion channels, and more.

https://less.works For Gene Gendel only, id:gene-gendel

www.pdma.org


This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Early days 155

• Iteration (Sprint) planning 163

• Done 170

• Estimation 181

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



155

Chapter

5
PLANNING

If everything is going to plan, something
somewhere is going massively wrong.

—anonymous

This chapter has planning experiments related to large-scale Scrum.

EARLY DAYS

Try…Kickstart large-scale Scrum with one initial Product Back-
log refinement workshop

For a small group, setting up a new Product Backlog is relatively
simple work—maybe a day. For a larger product—for example, a
ship-control system or medical device—involving 500 people with
new hardware and software, one day is not going to do. 

In this case, consider holding one and only one relatively long, highly
structured, and intensive initial Product Backlog refinement
(or creation) workshop when an existing large product group first
transitions to Scrum. This takes several days. 

This activity is also known as release planning but we call it ini-
tial Product Backlog refinement1 for three vital reasons that distin-
guish it from conventional release planning, to communicate that…

! Initial Product Backlog refinement has the same activities as
the ongoing per-iteration Product Backlog refinement.2

1.  It is not wrong to call it release planning; this is the name used in 
the Scrum Guide.

https://less.works For Gene Gendel only, id:gene-gendel



156

5 — Planning

! The activity of release planning is never-ending in Scrum—it is
part of ongoing Product Backlog refinement each iteration;
naming it release planning suggests (strongly) to a traditional
group that release planning happens only once for each release.

! Initial Product Backlog refinement needs to happen once and
only once for the lifetime of the product when the group first
adopts Scrum; thereafter, Scrum “release planning” is a rolling
wave that happens every iteration.

This last point (and see Figure 5.1) is a significant change because
big traditional product groups usually think (1) shortly before the
next release cycle, do a major release-planning activity, (2) develop
toward the release. This mindset is a variation of “order the meal,
then wait for delivery of the meal”—which is associated with the tra-
ditional Contract Game, and inconsistent with the cooperative game
of invention and communication in agile planning.

Figure 5.1 initial
Product Backlog 
creation and 
distinct, major 
release planning 
needs to happen 
once and only once

2.  Also called Product Backlog refactoring or grooming—an evocative 
phrase to a native-English speaker, but we have learned (working 
frequently in Asia and Europe) that ‘grooming’ is an unfamiliar 
word, and so use the familiar ‘refinement.’

initial Product Backlog 
creation/refinement (a 
significant release N 
planning step) needs to 
occur only once, when 
first adopting Scrum

. . .

1

thereafter, release planning and Product 
Backlog refinement is a rolling wave 
activity that occurs each iteration

2

. . .

deploy
release N

no distinct, major release N+1 planning step is 
needed shortly before the start of the next 
release cycle, because future-release planning 
is spread out across the regular per-iteration 
Product Backlog refinement sessions

deploy
release N+1

3

https://less.works For Gene Gendel only, id:gene-gendel



157

Early days

Try…Continuous product development rather than projects

This suggestion is emphasized in greater detail in the Organization
chapter of the companion book, in Avoid…Projects in product devel-
opment and other experiments.

‘Projects’ are often assumed as the best or sole way of organizing
work; for instance, big product groups assume long projects (or pro-
grams) for big releases: (1) major release planning at the start, (2) a
long development period, (3) release. But a project-orientation has
several drawbacks, including a short-term focus in which long-term
improvement and quality is sacrificed.

Projects can be reduced or eliminated in Scrum, replaced with the
simpler model of continuous product development (Figure 5.2).
See the Organization chapter of the companion book for more detail.

Figure 5.2 move to 
continuous product 
development rather 
than large projects
that plan, execute, 
and release

Continuous product development does not mean there is no release
goal or no Release Backlog. Those still exist, but a release cycle is
not treated as a special distinct project.

There are exceptions to this continuous model; for example, game
development tends to be single-project oriented.3 However, most
products (including internal products) are long-lived and go through

release N release N+1

repeat

cross-functional
Scrum feature 
teams do all work 
so that product 
can potentially be 
released each 
iteration

a 2-4 
week

iteration

true
release

potential
release

potential
release

continuous product development eliminates projects in 
product development; there is simply an !endless" series of 
iterations, each of which is similar in activities and each of 
which ends in a potentially shippable product increment 

Product
Backlog

https://less.works For Gene Gendel only, id:gene-gendel



158

5 — Planning

series of evolving releases; continuous product development—rather
than projects—applies in these cases.

Try…Initial Product Backlog refinement workshop

See
“Try…Require-
ments work-
shops” on p. 240.

How to do initial Product Backlog refinement/creation? We have
facilitated these events over the years, and have suggestions on par-
ticipants, environment, tools, order, and activities.

Participants—Include the Product Owner Team and all team mem-
bers, or representatives if too many people; workshops with more
than 50 people are unwieldy—even this size is only effective with a
skilled large-workshop facilitator.

Figure 5.3 sample 
activities in kickoff 
workshops

Workshop facilitator—A facilitator is critical for a multi-day, inten-
sive structured workshop with many people.

Format—Facilitated workshop (with active hands-on activities), not
a meeting (where people sit and listen, or give presentations). 

3.  There is a subset of core technology (such as a game engine) that 
may evolve across releases, but much is replaced and new.

initial Product Backlog Refinement Workshop
(2+ days)

vision
workshop

what-to-
analyze

workshop

detailed
requirements

workshop

effort
estimation
workshop

value
estimation
workshop

technical risk 
estimation
workshop

form-the-
backlog

workshop

reflection

business risk 
estimation
workshop

start

https://less.works For Gene Gendel only, id:gene-gendel



159

Early days

Environment—A big room (see the Multisite chapter for variations).

Tools—Lots of simple, tangible tools for creativity: paper, cards,
whiteboards, flip charts, and so forth. Digital camera for pictures of
tangible things is useful. Use a wiki to store pictures and any
detailed text. Include several computer projectors so that a subgroup
can easily see the wiki material or other on-line resources—but in
general, avoid using computers or projectors.

Order and activities—The overall workshop will contain a series of
sub-workshops, each lasting from a few hours to several days. Con-
sider the following sub-workshops (Figure 5.3):

Vision Workshop: Envision business case, strategy, high-level list
of features (major scope), and constraints for the release.

Figure 5.4 agile 
vision workshop—
brainwriting and 
mind mapping

What-to-Analyze Workshop: Iden-
tify ten or twenty percent of the fea-
tures (for example, 20 of 200 items)
that deserve deep analysis immedi-
ately.4 Choose a subset that will yield
broad and deep information about the
overall release work. There are always
some key features that, if deeply ana-
lyzed, give you overarching informa-

tion about the big picture. These may be the most complex, the most
architecturally influential, the highest-priority features, or features
with the most obscurity. From the viewpoint of information theory,
they represent a subset that, if analyzed, is most likely to have lots
of surprising information—the most valuable kind [Reinertsen97].

4.  If development is for a fixed-price fixed-scope project, then this may 
need to be much larger than 20%. See the Contracts chapter.

https://less.works For Gene Gendel only, id:gene-gendel



160

5 — Planning

See “Try…Split 
Product Backlog 
items (such as 
stories)” on 
p. 247.

See “Try…Learn 
many analysis 
skills: user sto-
ries, use cases, 
…” on p. 268.

Detailed Requirements Workshop: Hold a “deep dive” require-
ments workshop on the ten or twenty percent identified in the what-
to-analyze workshop. This may be a relatively long workshop. It also
includes splitting coarse-grained requirements into smaller ones.
Myriad analysis techniques are applicable. At the end of this work-
shop, ten percent (for example) of influential requirements are well-
refined—better understood in detail and split into smaller sub-
items—and ninety percent less refined.

For very large groups, requirement areas are identified during the
vision workshop or near the start of this workshop. These areas can
be used to concurrently analyze requirements in several sub-groups.

Parallel Effort- and Value-Estimation Workshops: In the Prod-
uct Backlog, all items have both effort and ‘value’ estimates. 

Team members head for one end of the room and initiate effort esti-
mation of items identified in the Vision and Detailed Requirements
workshops. Typically done with planning poker (see Figure 5.5).
These workshops usually take a half- to full-day for a big release. 

See “Try…Priori-
tize with multi-
ple weighted 
factors” on 
p. 141.

In parallel, the Product Owner Team heads for the other end of the
room and initiates estimation (perhaps with planning poker) of the
‘value’ for items identified in the Vision and Requirements work-
shops. See “Try…Value” on p. 139. As explored the Product Manage-
ment chapter, ‘value’ is not one simple attribute. 

Figure 5.5 parallel 
value and effort 
estimation in the 
same workshop 
room

https://less.works For Gene Gendel only, id:gene-gendel



161

Early days

Figure 5.6 user-
story cards on the 
wall, with estimates 
created with 
planning poker

Parallel Technical- and Business-Risk Estimation Work-
shops: Risks can be grouped into those related to the development
teams or the Product Owner Team:

! technical risks—uncertainty (of outcomes or events) regarding
development, technologies or their performance [Reinertsen97]

– development teams have something to say—about identify-
ing, estimating, and mitigating these

! business risks—uncertainty regarding the business case, strat-
egy, market, economy

– Product Owner Team has something to say

Technical and business risks are inputs into the prioritization of the
backlog. Why? Because to either fail fast or mitigate risk, work on
items that attack probable and costly risks in early iterations.

Form-the-Backlog Workshop: At this
point, the group has several hundred
cards with item summaries, each of which
has effort estimates, and a set of ‘value’
and risk attributes. 

Separate the Release Backlog5 and future backlog subsets—The first
step in forming the Product Backlog is to create two groups on the
floor: (1) items for the Release Backlog and (2) items for future

5.  The Release Backlog is not a separate artifact; it is the part of the 
Product Backlog for the next release.

https://less.works For Gene Gendel only, id:gene-gendel



162

5 — Planning

releases. How to identify items for the Release Backlog? In short, the
choices are influenced by a date-driven or content-driven release
goal, and the small-scale agile techniques for either case also apply
to larger systems; see Agile Estimating and Planning [Cohn05] and
It’s All in How You Slice It [Patton05] for examples, and the
“Try…Prioritize with multiple weighted factors” section on
page 141.

Some scaling-specific suggestions for the initial Release Backlog:

! Parallelize the initial Product Backlog creation if there are
requirement areas and Area Product Owners. The cards are
separated into different areas of the room, by requirement
area. Each subgroup works in parallel. The overall Product
Owner visits each group, and team members visit other areas. 

See
“Avoid…Product 
management 
negotiating a 
“release con-
tract” (scope & 
date) with R&D” 
on p. 106.

! Large product groups are especially accustomed to playing the
traditional development game with The Content Milestone.
Old habits die hard, so we see workshop participants over-pro-
cess the Release Backlog creation, concerned it must be ‘cor-
rect.’ The facilitator needs to emphasize that people can relax—
it is just a rough approximation.

Separate the clear-fine and vague-course subsets—Once items have
been separated into the Release Backlog and future backlog sets, the
next step is to further separate the Release Backlog items (on the
floor) into two sub-groups: (1) clearly analyzed fine-grained items
that are small enough to be done by one team in much less than one
iteration, and (2) the remaining vaguely analyzed coarse-grained
items.

Prioritization of the clear-fine subset—The Product Owner can do the
fiddly work of prioritizing the Product Backlog after the workshops
are finished. Only items in the clear-fine set need prioritization
since they are the only candidates for implementation. An exception
to delaying the prioritization is if the iteration starts the following
day.

Type it in? A single-site product group can experiment with using
only visual management (such as cards on the wall) to record the
Product Backlog. A multisite group probably needs a spreadsheet,

https://less.works For Gene Gendel only, id:gene-gendel



163

Iteration (Sprint) planning

for easy sharing. In that case…many hands make light work: Ask
everyone to type in a few cards. 

Reflection: End with a short retrospective on the workshop process
itself, to learn and improve.

Many of these activities repeat each iteration: A non-trivial
initial workshop is needed to kickstart adoption of Scrum with a
well-formed Product Backlog. As a big event, that happens only
once, but some or all of these activities repeat each iteration in
smaller, ongoing refinement workshops.

ITERATION (SPRINT) PLANNING

Try…Scaling Sprint Planning Part One

We and our clients have experimented with several approaches to
scaling Sprint Planning. First, note that there are two distinct steps
in Sprint Planning: Part One (SP1) that focuses on what, and…wait
for it…Part Two (SP2) that focuses on how.

see the Large-
Scale Scrum 
chapter

Related to large-scale Scrum framework-1 and framework-2, a tip-
ping point in the SP1 scaling-approaches happens at around ten
teams (for the total group). Ten is not a magic number; it is related
to the upper bound of people that can effectively meet together in
one common SP1 meeting, and the ability of the Product Owner to
focus on the big picture. At some point, the size is unwieldy—
although that point is context sensitive. For example, larger groups
remain effective with good facilitation, practice, clear requirements,
or long-term stable teams.

Suggestions…

Around Ten or Fewer Teams

In this case, do SP1 for the entire product group in one meeting
(unless there are time zone constraints involving multisite develop-
ment). If there are only a few teams, it is possible for the entire
group (such as 14 people) to come. Otherwise, send one or two repre-

https://less.works For Gene Gendel only, id:gene-gendel



164

5 — Planning

sentatives from each team; sending two representatives has the
advantage of providing multiple perspectives for each team. As dis-
cussed in the Coordination chapter, avoid the ScrumMaster as a
team representative—at this and most other meetings.

Start SP1 by viewing the existing baseline product-level Definition
of Done, to ensure that this key point is clear.

The Product Owner spreads out wish-list cards that summarize
backlog items (and their priority), probably grouped into epics or
themes. She invites teams to volunteer for items. A creative period
ensues in which the teams make tentative decisions on the items
they will take forward to SP2. Each team physically moves and
groups cards they will take forward. If there are grouped items, it is
normal for one team to take the group (or manageable subset), so
that there is increased consistency and cohesion. Furthermore, it
normal for one team to take new items related—by epic or theme—
to old items they did previously, for the same reasons.

At the end of this period, the floor will have groups of cards for each
team, and perhaps leftover cards that no team has chosen.

Offerings directed to individual teams?—To encourage self-organiza-
tion, experiment with teams deciding among themselves—by inter-
est, negotiation, or skill—which teams will pick up which items.
This also reduces decision-making effort by the Product Owner.
However, the Product Owner has the final decision on which items
are matched with teams, so if there is a problem, she decides the dis-
tribution. Also, if a high-priority item is not picked up by any team,
or high-priority items are not spread across teams (see next point),
then the Product Owner can decide to change the distribution. 

Spread high-priority items across teams—Potential problem:
Assume two teams. During SP1 Team-1 takes items with priority [1,
2, 3, 4] and Team-2 takes [5, 6, 7, 8]. Later, during SP2 or the itera-
tion, Team-1 descopes item-4. Result? A relatively high-priority item
(item-4) has been descoped, even though (perhaps) Team-2 could
have done it. Solution? Spread high-priority items across teams; for
example, Team-1 takes [1, 3, 5, 6] and Team-2 takes [2, 4, 7, 8]; this
is not always appropriate due to relatedness or dependency of items.

https://less.works For Gene Gendel only, id:gene-gendel



165

Iteration (Sprint) planning

This seems too easy—If Scrum feature teams are in place, and the
Product Owner and teams are applying Scrum with skill, then even
with multiple teams SP1 should be simple, quick, and without many
questions. The items being offered should already—before this meet-
ing—be small, clear, estimated. The Product Owner should already
know the priority. And a team should be able to independently do an
end-to-end item by itself. If SP1 is complicated and filled with ques-
tions (or silent confusion), that signals lack of preparation in the
previous iteration. If SP1 raises many cross-team coordination prob-
lems, that signals lack of true feature teams.

More than around ten teams

See “Introduction 
to Requirement 
Areas” on p. 555.

This is more-or-less the tipping point where it is useful to introduce
requirement areas and Area Product Owners (APOs)—each APO
served by a maximum of around ten teams. We have seen this scale
to groups of about one thousand people.

Pre-Sprint Planning—Before SP1, in the previous iteration, the
APOs and overall PO (if there is one) need to coordinate so that the
different Area Backlog priorities reflect product-level themes or
other coordination agreements.6 For instance, if the theme of the
next iteration is touch interface, the APOs coordinate so that related
items rise in priority in all Area Backlogs.

SP1—Area-level Sprint Planning Part One—Simply, in parallel
meetings on the first day of the iteration, each APO and their
requirement area teams (or team representatives) meet and hold
SP1 exactly as described in the previous section.

Multisite Issues

There are several multisite issues, including (1) the participants in
SP1 not working at the same site, and (related) (2) no common time.

For a multisite SP1 meeting, one approach is to organize the display
and choosing of items with a software tool, such as Google Spread-
sheet, combined with video (such as Skype video) or audio conferenc-

6.  For example, one APO taking on a common infrastructure goal.

https://less.works For Gene Gendel only, id:gene-gendel



166

5 — Planning

ing. Caution: If the overall Product Owner or an APO is physically in
the room with a subset of teams of one site, there is tendency (due to
communication ease) for the APO to favor the local teams in some
way—in terms of information, clarification, and so forth. Pay atten-
tion to that. We have seen an APO travel to different sites over time
for Sprint Planning and Sprint Review—this supports balance and
building relationships between the APO and teams.

No common time window—For example, some teams are in New
York and in Singapore—about 12 time zones apart. Experiment with
the Product Owner deciding which set of items to offer to each site
and holding separate SP1 meetings—one of which will be in the
evening for the Product Owner.

Try…Simple Sprint Planning Part Two

If the scaling practices for SP1 have been applied and the organiza-
tion has created feature teams, then SP2 is simple: Each separate
team individually doing—more-or-less in parallel—their own indi-
vidual SP2 meeting. 

A variation is asynchronous SP2 meetings so that some people can
observe other meetings, when there is a coordination interest.

Try…Asynchronous or joint Product Backlog refinement 

If a team wants to coordinate with another, or learn from another:

! Hold Product Backlog refinement workshops at different times.

– a few people from other teams can observe or participate

! Hold a joint workshop.

Try…Plan bounded research or learning items

Large product groups, especially those for embedded-software prod-
ucts, frequently have genuine and complex research work. What
new color models can be used in printing? What is IEEE 802.11ad?
As discussed in the “Try…Genuine research work as PBIs” section

https://less.works For Gene Gendel only, id:gene-gendel



167

Iteration (Sprint) planning

on page 227, genuine research work can and should be identified
and planned in Scrum, similarly to regular feature items.

For example, we were once consulting at a site in Budapest; the
group wanted to provide “push to talk over cellular.” The interna-
tional standards document for this is thousands of pages. Just to
vaguely grasp the topic is a formidable effort. 

One approach is to ask a team to “study the subject.” Yet, that is
fuzzy unbounded work, so it leads to more variability and a big
batch of analysis—not all of it necessarily useful. 

An alternative approach—this suggestion—is to plan an effort-
bounded goal to learn within the iteration. For example, maximum
30 person-hours on “push to talk” in the next iteration. This item
and its limit is clear in SP1; the team knows how much this other-
wise unbounded work will impact their SP2 planning, and the Prod-
uct Owner is making a bounded investment in this research. 

Suggestions:

! This research item should not consume all the time of the team
for the iteration; balance it with development work.

! Focus research work on useful output for the Product Owner,
especially identifying new Product Backlog items (PBIs); limit
study; quickly prototype and implement.

! Focus research work on tangible output for the Product Owner,
such as a research report presented at Sprint Review—ranging
from an oral presentation to wiki pages. Include advice to the
Product Owner on how much to invest in future research.

! Avoid giving research items to special ‘research’ teams;
research is done by normal Scrum teams, not separate groups.

– this reduces the waste of handoff, and increases learning by
the teams doing the real development work

To repeat an example from the Requirements chapter: Rather than
studying in depth a 500-page document of the next PDF specifica-
tion,7 people can 

7.  Printer-product companies write software to interpret PDF.

https://less.works For Gene Gendel only, id:gene-gendel



168

5 — Planning

1. skim over the document and identify large sections that can be
studied in detail later8

2. study only a smaller subset in detail

3. create new customer-centric PBIs; prototype; …

4. start implementation

After the iteration, the Product Owner knows more and can decide
to invest more bounded effort in another cycle of research, and can
perhaps start implementation of some concrete PBIs to incremen-
tally build up the functionality.

Try…Plan infrastructure items by regular teams

This is a variation of the “Try…Add and do a cross-product common
goal” section on page 128 in the Product Management chapter.
Review that section for issues that apply to this case; consequently,
this section is terser than it would be otherwise.

When we start coaching a big group, we often find the Infrastructure
Team (a smaller variation of a Platform group that serves multiple
products). The conventional idea is to collect requests9 for shared
components or services from across several teams in the product
group, which are then implemented by the Infrastructure Team “for
efficiency.” And sometimes there is an Infrastructure Backlog, sepa-
rate from the Product Backlog, perhaps even with an Infrastructure
Owner.

In contrast, this suggestion is to put shared goals for common infra-
structure on the Product Backlog, done by regular Scrum feature
teams, temporarily playing an infrastructure role (Figure 5.7). The
motivation is analyzed in the related Product Management chapter
and the Feature Teams chapter of the companion book.

8.  Reading is itself a skill; see How to Read a Book [AD72].
9.  Often called “technical requirements”—which are in fact not 

requirements, but design solutions.

https://less.works For Gene Gendel only, id:gene-gendel



169

Iteration (Sprint) planning

Figure 5.7 a feature 
team, not a 
separate 
infrastructure group, 
takes on 
infrastructure goals

Try…Avoid… Fixing defects

One of our clients builds ship-control systems; they have a category
of defect called ‘sinking.’ Those don’t wait. How to plan for these sur-
prises? One approach is for teams to include some bug slack in their
Sprint Planning; in the best case they can use the slack time
towards new-feature work rather than for ‘predictable’ surprises.

“Try…Compo-
nent guardians 
for architectural 
integrity when 
shared code own-
ership” section on 
page 314

Another approach: Large, old systems invariably have a long list of
known defects. How to plan? Some of our clients have <N> feature
teams move into the role of bug teams for one or two iterations. All
defects are handled by these teams, even if they are not the fastest
experts—and in this way the teams learn. Component guardians
may also be involved in helping or review. Team members only inter-
rupt an über-expert (in this example, not currently in the bug teams)
if the problem is extremely time- or expertise sensitive. Bug teams
eventually move back to the role of regular feature teams, and fresh
feature teams become bug teams. During the transition back to fea-

Team-A

Team-B
Product
Backlog

common goal: 
component,
framework,
service, ...

Infrastructure Team

Infrastructure
Backlog

Infra-
structure
Owner

Team-A

Team-B
Product
Backlog

common goal: 
component,
framework,
service, ...

Team-A wants the 
common goal first;
they take it on

avoid this...

try this...

shared code

shared code

https://less.works For Gene Gendel only, id:gene-gendel



170

5 — Planning

ture team, people carry work-in-progress defects into their ‘feature’
iteration, wrapping them up before starting their first feature.

See “Try…Zero 
tolerance on open 
defects” on p. 39.

Avoid—As a perfection challenge, there should not be any defects,
and so planning for them should not be necessary. Although this is
tough in the old systems we work with, we encourage agile coaches
to help create the culture and engineering practices for zero toler-
ance on open defects.

Also: See “Avoid…Using defect tracking systems during the itera-
tion” on p. 39.

DONE

Try…Product-level Definition of Done

Definition of Done

“We are done!” said the team. But what does that mean?

The Definition of Done (DoD) is an agreement between the Prod-
uct Owner and teams about what ‘done’ means. When team states
‘done,’ what will that mean? Does it mean that all testing has been
done? How about the customer documentation?

The perfection-challenge output of an iteration in Scrum is called a
Potentially Shippable Product Increment [Schwaber04], that is
“[done] in the sense that it could be sent out to the marketplace”
[Schwaber06]. But for a product—the kind we commonly work
with—that has a background of five-year release cycles, 100 compo-
nent teams spread across 13 sites worldwide, and many single-func-
tion departments…that is an unimaginable step.

Therefore, a big group defines their DoD as their current technical
and organizational ability—typically starting below the perfection
challenge. What are they capable of doing each iteration when start-
ing Scrum? For any group, this includes at least programming and
some kind of testing. Over time, as the group improves, their DoD
expands until it is equal to truly potentially shippable.

https://less.works For Gene Gendel only, id:gene-gendel



171

Done

Do not confuse the DoD with criteria of satisfaction or acceptance
criteria. The first are valid for all items in the Product Backlog,
whereas the latter are item-specific criteria that evolve in accep-
tance tests, probably during a requirement workshop with A-TDD. 

Here is an example (imperfect) DoD from one of our clients building
a large product: 

Work of iteration = Product Backlog items + Definition of Done.

Category Definition of Done Details and Exceptions

Imple-
mentation

Item implemented in SW build.

No open faults caused by item.

Code peer reviewed & improved

Coding style followed. For changes on top of 3rd party component such
as Linux, we follow their existing coding style.

Code cyclomatic complexity at
‘good’ level.

Complexity for new code below 15 for all routines,
no increase in complexity for code changes based
on inherited code.

Static analysis done; no new
warnings.

Testing Unit tests done for new and old
changed code.

Unit tests under version con-
trol, peer reviewed & improved,
and run automatically by Crui-
seControl.

Integration & functional test-
ing done for items on the latest
working platform build.

Integration and functional testing shall be done
with the build which was available two working
days before the Sprint Review.

https://less.works For Gene Gendel only, id:gene-gendel



172

5 — Planning

Product-level baseline

For meaningful tracking of overall progress, there needs to be a com-
mon product baseline DoD that all teams conform to. Our clients
usually record this common definition in a wiki page. 

In some cases, there is also an intermediate requirement area base-
line that extends the product baseline. 

When to first define it? In a special workshop that must include
involvement by the hands-on teams. If there is contention about the
original definition, the Product Owner has the final say.

Integration & functional test
cases peer reviewed &
improved; under version con-
trol.

Use the I&V Checklist in review.

Integration & functional test-
ing in target environment.

… more testing elements …

Documen-
tation

Requirements are documented,
peer reviewed & improved, and
under version control.

Requirements are recorded (1) in English in wiki
or (2) as automated test cases in Robot Frame-
work. 

Technical design documenta-
tion done, peer reviewed &
improved, and under version
control

In wiki; see “Design Documentation.”

API documentation updated,
peer reviewed & improved, and
under version control.

Automatically generated from source code and
comments.

Customer Doc Inputs done. See separate input list for each guide-type cus-
tomer document.

Category Definition of Done Details and Exceptions

https://less.works For Gene Gendel only, id:gene-gendel



173

Done

See “Try…Joint 
Sprint Retrospec-
tives” on p. 403.

When to evolve it? During Joint Retrospectives. 

Why bother? Without a product-level definition, there is

! reduced visibility into the state of the overall product—it is not
possible to track meaningful system-level progress

! less focus on the overall system—there is less discussion and
attention to the state of whole product

! increased variability—different features can and will have dif-
ferent degrees of Undone Work

! reduced ability to deliver a potentially shippable product incre-
ment each iteration—some features can and will have more
Undone Work than others

Avoid…Definition of Done defined by quality group

We coached a group in India that included a quality manager who
wrote checklists and wanted teams to follow those. His focus was on
centralized defined processes and top-down conformance. When this
group started to adopt Scrum, he injected his checklists and central-
ized conformance into Scrum by defining the DoD. Avoid that—the
DoD is an agreement between the Product Owner and teams. It is
not an agreement with a quality group.

Avoid…Undone Work

Avoid…Needing 
a Release Sprint

When the DoD does not yet include all the work needed to ship the
product to the customer—common in big groups first adopting

https://less.works For Gene Gendel only, id:gene-gendel



174

5 — Planning

Scrum—then work is left before the product can ship. This is the
Undone Work,10 and it increases each iteration. 

For instance, if the group cannot (yet) do performance testing each
iteration (perhaps it is not automated and is outsourced to Viet-
nam), then this is Undone Work and the amount of performance
testing increases over time, building up (implicitly) as a big batch of
work in a queue to be done before release (Figure 5.8).

Figure 5.8 Undone 
Work grows over 
time

See
“Try…“Undone 
Work” and sys-
tem-level NFRs 
as PBIs” on 
p. 225.

Risk and delay—Since the Undone Work has to be done before ship-
ping, it represents delay for the Product Owner—and therefore also
responsiveness. Undone Work also represents risks—performance
testing being an excellent example. When it is delayed until near the
end of the release and the group discovers performance problems
late in the game…bleh!

Potentially Shippable

Done Undone
• implementation
• unit tests
• functional tests
• architecture doc update
• customer doc

• performance tests
• reliability tests
• deployment
• marketing material updated
• support people trained

10. Not to be confused with unfinished work from the iteration. The 
Undone Work exists by intention or plan.

. . .

Undone
Work

the Undone Work grows each iteration

it embodies risk and delay

https://less.works For Gene Gendel only, id:gene-gendel



175

Done

Also: See “Avoid…Try…Separate “Undone Work” from the Product
Backlog” on p. 226.

Avoid…Needing 
to ‘harden’

Hardening—When we first visit a client new to lean or agile devel-
opment, a word we frequently hear is…hardening. Such as, “We are
planning to do three iterations, and then do a hardening iteration.”
‘Hardening’—an aspect of Undone Work—is so common that some
do not see it for what it is: a failure, not a solution. In lean thinking,
defects and then all that follows (test and fix at the end of a cycle) is
considered waste. The lean perfection challenge is to build quality
in—through changing the system to address the root cause prob-
lems—so that hardening and similar superficial quick fix reactions
are no longer needed.

But, sometimes there still is Undone Work. Then, how to do it?

Try…Include Scrum teams in a Release Sprint

In small-scale Scrum, the standard solution to do the Undone Work
is to hold a Release Sprint in which the regular Scrum team does
all this work—they do not work on new features—and then releases
the product (Figure 5.9). Good idea11—especially because it educates
the team through painful experience about this Undone Work. Since
they are “eating their own dog food,” the team is increasingly likely
to think of ways to reduce it in the future—to improve the DoD and
reduce the Undone Work.

Figure 5.9 Release 
Sprint

11. The need for a Release Sprint is not good. Rather, if needed, includ-
ing the teams is good.

Undone
Work actual

release

Product Owner 
wants to release

Release Sprint:
teams only do 
Undone Work

. . .

https://less.works For Gene Gendel only, id:gene-gendel



176

5 — Planning

see Organization 
in the companion

As a rule, big groups moving from sequential development have a
dedicated “Undone Unit”—the group that handles all the Undone
Work such as documentation for field engineers, acquisition of part
numbers, system testing, fulfillment of legal or government regula-
tions, and so forth. When there already exists a big institutionalized
Undone Unit that has done this end-of-release work before, it is
mighty tempting to fall back on old habits and simply, once again,
hand over the Undone Work to them. And we have seen ‘Undone’
management groups with a stake in keeping the Undone Unit
alive—they press the Product Owner (or someone) to give them all
the Undone Work.

Resist that temptation.

Rather, (1) hold one Release Sprint with some or all of the regular
Scrum feature teams. For exactly the same reasons as above—learn-
ing through eating their own dog food. Also, (2) mix Scrum team
members with the Undone-Unit experts, to reduce handoff problems
and improve two-way learning (Figure 5.10). Examples:

! One of our clients is a bank. They have a production operations
group that, before adopting Scrum, received a candidate
release and tested it in a sandbox. After adopting Scrum, regu-
lar Scrum team members physically join with (pair-work with)
product operation people during a Release Sprint to do this
testing in a sandbox. 

– This is a temporary phase. The longer-term change is for the
production operations group to diminish, and some members
join regular development Scrum teams. Then, regular
Scrum teams will have development knowledge to help with
operations.

! One of our clients builds ship-control systems. They have a
ship-installation group that installs a control system (wires,
hardware, software, …) in a ship. They are exploring including
regular software-development team members on the ship dur-
ing installation, to help. (This change is complicated by safety
and insurance issues).

https://less.works For Gene Gendel only, id:gene-gendel



177

Done

Figure 5.10 teams 
do a Release Sprint 
with the Undone 
Unit

This is a good step, but there is a mountain of Undone Work in large
embedded-software products new to Scrum. One Release Sprint may
not be sufficient to level it and to release. Therefore…

Try…After one Release Sprint, hand off remaining Undone Work 
to the Undone Unit

After one Release Sprint with the teams and Undone Unit working
together, if Undone Work remains, then experiment with the
Undone Unit taking over the remaining pile. Fortunately, since the
teams and Undone Unit have done pair-work in the Release Sprint,
the handoff waste will be lower than otherwise. For example, in the
prior ship-control system example, after a few weeks, most Scrum
team members leave the ship and the expert installation crews
remain behind. 

Bring teams back to the rhythm of working on new features—at this
point, for the next release cycle (Figure 5.11).

Undone
Work actual

release

Product Owner 
wants to release

. . .

Undone Unit

Release Sprint:
teams + 
Undone Unit 
do pair-work 
on the 
Undone Work

https://less.works For Gene Gendel only, id:gene-gendel



178

5 — Planning

Figure 5.11 try this 
when Undone Work 
remains after one 
Release Sprint

Try…Reduce—
and eventually, 
remove—the
Undone Unit 
over time

Try…Expand the Definition of Done

Never lose sight of the perfection challenge: to have the potential to
release, completely done, at the end of any iteration. That capability
extends beyond just the R&D department—it includes product man-
agement, marketing, delivery, field support, and more. 

Over time, (1) expand the DoD (Figure 5.12), which implies (2) shift-
ing Undone Unit experts into regular Scrum teams so that the regu-
lar teams can truly wrap up by themselves in one Release Sprint;
this implies an increase in multi-skilling. It also implies the end or a
diminished role for a smaller Undone Unit. 

In general these are the ways of expanding the DoD:

! automate—for example, performance testing is automated

! expand team cross-functionality—for example, a person with
technical-writing skills joins the team

In big complex products, this is a long-term journey; see the
“Try…Lower the waters in the lake” section on page 407 for a sense
of perspective in this continuous improvement.

Undone
Work

actual
release

Product Owner 
wants to release

Release Sprint:
teams + 
Undone Unit 
do pair-work 
on the 
Undone Work

teams start work 
on next release

completing the
Undone WorkUndone

Unit

handoff interruptions for 
unantipicated problems

. . .

https://less.works For Gene Gendel only, id:gene-gendel



179

Done

Figure 5.12 expand 
done over time

Try…Expand team-level Definition of Done

No team should be unable to conform to the product-level baseline
DoD, but each is encouraged to expand beyond it, according to their
capabilities. This is discussed in team-level Sprint Retrospectives
and agreed to with the Product Owner in Sprint Planning.

Try…Avoid…Early and incremental handoff of Undone Work

The previous tips on Release Sprints posit a false dichotomy: the
only two choices for the Undone Work are (1) do it during a Release
Sprint, or (2) get rid of it by expanding the Definition of Done. But
there are gradual-improvement alternatives…

Try—Hand off (to the Undone Unit), early and incrementally,12

Undone Work that the teams cannot yet do themselves (customer

12. Incrementally every three iterations, for example. If, on the other 
hand, it was possible to hand it off each iteration, it would be time to 
stop handing it off and, instead, extend the Definition of Done.

implement
unit test

analysis

customer
test

customer
doc

performance
test

marketing
material

production

pricing

update
manufacturing
process

current Definition of Done
needed to be potentially 
shippable

done
undone

goal:
expand

2 year
improvement
goal

10 year goal

https://less.works For Gene Gendel only, id:gene-gendel



180

5 — Planning

documentation) or that takes too long to complete within one itera-
tion (long-running manual stability testing). As another example,
internationalization of user-interface text may be handed off early
and incrementally. This reduces the wastes of delay and work-in-
progress (WIP), and confronts some risks earlier.

Avoid—But on the other hand, this still engenders the wastes of
handoff, delay, and WIP. And once there is a ‘successful’13 handoff in
place (especially once it can be done every iteration), that suggests it
should soon after be possible to expand the Definition of Done and
remove the handoff. 

This approach to gradual improvement is used by several of our cli-
ents in big embedded-software products, with mountains of difficult-
to-remove Undone Work.

Avoid…Try…Planning an ‘agile’ release train

An “agile release train” [Leffingwell07] is an incremental release
planning, integration, and system-test (‘hardening’) strategy for
managing dependencies between teams—the type created by having
component teams. In a release train, there are predefined periodic
(such as every four iterations) internal release dates for system-level
integration and testing during an ‘hardening’ iteration. The harden-
ing iteration is a mechanism to work on the growing queue of WIP
and Undone Work. The internal release dates are inviolate, but com-
ponent teams have flexibility to decide their functionality and
whether to “join the train” or not. And if not, they provide a simple
“plan B” component version (such as an old version) to not break the
new integration build.

Avoid—Release trains partially solve problems that can be solved
more powerfully and fundamentally with other methods, such as
adopting feature teams, doing real continuous integration with test
automation, and preventing Undone Work by expanding the Defini-
tion of Done. Release trains add additional planning, coordination,
and management overhead—a “release train management team.”
System integration and testing is not delayed until the final end,

13. A ‘successful’ early-and-incremental handoff process does not imply 
improvement is finished, or the process should remain.

https://less.works For Gene Gendel only, id:gene-gendel



181

Estimation

but…there is still some delay in integration and testing, and
Undone Work. By retaining component teams—that create depen-
dency and integration problems—system-level delivery of value is
still slow, and there are more queues, WIP, handoff, and multitask-
ing. Related to the prior experiment, “Try…Avoid…Early and incre-
mental handoff of Undone Work” section on page 179, a release train
could involve some handoff to an Undone Unit, such as a separate
system-level testing group.

Try—If, for some reason, the group is unable to adopt feature teams
with continuous integration, then a release train approach is at least
better than a classic sequential life cycle.

ESTIMATION

Try…Estimate with Story Points

In Agile Estimating and Planning, Mike Cohn makes a good argu-
ment in favor of using story points (relative effort points) for estima-
tion. We do not repeat the motivation, but note that this advice is
even more compelling in development with many teams. Why? In
this case, other—more detailed—estimation techniques (such as
work-breakdown person-day estimates) are extraordinarily slow and
laborious. Thus, there is disinclination to refresh the estimates—
even though updated estimates are useful in planning, and are part
of Product Backlog refinement each iteration.

But story points, especially when combined with techniques such as
planning poker, are relatively quick and easy to refresh. Especially
in large-scale development, that translates to an increased chance
that re-estimation will occur each iteration.

Problem: Story points are relative—‘5’ has no absolute independent
meaning. Two teams can define ‘5’ differently, which makes it diffi-
cult to estimate overall effort or track overall progress. Therefore…

https://less.works For Gene Gendel only, id:gene-gendel



182

5 — Planning

Try…Avoid…Synchronize points and range

If the product group makes a common agreement on the size of story
points14—so that a ‘5’ is the same for all teams—there are benefits:

! a common Release Burndown chart—better view of progress

! a product-level velocity—better prediction of future progress

! a team’s estimate of items that can be done by other teams

! the time together to create a common agreement that builds
more shared understanding and cross-team relationships

How to define a common point, and a common range of points? One
approach is…

Cross-team Estimation Workshops for Canonical Set—All
members—or team representatives—of all teams join in a common
estimation workshop and identify items for which they have com-
mon understanding. Then they estimate these, using planning poker
with story points. This canonical set of items is a baseline of shared
understanding and is used as the baseline of future estimation
workshops, including those done separately by individual teams or
larger sub-groups. This cross-team estimation workshop occurs not
only before the first iteration, but repeatedly in subsequent ones to
resynchronize.

There are at least two ways that the group can have common under-
standing of the meaning or effort in a canonical set:

! Historical set of completed items is reviewed. Likely the best
choice, since the items were done and so have the clearest
information.

– this gives common understanding of effort but not necessar-
ily of meaning

! New items are first analyzed together by the estimators in a
previous requirements workshop.

14. A common agreement also fosters overall product-level perspective 
among the teams, rather than isolated-team mindset.

https://less.works For Gene Gendel only, id:gene-gendel



183

Estimation

Issues—Synchronizing points across teams works relatively well, but
requires occasionally repeating cross-team estimation workshops,15

since they drift out of synchronization. Synchronizing also brings
with it a few potential dangers:

! comparing—we have seen management groups start to com-
pare the relative ‘performance’ of teams that use a common
synchronization, even though such comparisons are in reality
meaningless—and worse, harmful.

! converting—one merit to story points is that they have no abso-
lute or independent meaning. They cannot be realistically con-
verted into person-days, for example—and the attempt to do so
by management (or others) indicates that the purpose of their
use in velocity has not been understood. We have seen teams
attempt to synchronize by stating, “one point means two per-
son-days.” This is a slippery slope to a deep misunderstanding
of story points and velocity.

We recommending trying cross-team synchronization on points with
a canonical set. But if these dangers are manifest, there is an alter-
native: Each team uses its own idiosyncratic definition of points.
However, this leads to problems in estimating overall effort and
tracking overall progress across all teams. One partial solution is…

Try…Combine progress measures

If different teams (or larger requirement areas) use different point
systems, then each has its own Release Burndown chart, and there
is no common product-level Release Burndown chart and no com-
mon velocity. How to estimate progress? Some alternatives:

! The simplest approach we have used is to hang the separate
Release Burndown charts on a wall, stacked directly under-
neath each other, and ‘eyeball’ the overall scene. 

! Estimate the percentage of progress, based on points, of each
group. For example, if team-1 has 100 points in their Release
Backlog and have finished 20, they are “20% complete.”16 Over-

15. These workshops need not be cast as a problem; positively, they fos-
ter common understanding and product-level perspective.

https://less.works For Gene Gendel only, id:gene-gendel



184

5 — Planning

all product progress can be defined with different combination
methods: worst case, mean, or median, depending on context.17

Try…Avoid…Estimate velocity before iteration-1

Real velocity is not estimated, it is measured—it is the total of all
story point estimates of the work completed in the last iteration, a
historical measure.18 Yet, sometimes a group wants to estimate it
before iteration-1—before it can be measured—to help predict total
release duration. For instance, the group may want to estimate
release cost, and use duration as one factor. Agile Estimating and
Planning [Cohn05] offers techniques for its estimation in the small-
scale case. 

For the multiteam case, one approach we have used is for all teams
to hold a pretend (planned but not executed) Sprint Planning Part
One and Part Two meeting, and assume that the items chosen for
implementation were done—or that 75% (for example) were done.
The total story points of all these items, across all teams, is the esti-
mate of product-level velocity.

Avoid—If the next release of a product is going to be done anyway,
rather than spending a week before iteration-1 estimating the veloc-
ity, just immediately do iteration-1, and measure real velocity.

Try…Adjust duration estimate with Monte Carlo simulation

In a tiny release with one team and four months estimated duration,
plenty can go wrong to invalidate the estimate. This variability is
magnified in the large scale. For some product groups we work with,

16. This is actually a fiction, because of variability and because it 
assumes the Release Backlog cannot be descoped.

17. As an example of context and combination method: If team-1 does 
COBOL features in Beijing and team-2 does Java features in São 
Paolo and they refuse to talk to each other (and cannot, any-
way)…perhaps worst-case is the combination method. This is an 
extreme example; in very big groups, mean suffices.

18. Velocity is a kind of budgeted cost of work performed (BCWP) in 
earned value management [FK06]; as a name, ‘BCWP’ emphasizes 
that it is a historical measure, not an estimate.

https://less.works For Gene Gendel only, id:gene-gendel



185

Estimation

that is not a problem—vague confidence in a fuzzy duration esti-
mate is sufficient. In others—especially fixed-price, fixed-scope,
fixed-duration outsourced work—it is vital to do the best one can to
estimate duration.

Once when we were coaching in Bangalore, a lead developer’s father
died, and he had to leave for several weeks. Once in Budapest, a lead
developer’s girlfriend left him, and he was pretty useless on the
team for a while—until he found a new girlfriend! These are exam-
ples of risks and sources of variability. And there are others: scope
change, productivity, attrition, snowstorms, and more. 

How do scientists and other estimators model stochastic (probabilis-
tic) systems, such as development work? A standard solution is
Monte Carlo simulation (MCS). With an MCS model for release
duration, you can include the impact of many elements of variability
or risk, including scope change, attrition—and girlfriends. MCS is
especially useful in very large and long-duration development and in
offshore, outsourced, fixed-price, fixed-duration projects.

And MCS fits well in the context of agile estimating because it is a
simple, lightweight, fast technique to apply and adjust.

A classic book on product development risk management and MCS
is Waltzing with Bears [DL03]; this explains the method of MCS for
estimating a more realistic duration. The authors, DeMarco and
Lister, also provide a free Excel spreadsheet called Riskology that
implements an MCS model. Find Riskology on the web and try it, to
improve the realism of your estimates.

CONCLUSION

Planning large-scale agile development is simpler than traditional
approaches—or at least should be. We notice that this simplicity is
disconcerting for some, because the traditional paradigm of manage-
ment is that big complex work needs big complex planning and con-
trol by project managers. But there is a different way: the emergence
of order from self-organizing Scrum feature teams. Top-down plan-
ning and control is not particularly effective in systems with vari-
ability and discovery—because the plans assume something

https://less.works For Gene Gendel only, id:gene-gendel



186

5 — Planning

relatively static or deterministic—and the approach grows even less
effective as these non-linear systems grow larger.19 Complex sys-
tems on the boundary of chaos and order (chaordic systems
[Hock99])—and that includes big development groups—cannot be
truly planned or controlled from above. 

No false dichotomy regarding “no planning” versus “top-down plan-
ning”…In Scrum, the group does start by creating a Release Backlog
for a future goal, identifying and estimating the product features.
But after that starting point, agile planning emphasizes continual
learning and adapting. 

How to do that within a large chaordic system? By (1) encouraging
self-organization and bottom-up emergence of order, (2) increasing
transparency and feedback, and (3) making it easy to frequently
inspect and adapt. This is precisely what agile approaches such as
Scrum offer. Consequently—in contrast to those that assumed agile
development was for small groups—agile planning is especially use-
ful for the large scale.

RECOMMENDED READINGS

! For envisioning and vision workshops, two books already rec-
ommended in the Product Management chapter are relevant:
Innovation Games and Agile Product Management with Scrum.

! For planning with small or large groups, Agile Estimating and
Planning by Mike Cohn is an excellent, practical resource.

! Waltzing with Bears by DeMarco and Lister is informative and
entertaining; it emphasizes iterative—rather than sequen-
tial—development as a key risk-management practice, and
explains how to apply Monte Carlo simulation in estimation.

19. This was explored in Queueing Theory in the companion book.

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

Chapter
• Thinking About Coordination 189

• Coordination Techniques 200

• Centralized Coordination—Coordination Meet-
ings 200

• Decentralized Coordination 206

https://less.works For Gene Gendel only, id:gene-gendel



189

Chapter

6
COORDINATION

The best argument against democracy is
a five-minute conversation with the average voter.

—Winston Churchill

A next-generation flexible platform was at the top of the list of stra-
tegic technology developments at a client. Two products were built
on top of this prestigious new platform. One of the product groups
was constantly complaining about the platform’s bloatedness. The
other group? They had stubbed out the entire platform so that it
would not affect their work. Something had gone seriously wrong.
Coordination is hard.

This chapter contains two major sections:

! Thinking about coordination—This section looks at the organi-
zation, product, and team perspectives. Who should be involved
and why?

! Coordination techniques—This section dives into the how.
What systems should be put in place to ensure coordination
happens.

THINKING ABOUT COORDINATION

See “Try…Prod-
uct-level Defini-
tion of Done” on 
p. 170.

Most of this chapter focuses on coordination within the “develop-
ment department.” However, as the organization transforms this
department to a broader one by employing true cross-functional
teams, the line between the functional departments (such as mar-
keting and operations) becomes blurry. The increase in cross-func-
tionality goes hand in hand with the expansion of the product’s
Definition of Done. For most starting organizations, when your Defi-
nition of Done is still modest…

https://less.works For Gene Gendel only, id:gene-gendel



190

6 — Coordination

Try…Avoid…Cross-department coordinator

See “Try…Prod-
uct Owner Team” 
on p. 134.

Cross-department coordination and synchronization occurs through
department interfaces based on agreements, commitments, and
informal or formal ‘contracts.’ To maintain visibility and to shield
the department (or work streams) from cross-departmental inter-
rupts, one person is typically assigned to be the interface or coordi-
nator—the single point of contact for issues between departments.
This role is often called project manager, program manager, or
stream manager, but we prefer to call it coordinator. This cross-
department coordinator is part of the Product Owner Team and
works with the Product Owners on the prioritization of the Product
Backlog. He does not have final decision-making power nor is he
involved in the development itself; his focus is purely on cross-
department synchronization (see Figure 6.1).

Figure 6.1 role for 
coordinator 
between depart-
ments

Requirement
Area with 

Feature Teams

Requirement
Area with 

Feature Teams

Requirement
Area with 

Feature Teams

'Undone'
organization

Product Development Organization limited "Definition of 
Done" leads to 'Undone' 
organization and outside-
development coordination

other departments 
needed to ship the 

product
(internal or external)

Coordinator

Cross-department
coordination

Customers
and users

Product Owner Team

https://less.works For Gene Gendel only, id:gene-gendel



191

Thinking About Coordination

see Feature 
Teams in com-
panion book

see Systems 
Thinking in com-
panion

A similar approach to cross-department coordination described ear-
lier in the NextGen platform story demonstrated a major drawback:
separation, that is, having separate departments focused on their
own goals and their dependencies through contract/commitment.
That led to local optimization because of the individual department’s
target-setting and organizational politics: most requirements came
from its own platform teams rather than from its users. Result? A
platform that was beautifully engineered, flexible, and useless.

In a variation of a cross-department coordinator, other departments
send a representative as a member of the Product Owner Team.1

This multiple-coordinator approach is also used in Toyota’s product
development; the managers of the functional departments meet with
the Chief Engineer in the obeya2 [LM06b].

see Organization 
in companion

An alternative way to deal with cross-department coordination is to
evaporate the functional departments and increase cross-functional
integration inside the teams by…

Try…Integrate all functions into the teams

See “Try…Prod-
uct-level Defini-
tion of Done” on 
p. 170.

Organizations that improve and expand their Definition of Done
integrate departmental dependencies by increasing the teams cross-
functionality. In the ideal case, all functions are integrated within a
broader product organization and all coordination happens within
this department (see Figure 6.2). See also Teams in the companion.

If the NextGen platform had taken this approach, then the people
from the platform group would have been integrated into the two
products to form true feature teams.3 The platform department
would evaporate. To be clear, the platform department dissolves but
the shared platform itself still exists.

1.  Doing this creates a cross-functional project management group. 
The drawbacks of such an approach were covered in the Teams
chapter in the companion book.

2.  Big Room where they sit and work together.
3.  Note that a separate platform department is just a detached compo-

nent team, engendering all the weaknesses of that organizational 
design. See the Feature Teams chapter in the companion.

https://less.works For Gene Gendel only, id:gene-gendel



192

6 — Coordination

Figure 6.2 full 
cross-functional
integration

see Feature 
Teams in com-
panion

See “Try…Joint 
design work-
shops for broader 
design issues” on 
p. 298.

See “Try…Plan 
infrastructure
items by regular 
teams” on 
p. 168.)

People sometimes ask us, “Won’t the team size be too large when we
integrate all these functions into the teams?” They will not. How
come? Two reasons. First, not every function is present in every
team, and requirements selection is based on team skill. Second, the
specialization boundaries become fuzzier over time.

As an example of the second point, an organization we worked with
decided to integrate the customer documentation into their feature
teams. This required a sizable change because the documentation
department was centralized, outsourced, and offshored and had to
be decentralized, insourced, and localized. The new team member,
who was previously a ‘writer,’ was 100 percent dedicated to one fea-
ture team. When someone asked her if there was enough documen-
tation work to keep her busy, she answered, “No, but I am also
learning and doing testing and writing of the developer documenta-
tion.” While she kept her primary specialization, she also started
developing secondary specializations and helping out her team
members by broadening her skill set.

Requirement
Area with 

Feature Teams

Requirement
Area with 

Feature Teams

Requirement
Area with 

Feature Teams

Broad Organization

expanded “Definition of 
Done” leads to Feature 
Teams that are more cross-
functional, thus including 
dependent departments

Product Owner Team

Customers
and users

Requirement
Area with 

Feature Teams

https://less.works For Gene Gendel only, id:gene-gendel



193

Thinking About Coordination

In our work, we have seen organizations gradually move from the
coordinator solution to more integrated feature teams. However, we
have not yet seen any development organization of hundred-ish peo-
ple reach the ‘ideal’ of integrating all functions into the teams. Most
are in between the two extremes, with the goal of gradually includ-
ing more and more functions in the teams by expanding their Defini-
tion of Done.

The rest of the chapter focuses on coordination within one depart-
ment. Multisite specific coordination tips are covered in the Multi-
site chapter.

Try…Focus on the overall product

A team triumphantly finishes their Sprint and proudly demon-
strates their work to the Product Owner who is thrilled until…he
later notices it is not integrated and does not work with the work of
the other teams.

see System 
Thinking in com-
panion

In any practice, focus on the overall product and avoid locally opti-
mizing individual teams. This prevents individual results being pro-
duced by individual teams and leads to one working whole product.
Focus on the total product also impels the teams to coordinate their
work. This tip is the general theme behind most other tips in this
chapter…

Try…Coordinator, ambassador, and scout activities

MIT professor Deborah Ancona spent twenty years of her team
research on “boundary spanning” activities—a team’s external activ-
ities. She identified three categories of outward activities:

! ambassador

! task coordinator

! scout

Clarified in her own words [AC92]:

Ambassadorial activities provide access to the power structure
of the organization as members promote the team, secure

https://less.works For Gene Gendel only, id:gene-gendel



194

6 — Coordination

resources, and protect the team from excessive interference.
Task-coordinator activities provide access to the workflow
structure; they are aimed at managing horizontal dependence.
Through coordination, negotiation, and feedback, these activi-
ties allow for a tighter coupling with other organizational units,
often filling many of the gaps left by formal integrating systems.
Scouting activities provide access to the information structure;
they are aimed at adding to the expertise of the group. These
activities allow the group to update its information base, pro-
viding new ideas about technologies and markets.

Ambassador activities—relate to ScrumMaster responsibilities
[Schwaber04, James07], though in a mature Scrum team these
responsibilities are shared among team members.

see Lean Think-
ing in companion 
for more on yoko-
ten; and the 
Organization
chapter for more 
on CoP

Scout activities—create learning and keep the team up-to-date
about their environment. Toyota’s yokoten—spreading knowledge
laterally—and participation in Communities of Practice are exam-
ples of scouting activities. According to Ancona’s research, too much
scouting leads to low-performing teams—they end up in analysis
paralysis.

Task-coordinator activities—focus on coordination needed to get
the product done, and are the focus of this chapter.

See environment 
mapping session 
on p. 211

Framing external activities with these categories is worthwhile for
analysis of a team’s coordination needs. For example, someone might
during an environment mapping session say, “Did we think about all
the scout activities of the team for the next Sprints?”

Try…Team is responsible for coordination

see Teams in 
companion

A high-performing team pays as much attention to the outward
team activities as to its internal team dynamics. 

It is not enough anymore to work well around a conference table
or in the laboratory; it is not enough to know how to build inter-
nal consensus and effective team decision making; it is not even
enough to work well as a cross-functional team on concurrent
engineering or horizontal processes. Unless you know how to
manage within and across the new organization, you lose. The

https://less.works For Gene Gendel only, id:gene-gendel



195

Thinking About Coordination

only way to survive is to manage the external environment.
[AKSMW09]

Teams must be aware of their context and actively manage their
boundaries by undertakings such as synchronizing work on shared
code or clarifying cross-team requirements. Organizations need to
make it crystal clear that the teams themselves are responsible for
managing their boundaries and that they should take this into
account when planning and executing their work. In Succeeding
with Agile, author and Scrum expert Mike Cohn puts it like this:

My favorite questions are the ones starting with, “Who is
responsible for…” It doesn’t matter how someone ends that
question, my answer is always the same: The team. [Cohn09]

Avoid…External-to-team coordinator

It never ceases to amuse us that many organizations behave in the
same way. For example, organizations attempt to solve problems by
creating new roles and assigning the problem to that role. If there is
a ‘coordination’ problem, then they create a “coordination role” and
assign it the responsibility for “doing the coordination.” The person
in this role might be called ‘coordination’ manager, but is often
called “program manager” or “project manager.” Some organizations
were told that Scrum does not have a project manager role, but
instead of changing their behavior, they merely renamed the role!
We have encountered “feature manager,” “item owner,” “feature coor-
dinator,” “project coordinator,” and similar variations.

Why avoid such a role? Is creating a role with clear responsibilities
not a good thing? Sometimes. However, a problem is that making
one person responsible for something often leads to other people (the
Team) not being responsible for it (see Figure 6.3). So, a project man-
ager doing the coordination leads to the team not doing it—resulting
in handoff of knowledge and delay. 

https://less.works For Gene Gendel only, id:gene-gendel



196

6 — Coordination

Figure 6.3 effect of 
team-external coor-
dinator role

This effect was evident in a study done by Harvard Professor Amy
Edmondson—an accomplished team researcher concentrating on
psychological safety and team performance. In her study, she
noticed, to her own surprise, that the external activity of the team
decreased when the team leader took a more active role in coordina-
tion. She concluded

Thus, it is possible that frequent external relationship activity
on the part of the team leader requires the team as a whole to
engage less frequently in such activity, such that team leaders’
extra-team activities lead to less boundary spanning by others
on the team. [Edmonson99]

Avoid…Project managers

Avoid…“Fake 
Scrum” by 
renaming the 
project manager 
role

Traditionally, project managers are responsible for coordination
along with other things. It is a coordinator role. Avoid team-external
coordinator roles and avoid the project manager role completely.

When a role is removed, the conditions that originally required the
role do not go away. Thus, removing the project manager role does
not remove the need for coordination and project management. Who
does this work? In Scrum, the project management work is distrib-
uted over the three Scrum roles. The Team is responsible for cross-
team coordination.

total amount of 
coordination

activity

coordination
action taken by 
an external-to-

team-coordinator

coordination
actions taken 

by team

O
# of coordinators

# of 
coordination

problems

scope of a 
coordinator

coordination
between

coordinators

O

O

QFQF

https://less.works For Gene Gendel only, id:gene-gendel



197

Thinking About Coordination

see Teams in 
companion

When we work with organizations, we ask lots of questions to
uncover potential problems—we look for “organizational smells.”4

One of these questions is “Do you have a project manager?” If the
answer is yes, then one problem that often occurs is that the teams
focus on “their parts” and do not take an overall product responsibil-
ity—including coordination.

Avoid…ScrumMaster coordinates

Try…Facilita-
tion (rather than 
coordination) by 
ScrumMaster

ScrumMasters are frequently enthusiastic people who sincerely
want to help their teams. When the team has coordination worries,
the ScrumMaster “removes the obstacle” for them and does the
cross-team coordination. Time and again he gradually transforms
into a project manager dubbed ScrumMaster. For more, see
“Avoid…Fake ScrumMasters” in the Organization chapter of the
companion. And: See “Avoid…Scrum of Scrums being a ScrumMas-
ter meeting” on p. 203.

Figure 6.4 one dif-
ference between 
project manager 
and ScrumMaster 
role

See
“Try…Scrum-
Masters acting as 
and encouraging 
matchmakers” on 
p. 435.

A good ScrumMaster rarely does the coordination and instead facili-
tates coordination (see Figure 6.4). How? He reminds the team that
their focus is the overall product. He ensures that the team members
of different teams know each other and have practices and means in
place to synchronize their work. He teaches and facilitates the team’s

4.  The word ‘smell’ is sometimes used as a signal that something might 
be wrong—something smells.

Project
Manager

Team Team

ScrumMaster

Team Team

project manager 
coordinates

ScrumMaster
facilitates

https://less.works For Gene Gendel only, id:gene-gendel



198

6 — Coordination

problem-solving and root-cause analysis activities so that they rec-
ognize their coordination hurdles. And so forth.

Try…Focus on overall product measures

see Organization 
in companion for 
more on mea-
surement dys-
function

“You get what you measure” states an old management maxim.5

What is measured and especially what is rewarded influence peo-
ple’s behavior. Measuring, setting targets, and rewarding based on
individual teams promote individual team performance. Alterna-
tively, overall product metrics such as business-case realization,
lead time, value delivered, overall faults and integration problems
promote a total product performance.6

That said, individual team targets set by the team themselves in
order to improve their working practices are, of course, encouraged.

Avoid…Competition between teams

We worked with a networking product group that considered compe-
tition between teams a good thing. It would surely lead to increased
productivity. Not so. Their management awarded ‘points’ to the
teams based on end-of-iteration criteria the management had
devised. The teams could ‘buy’ prizes with these points. The result?
Intense competition between the teams who paid more attention to
the criteria than to the value to the customer. Teams argued with
one another about the points awarded. The opposite of an attitude of
working together toward one product.

Established team researcher, professor, and author Richard Hack-
man described this behavior:

“… conflict between groups, once underway, can rapidly escalate
and spawn significant and unfortunate consequences for the
warring groups, for their members, and for the organization as
a whole. … intergroup conflict is ridiculously easy to engender.

5.  At least it will appear so. But whether it is what you meant…
6.  Although overall product measures are good, rewards based on 

those will still trigger measurement dysfunction and should be 
avoided [Austin96].

https://less.works For Gene Gendel only, id:gene-gendel



199

Thinking About Coordination

… [one condition is when] the groups are parties to a zero-sum
game (i.e. any gains obtained by one group are directly at the
expense of the other) … These conditions are far from uncom-
mon in organizational life. Indeed, they are sometimes deliber-
ately created by managers in the hope, which I believe to be
misguided, of fostering collective motivation and productivity
by setting organizational groups into competition with one
another.” [Hackman99]

Try…Myriad coordination methods

Cross-team coordination and inter-team communication is a hard
problem for which there is no single or simple solution. In the classic
paper on team-external activities, “Bridging the Boundary: External
Activity and Performance in Organizational Teams,” the authors
remind us that

New-product teams face a highly uncertain and complex task.
There may be periods of creativity alternating with times when
efficiency is the primary outcome of interest. Therefore, most of
the interaction with other groups is not clearly programmed in
standard operating procedures and routines but evolves to meet
task demands. [AC92]

There is no “best way” of coordinating teams. Different teams, at dif-
ferent times and, in different contexts, require different solutions.
Thus, instead of seeking the cross-team interaction technique that
solves the problem, experiment with multiple approaches and adapt.

Why change approach? Jutta Eckstein, author of the first book on
scaling agile development, concluded from her experiences that

There must be a law stating that as soon as a communication
path works, it will be abused until it doesn’t work any-
more…Therefore, you should also be agile and flexible with the
communication. Use various modes of communication that
address different persons differently…Change the communica-
tion channels from time to time. [Eckstein04]

https://less.works For Gene Gendel only, id:gene-gendel



200

6 — Coordination

COORDINATION TECHNIQUES

Coordination techniques can be classified into centralized and
decentralized strategies. 

Centralized techniques—often consist of meetings at which peo-
ple from multiple teams assemble to coordinate their work—coordi-
nation meetings. 

Decentralized strategies—let teams figure out their dependen-
cies by themselves and expect them to resolve these in a decentral-
ized, networked manner.

CENTRALIZED COORDINATION—COORDINATION MEETINGS

We have experimented with several different approaches to coordi-
nation meetings:

! Scrum of Scrums

! Open Space

! Town Hall

! Joint Scrum meetings

! Joint Sprint Review bazaar

Try…Scrum of Scrums

The Scrum of Scrums is the usual team coordination meeting when
Scrum is used. It is a meeting at which representatives of the differ-
ent teams7 gather to discuss and explore cross-team topics. Its form
often resembles the Daily Scrum except that it does not need to be
daily—two or three times a week is enough [Cohn07]. However,
achieving an efficient Scrum of Scrums can be tricky.

7.  A Scrum of Scrums commonly is held at Requirement Area level.

https://less.works For Gene Gendel only, id:gene-gendel



201

Centralized Coordination—Coordination Meetings

Figure 6.5 Scrum of 
Scrums

see Lean Think-
ing in companion 
for Go See

When we met up with a local agile coach working with a multimedia
product developed in Budapest, he complained that their Scrum of
Scrums was not working well. The team representatives felt the
meeting was boring and useless. We applied Go See and joined their
Scrum of Scrums. It was instantly clear why their meeting was inef-
fective. They used exactly the same structure as the Daily Scrum.
This meeting form works great for teams with shared responsibility
and a common work product. But in their Scrum of Scrums there
was no shared task list and every team worked on a different part of
the system. Reporting status as “my team worked on requirement X”
resulted in a boring and useless meeting.8

How can the Scrum of Scrums become interesting and effective? One
technique is to use slightly different questions than those asked at
the Daily Scrum. Experiment with the following:

Try…Use differ-
ent questions for 
the Scrum of 
Scrums

! What did your team do since the previous meeting that is rele-
vant to some other team?

! What will your team do by the next meeting that is relevant to
other teams?

! What obstacles does your team have that affect other teams or
require help from them?

These questions encourage the representatives to share the most
relevant topics and result in a more effective Scrum of Scrums.

8.  When a team-level Daily Scrum is boring and useless, it similarly 
suggests the ‘team’ might be just a group of individuals doing “their 
own tasks” rather than a true team working on a common work 
product and sharing responsibility.

https://less.works For Gene Gendel only, id:gene-gendel



202

6 — Coordination

For example, “My team changed the interface of the messaging com-
ponent to fulfill the new performance requirement. You guys proba-
bly want to know about that. For the last couple of weeks, my team
has developed some performance improvements on a separate
branch. Yes, we know we should not branch, but we could not find a
better way to do this. Today and tomorrow, we will be merging this
branch to the main line, so there will be a lot of changes. We have no
obstacles other than the branching.”

Try…Two-part Scrum of Scrums

This tip is also applicable to normal Daily Scrums.

The Daily Scrum meeting form has a no-discussion rule. Its purpose
is to avoid long, dreary, boring meetings and instead convey the
needed information as efficiently as possible. But some topics
require deliberation. How to balance between the efficiency and the
need for discussion? 

Try a two-part Scrum of Scrums. It consists of

1. the normal Daily Scrum-style: 15-minute-timeboxed, answer-
the-three-questions part followed by 

2. self-organizing followup meetings where team members (and
perhaps observers) self-organize around the most pressing
problem. This part is voluntary; team members who are not
interested leave. 

The topics for the followups often surface during the first part, when
a team member might say, “I want to talk with you about that in the
followups.”

Avoid…Scrum of Scrums being a status meeting to management

An organizational smell we often encounter is the “status-reporting
Scrum of Scrums.” This is where the ScrumMasters meet each other
and report their team’s progress to a program manager or a similar
role.

https://less.works For Gene Gendel only, id:gene-gendel



203

Centralized Coordination—Coordination Meetings

A Scrum of Scrums—like the Daily Scrum—is a synchronization
meeting and not a management status-reporting meeting.

Avoid…Scrum of Scrums being a ScrumMaster meeting

Another smell: Scrum of Scrums is a meeting of ScrumMasters at
which the ScrumMasters take responsibility for the cross-team coor-
dination. In every case in which we saw this, the ScrumMaster
mutated into a project manager within two iterations.

Try…CoP for 
ScrumMasters

To be clear, we are not saying that ScrumMasters should not meet
with each other. In fact, we recommend they meet in a ScrumMaster
Community of Practice where they discuss their experiences, share
the obstacles they faced, and learn from each other. However, such a
CoP is not intended for cross-team coordination, though obstacles to
cross-team coordination could be discussed here.

Try…Rotate Scrum of Scrums representatives

Who should be the team’s representative in the Scrum of Scrums? Of
course, this decision should be made by the team members them-
selves. Sometimes, nobody wants to be the representative, or every-
body does, or the selected representative has lost interest. 

Avoid…Frequently rotating representatives

Rotating representatives works well unless you rotate the represen-
tative too frequently; then there is discontinuity and often chaos.
Experiment with changing the representative every two or three
iterations.

https://less.works For Gene Gendel only, id:gene-gendel



204

6 — Coordination

Try…Open Space

see Organization 
in companion

Open Space Technology is a method
for exposing “burning issues” and
self-organizing around them
[Owen97]. Exactly what is needed for
team coordination! A team coordina-
tion Open Space is held perhaps
weekly, and its form is the same as
that of a normal Open Space. Mem-
bers of all teams9 get together, create
topics related to coordination, and
organize around them.

Open Space may also replace the Scrum of Scrums. We were coach-
ing at a client with about 30 teams on a product. They were dissatis-
fied with a SoS; we suggested trying mini-Open-Space meetings
instead and facilitated the first meeting, which was attended by
team representatives:

1. Five minutes to fill the space-time board with burning issues.

2. One hour total for sessions. The spaces were corners of the
main meeting room plus some smaller rooms. The times were
three 20-minute sessions. They usually had three parallel ses-
sions, for a total of nine. 

In an SoS, through the “three ques-
tions,” someone might say, “Our
team is about to release a signifi-
cant change for X and I’m con-
cerned about the impact on the
teams.” In Open Space, the repre-
sentative might say (and write on
the space-time board), “I’ve got a
burning issue about the release of

X. I’ll be hosting a session in space-1 at 10:00.”

9.  All teams could mean all teams in one requirement area (see 
Requirement Areas in companion book).

https://less.works For Gene Gendel only, id:gene-gendel



205

Centralized Coordination—Coordination Meetings

In fact, this occurred at a multisite Open Space meeting across two
cities. See “Try…Multisite Open Space to replace Scrum of Scrums”
on p. 430.

Try…Town Hall meeting

A Town Hall meeting is a public gathering to which everyone in the
product development is invited—though participation is voluntary.
It offers the chance for participants to speak up and raise any issue.
To get the Town Hall meeting started, representatives from each
team could start with a Scrum of Scrums-like meeting.

At the Scrum Gathering 2005, Bob Schatz, the VP of Engineering at
Primavera at the time, shared a story: During their early-days
Scrum adoption, a fake “Scrum of Scrums” private meeting was
arranged by project managers. There was minimal self-organization,
and top-down management remained a dominant mindset. Bob sug-
gested replacing it with Town Hall meetings, which made an
improvement in raising and dealing with teams’ issues, and with
fostering more self-management [Schatz05].

Try…Joint Scrum meetings

Most Scrum meetings can be with multiple teams together—either
the full team or team representatives. The Planning chapter
describes how to scale Sprint Planning Part One using a joint meet-
ing. The Inspect & Adapt chapter discusses joint meetings for Sprint
Review and Retrospective.

An important advantage of joint Scrum meetings is that they foster
coordination. For example, in a joint Sprint Planning Part One, team
members of different teams learn about the work of the other teams
and can agree on coordination practices. One particular joint Scrum
meeting deserves special notice…

https://less.works For Gene Gendel only, id:gene-gendel



206

6 — Coordination

Try…Joint Sprint Review bazaar

See “Try…Joint 
Sprint Reviews” 
on p. 405.

In a joint Sprint Review bazaar,
everybody assembles in a large
room where each team has its own
area to present its work to anyone
who visits. Members of each team
are encouraged to stroll around and
discover what others did—promot-
ing a focus on the whole product.
During a bazaar, contacts are made
that form the basis of future cross-team coordination.

DECENTRALIZED COORDINATION

Try…Prefer 
decentralization 
solutions over 
centralization 
ones

Decentralized coordination strategies are applied by teams indepen-
dently. For these strategies there is no cross-team agreement or cen-
tralized place to meet; instead, each team decides its own
coordination practices. Decentralized coordination is easy to scale up
because it does not have a bottleneck, which is a key reason decen-
tralized solutions are preferred over centralized ones. The drawback
of decentralization is that no one person has an overview of the
teams’ decentralized coordination.

Try…Send chickens to Daily Scrums

See “Try…Envi-
ronment map-
ping” on p. 211.

A simple decentralized coordination method is for
each team to send a chicken (a team representa-
tive) to the Daily Scrum of other teams they are
interested in. Either the same day or the follow-
ing day, the chickens report back to their team so
that their team can determine the needed coordi-
nation actions.

Before teams choose their chickens, they need to
discover their dependencies—for example, at an
environment mapping session. Afterwards, they
desynchronize their Daily Scrum with the depen-

https://less.works For Gene Gendel only, id:gene-gendel



207

Decentralized Coordination

dent teams so that they do not happen at the same time. A team
chooses its chicken and off he or she goes.

Try…Travelers

We worked with a product group that had a couple of experienced
technical experts. This group created feature teams with dedicated
members but could not decide in which team to add the (scarce)
experts whose knowledge was useful to all teams. So the experts
became travelers—each iteration they would join a different team for
the entire iteration.

Swedish Scrum trainer Mikael Lundgen also recommends travelers
but calls them “free agents.” Why? He noticed that in many of the
companies where he worked, one or two persons were not comfort-
able working inside one team for a longer time. So instead he “set
them free”—invited them to be travelers—hence “free agents”
[Lundgren08].

see Feature 
Teams in com-
panion, for com-
ponent 
guardians

The intention of travelers is to coach team members and share their
knowledge with the team. A team can request a traveler to join them
because his experience and expertise is needed. Although travelers
are not specifically created for coordination, by joining different
teams they create or strengthen a broad network, which is exactly
what is needed for informal coordination channels. Component
guardians might make good travelers.

Try…Communities of Practice

see Organization 
in companion for 
CoP

A Community of Practice is a group of volunteers who share an
interest or topic and have the passion to deepen their knowledge
through discussion and interaction with peers. Examples of common
CoPs are the ScrumMaster community, the architecture community,
the TDD-coaches community, and the continuous-integration com-
munity. CoPs create cross-team interaction and are therefore well
suited for solving coordination matters or for creating the channels
through which informal coordination occurs.

https://less.works For Gene Gendel only, id:gene-gendel



208

6 — Coordination

See “Try…Inter-
nal open source 
with teachers—
for tools too” on 
p. 315.

A telecom company we worked with has a proprietary programming
language10 and needed to create their own xUnit framework. The
developers of the framework also created an “internal open source”
community for maintaining and extending the unit test framework.
The community mailing list provided support for people new to the
framework and quickly grew to be a popular tool.

Try…Communication CoP

Coordination and communication itself is an excellent topic for a
CoP. Large-scale development expert Jutta Eckstein recommends a
(virtual) communication team [Eckstein04]. This CoP discusses com-
munication topics such as usage of common language and culture,
and collaboration channels.

Try…Increase shared space

Alistair Cockburn, author of Agile Software Development, uses the
term osmostic communication for people who accidentally “take in
information without directly paying attention” as a result of being
near someone [Cockburn01]. Accidental cross-team communication
transpires from dependent teams being placed next to each other or
from shared space such as fitness rooms or Ping-Pong tables
[Weinberg71].

While we were coaching test-driven development to a team, two
other feature teams shared the same office space with us. These
teams both worked on the same component and they were constantly
working together merely because of their co-location. It was hard to
identify the team boundaries when watching them.

In China, companies often have after-work ‘clubs’ where people with
a common interest or activity meet (similar to CoPs). While working
there we encountered the badminton club, the automobile club, and
even the baby club. Obviously, these clubs are not intended for coor-

10. In the telecom industry, most companies have a proprietary pro-
gramming language. It usually stays within the company, with 
the Ericsson Language ErLang [Armstrong07] an exception.

https://less.works For Gene Gendel only, id:gene-gendel



209

Decentralized Coordination

dination between teams, but they do result in people knowing each
other and thereby creating informal communication channels.

Multisite shared space

see more on 
shared space in 
the Multisite 
chapter

Creating shared physical space is impossible in a multisite environ-
ment. In that case, create a shared space as close to a physical
shared space as possible. For example, at a Valtech project that I
(Craig here) worked on, we installed always-on “room cam” web
cameras in each team room (Bangalore and Paris), plus a monitor
that showed the other (remote) room. There was a 3½ hour time
zone difference, and thus people could often see each other live
across the sites. This helped create a sense of shared space.

A third-best alternative is to create virtual shared space using tools
such as wikis, forums, iirc, instant messager, and so forth.

Virtual worlds and “second life”-style technologies are gradually
becoming mature enough for creating shared spaces [VH09]. For
example, the realXtend open-source virtual world platform project
uses Scrum in their development. They decided to “eat their own dog
food” and hold their Daily Scrum meetings in their virtual world.
However, in one news article they reported “everyone looked the
same—our first woman avatar, which was later called a ‘crack-slut
madonna’ by someone, she had just white underwear and no hair…
voice was working through team speak software” and they aban-
doned using a virtual world for their Daily Scrum [Cybernews09].
Perhaps we still need to wait a couple of years.

Try…Break cubicles and other barriers

If we were to vote for the worst invention in the history of human-
kind, then cubicles would be high on our list. They and related com-
munication barriers prevent osmotic communication. Perhaps the
best thing about cubicles is that they tend to be easy to dismantle
and then assume a less harmful form. Bas is well known for his hid-
den cubicle-disassembling skills.

https://less.works For Gene Gendel only, id:gene-gendel



210

6 — Coordination

Figure 6.6 barrier—
a wall

A team working for a
telecom operator had a
problem. Their retro-
spective revealed com-
munication problems
with their Product
Owner. The team was in
a room and the Product
Owner was in the room
next to them… with a
wall in between
(Figure 6.6). For every
question to the Product
Owner, they had to 1)
leave the room, 2) walk
to the Product Owner’s room, 3) enter, 4) ask the question, 5) wait
for the answer, 6) leave the room, 7) walk back to the team’s room, 8)
enter, 9) continue their work. Not efficient.

Figure 6.7 solution
—a door

How did they solve this prob-
lem? They made a door!
(Figure 6.7). As a team, you
do not want physical barriers
such as walls to obstruct your
communication. It is rela-
tively easy to pick up the
phone, call a contractor and
ask him if he could please
punch a hole in the wall.

https://less.works For Gene Gendel only, id:gene-gendel



211

Decentralized Coordination

Figure 6.8 more 
doors

The product group consisted
of multiple teams, each in a
different room. They realized
the same communication
problems were happening
between the teams. So, what
did they do? They knocked a
hole in all walls (Figure 6.8).
One team member remarked,
“After punching the holes,
you can walk directly from
one room to another. Or
shout to the next room. It's a
bit too far to shout from the first room to the third, though.”

Try…Communicate in code

Try…Communi-
cate in tests

Feature teams touch the same code at the same time and thus need
to coordinate their effort. For many developers, communicating in
code and tests is highly effective. What might take hours to explain
in English can sometimes be described in code in minutes. Code and
tests are a clear and unambiguous communication medium. Apply-
ing continuous integration without branching results in people shar-
ing each other’s work all the time, leading to plenty of cross-team
communication through code and tests.

Try…Environment mapping

this is known as 
“project commu-
nity” in Indus-
trial XP [IXP04].

With whom should the team coordinate? A simple technique called
environment mapping helps the team explore their dependencies.
They get together in a room with a flip chart and draw themselves in
the middle of the flip chart and ask, “Who do we need to coordinate
with?” Around them they draw their dependencies and connect them
with lines on which they describe the nature of their dependency.

https://less.works For Gene Gendel only, id:gene-gendel



212

6 — Coordination

Figure 6.9 mapping 
environment

When to do this? The first map-
ping session can be useful during a
new team kick-off meeting. But
when working in long-lived fea-
ture teams, experiment with the
exercise and see how often it needs
to be repeated in order to be kept
up-to-date.

Try…Coordination working agreements

See “Try…Joint 
Sprint Retrospec-
tives” on p. 403.

With or without mapping their environment, the team needs to
decide how to then do coordination. These decisions are part of the
team’s working agreements (revisited during their Retrospectives).
Working agreements can include things such as who joins the Scrum
of Scrums, how frequently to change that, who will join other teams’
Daily Scrums, and so forth.

CONCLUSION

Coordination between departments and between teams is a chal-
lenging problem for which there exists no single solution. A thor-
ough Definition of Done and cross-functional feature teams ensure
that a lot of coordination is within the team or within the broad
product department. However, cross-team coordination is still
needed.

Decentralized coordination is preferred over centralized coordina-
tion because it scales better and well suits the self-organization
principles of agile. That said, any serious-sized product group proba-
bly needs to try a combination of the experiments described in this
chapter… and invent some more.

RECOMMENDED READING

Cross-team coordination seems to be an infrequently covered area in
existing literature. Therefore, we do not have many recommenda-
tions; but these may help:

https://less.works For Gene Gendel only, id:gene-gendel



213

Decentralized Coordination

! “Bridging the Boundary: External Activity and Performance in
Organizational Teams,” by Deborah Ancona and David Cald-
well. One of the early research articles that explored teams
within their context and how external activity—boundary
spanning—relates to team performance.

! Leading Teams, by Richard Hackman. Still one of the best ref-
erences on teams and self-managing teams. It also covers how
teams manage their boundaries.

! Succeeding with Agile, by Mike Cohn. Scrum coach Mike Cohn
covers some team coordination topics in his book.

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Organizing and Managing 215

• Team Organization 234

• Analyzing and Modeling 236

• Tools 273

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



215

Chapter

7
REQUIREMENTS & PBIS

My formula for success is rise early, work late, and strike oil.
—J. Paul Getty

“We cannot possibly fit our requirement into a two-week iteration,
and there is no way it can be made smaller,” said a manager to us—
actually, said hundreds of times to us by different people. It is the
standard view in the world of big embedded systems. Fortunately, it
is not true.

This chapter covers experiments related to requirements analysis,
modeling, or management, most connected to scaling. More broadly,
it considers all kinds of Product Backlog Items—PBIs or ‘items.’ 

It starts with suggestions related to organizing items and require-
ments information, follows with team structure, then takes a deeper
dive into analyzing items, and ends with tool tips.

ORGANIZING AND MANAGING

Try…Group items into requirement areas

See “Introduction 
to Requirement 
Areas” on p. 555.

When there are many feature teams in a product group, organize
related items (PBIs) in the Product Backlog into a requirement
area, and group-related teams to work in that area. A requirement
area is customer-centric; it is not an architectural subsystem. It is a
set of items that are strongly related from the customer perspective.
For example, color workflow, security, or network management. The
subset of the backlog for one area is an Area Backlog—a view into
the one Product Backlog whose items can be managed indepen-
dently by an Area Product Owner.

https://less.works For Gene Gendel only, id:gene-gendel



216

7 — Requirements & PBIs

Try…Group items into themes

Group items together into a theme, such as “PDF support.” 

A theme is not one big item split into sub-items; rather, it is a varied
collection related by a… theme. One item may be a member of many
themes; for example, “automatic sleeping” may be a member of the
themes energy savings, heat reduction, and safety.

Themes are useful to define release or market strategy; for instance,
“Let’s focus on touch-screen items next release.” Sometimes, themes
are useful for testing—they can inspire broad integration tests
across a family of related features.

Themes are similar to requirement areas in that both are groupings.
However, a requirement area (for instance, color workflow)…

! is motivated when there are many teams and the desire to
organize a subset of teams into a family each with its own Area
Product Owner

– in contrast, themes are useful regardless of group size

! constrains a PBI to one and only one requirement area

– in contrast, a PBI may be a member of zero or more themes,
and a theme may span several requirement areas

! tends to be more stable over time than a theme

– in contrast, themes are sometimes transitory, such as the
theme “competitorX-matching features”

Add the ability to ‘tag’ a PBI with a set of themes. For instance, if
the Product Backlog is saved in a spreadsheet, add a ‘theme’ column.
Each cell can contain a list of themes, such as “safety, energy.”

Avoid…Feature screening for PBIs

Historically, feature screening is a filtering activity to decide early
to include or exclude a feature in a product release. The idea is cou-
pled to traditional product- or requirements management in which
decision points are defined, at which time large sets of decisions are

https://less.works For Gene Gendel only, id:gene-gendel



217

Organizing and Managing

made (once) to let some features beyond the decision point and on to
the next phase. Features pass through—or are removed from—a
narrowing funnel. And once a feature is out, it’s gone. 

The goals of the technique are valid, including (1) early feedback to
customers if their request will be in the next release, and (2) man-
ageability—not being overwhelmed by a mountain of requirements.
Yet, the goals can be achieved differently—with a prioritized back-
log.

Feature screening is decide-early, coarse-grained decision making
applied to large batches of decisions on a long queue, and to individ-
ual requests that arise sporadically. The paradigm is rooted in the
assumption of big releases, “better get it right early,” and traditional
slow development, rather than the agile alternative.

This old practice was often established long before a group adopts
Scrum. Then, when a new feature idea comes along, rather than
placing it on the Product Backlog with a low priority, a product man-
agement group inculcated in feature screening will revert to habit
and make a big upfront decision: Should this feature be promoted to
the Product Backlog or not? Avoid that.

Lean development includes the principle to decide as late as possi-
ble. Reflecting this, Scrum offers more fine-grained, flexible decision
making by using a prioritized Product Backlog. New ideas can be
simply added to the bottom; if their priority does not rise, no imme-
diate investment in analysis or decision making is required.

Try…Prune an overgrown backlog

Avoiding feature screening does not imply accumulating a gargan-
tuan backlog of thousands of low-interest items. Some backlogs do
accrete junk, and at some point the Product Owner Team needs to
consider pruning it to reduce information scatter and management.

Try…Prefer cell-like splitting over treelike splitting

When a large item is split, it is the ancestor of new sub-items.
How to think about the relation between ancestors and sub-items?

https://less.works For Gene Gendel only, id:gene-gendel



218

7 — Requirements & PBIs

During mitosis when a cell splits, the
ancestor cell ‘disappears.’ 

This is also one approach to item splitting. 

An alternative model is tree-branch split-
ting; the ancestor branch remains.

When splitting large items, prefer the cell-
like model. First an example, then motiva-
tion. Example:

Suppose the item decryption services for
network traffic can be split into the sub-
items:

! detect encrypted traffic

! decrypt encrypted traffic

And decrypt encrypted traffic can itself be split further:

! decrypt BitTorrent-encrypted traffic

! decrypt Blowfish-encrypted traffic

Cell-like splitting

With cell-like splitting, the ancestors disappear: The Product
Owner1 deletes the ancestors: 

Item

detect encrypted traffic

decrypt BitTorrent-encrypted traffic

decrypt Blowfish-encrypted traffic

1.  Here, and throughout the book, Product Owner may alternatively 
imply Area Product Owner.

https://less.works For Gene Gendel only, id:gene-gendel



219

Organizing and Managing

This backlog does not record ancestors or ancestor-relationships.

Advantages of discarding the ancestor and all links to it include sim-
plicity—a style that asks, “What is the minimal or simplest
approach in the backlog that is useful?” rather than “What should
we add because it may be potentially useful?”2 A second advantage is
an increased sense of item independence: One or the other sub-item
may be discarded—some cells may die. And quite importantly: The
new items are clearly prioritized independently from one another
and without reference to their ancestor. 

A disadvantage of the cell-like model is that relationships and
ancestor information are lost; whether this is a real or speculative
problem is context dependent. In any event, treelike splitting
remains an option…

Treelike Splitting

Treelike suggests maintaining a record of direct ancestor require-
ments and links to them from sub-items. Why? Ancestor data may…

! provide big-picture context, aiding comprehension or decisions

– alternate solution: themes

! be a source of inspiration for new sub-items

– “For decryption services, what does the customer want?”

– alternative solution: themes

! link Area Backlog items to the overall Product Backlog

2.  This latter mindset—what might possibly be useful—is unfortu-
nately all too common not only in backlog management but also in 
product features and process definitions, creating many wastes: 
overprocessing, inventory, and more.

A sub-item does not inherit the priority of its ancestor. 
This is a key mindset change for product management.

https://less.works For Gene Gendel only, id:gene-gendel



220

7 — Requirements & PBIs

– see “Try…Maintain three levels when using Area Backlogs”
section on page 221

If treelike splitting is done, the Product Owner will maintain ances-
tor links (if any) in the Product Backlog.3 In this next example, the
direct ancestor is maintained. 

Note one disadvantage: more information to manage—especially
when splitting deeper and deeper. 

The advantage of “strong item independence” found in pure cell-like
splitting is also theoretically possible with this treelike organization,
but we notice a subtle disadvantage: Product Owners are sometimes
influenced by explicit relationships to ancestors, tending to incor-
rectly think of sub-items not as independent but rather…

! as a family that should be prioritized or implemented together

! that all sub-items must be done

– “The item is only done when all the sub-items are done.”

That attitude is undesirable: it reduces flexibility.

Try…Maintain at most one ancestor—direct or indirect

To reiterate, before we can no longer see the forest for the trees: Pre-
fer cell-like splitting, discarding ancestors completely. But when
ancestors are important…

3.  Additionally in either cell- or tree-splitting, a sub-item’s wiki page 
can link to an ancestor wiki page.

Item (Direct) Ancestor

detect encrypted traffic decryption services for network traffic 

decrypt BitTorrent… decrypt encrypted traffic 

decrypt Blowfish… decrypt encrypted traffic 

https://less.works For Gene Gendel only, id:gene-gendel



221

Organizing and Managing

The prior treelike splitting example showed a link to direct ances-
tors in the backlog. This means more work maintaining data about
all ancestors at all branching levels. If the tree of split items
branches five or six levels deep, then that is a lot of ancestor infor-
mation—and how would you manage all that?

Another option is to combine aspects of cell-like and treelike split-
ting: Maintain at most one meaningful4 ancestor; it may be direct or
indirect along the path back to the ultimate root item. Less work,
while still providing some context. For instance:  

For the first item, the Product Owner decided to discard ancestors
completely. The second two maintain the root ancestor—a common
case but not required.

If user stories are the model of backlog items, an ancestor may be the
‘epic’ behind the user-story sub-item.

Try…Maintain three levels when using Area Backlogs

The previous example—with at most one meaningful ancestor—
maintains two levels when items are split. When Area Backlogs are
also involved—only suggested for very large groups—it is useful to
maintain three levels, providing a link between the Product Backlog
and Area Backlogs. For instance, the Security Area Backlog: 

4.  Meaningful in terms of the advantages described in the “Treelike 
Splitting” section on page 219.

Item (any meaningful) Ancestor

detect encrypted traffic

decrypt BitTorrent… decryption services for network traffic 

decrypt Blowfish… decryption services for network traffic 

Item Ancestor

detect encrypted traffic decryption services for network traffic 

https://less.works For Gene Gendel only, id:gene-gendel



222

7 — Requirements & PBIs

Notice that the ancestor in the Area Backlog is an item in the overall
Product Backlog:5

Avoid…Maintaining more than three levels of split items

Over the years we noticed that groups that maintain many nested
levels of split items fall into the trap of not defining customer-centric
requirements but defining fake requirements—technical activities or
tasks. Keeping only three levels of split items seems to help avoid
this. Also, see “Avoid…Technical task ‘requirements’ (PBIs)” section
on page 237.

Try…Use special terms for size of items

Product management uses special terms for large items because
doing so clarifies some context. For instance, “Let’s decide the mar-
ket strategy for major features of the release.” Also, if one of the
things people mean by story is that it is small enough to implement
in an iteration, and by epic that it is not, these size-related terms are
informative. And if three levels of items are in the Product Backlog
and Area Backlogs, it is clarifying to have phrases for each level.

decrypt BitTorrent… decryption services for network traffic 

Item Ancestor Requirement Area

decryption services for net-
work traffic 

cryptography security

encryption cryptography security

5.  The Area Backlog is ideally only a view into the Product Backlog, 
not a separate document with duplicated information.

Item Ancestor

https://less.works For Gene Gendel only, id:gene-gendel



223

Organizing and Managing

For these reasons, establish terms related to the size of items. There
are no correct phrases in Scrum, it is only important that people
have a common language. Terms we have seen used together:6 [huge
item, big item, small item], [major feature set, feature set, feature],
[epic,7 feature, user story8], [feature, epic, user story].

Try…Defer or ignore implementation and analysis of sub-items

One estimate in 2004 was that around 35% of all Internet traffic was
for BitTorrent. True or false, it is substantial, and so some telecom-
munication operators are interested in throttling network band-
width for it; some are also interested in identifying if copyright
violations are involved. Therefore, one Product Owner we worked
with had the following item in his backlog:

detect and decrypt BitTorrent traffic

6.  Abstractly, these are names in a requirements meta-model.
7.  Epic is only used with user stories.
8.  Implies a specific approach to analysis.

A Stories Story

First sponsored in 1993 by Kent Beck and Grady Booch, the Hillside Group (with
Ken Auer, Jim Coplien, Ward Cunningham, Hal Hildebrand, and Ralph Johnson)
met to explore patterns and their generativity. Ward invented the wiki—in part—to
support ongoing discussion. At a subsequent Hillside Group workshop, Bruce Ander-
son raised the topic of stories (as in tales) and their power to connect with people. 

The implications for development work evolved in Ward’s Episodes patterns (notice
that ‘episodes’ relates to ‘stories’), especially in the Implied Requirement pattern;
Ward wrote, “I chose that name because the story only suggested the need to the degree
that the developers and customers could talk about it.” The implications also evolved
in Kent’s stories, articulated as part of his—influenced by Ward—agile development
method, Extreme Programming (XP), whose first XP book cites Episodes. Kent wrote,
“I imagined a user grabbing another user in the hallway and saying, ‘I gotta tell you
about this wonderful new thing the application does…’ Stories are the stories custom-
ers wish they could tell about the system but can’t (yet).” (continued…)

https://less.works For Gene Gendel only, id:gene-gendel



224

7 — Requirements & PBIs

We suggested to split this as follows:

! detect BitTorrent traffic

! decrypt encrypted BitTorrent traffic

The teams estimated relative
effort, and the Product Owner
Team estimated relative value
(on a scale of 1 to 7, 7 being
most valuable). Here were the
results:

! detect… effort=3, value=6

! decrypt…effort=21, value=2

When the Product Owner saw this, his lights went on. He realized
that by splitting big requirements, he could identify valuable and
independent sub-items that could and should be delivered early and
independently, and other parts that could be deferred. To reiterate:

Once, we were coaching in Poland with a group starting Scrum adop-
tion. The Product Owner Team—separate from the development

A sub-item does not inherit the priority of its ancestor. 

(continued…) On the original XP stories, Kent wrote, “I don’t recall specifying format.
The salient properties I asked for were (1) testable with automation, (2) small enough
so that several should fit in an iteration, (3) quick and easy to write, (4) estimatable
with some confidence.”

Interestingly, the phrase user story was not coined by Kent; he wrote, “I never say
‘user stories’, because I think they belong to the whole team.” However, “user story”
was used in the first XP project—the Chrysler C3 project—though no one can remem-
ber precisely who coined it. Chet Hendrickson (on C3) speculated, “It is possible we
started to call them ‘user’ as a nod to ‘Use Cases’ and to differentiate them from ‘tech-
nical’ stories. We had not yet discovered the evil that is technical stories.”

https://less.works For Gene Gendel only, id:gene-gendel



225

Organizing and Managing

teams—had split many big items into many smaller items and ana-
lyzed (and documented) them all in detail. Waterfall ‘Scrum.’

Returning to the original story…In contrast to the group in Poland,
the BitTorrent-story Product Owner realized that not only could the
‘decrypt’ item be deferred for implementation, it could be deferred
for requirements analysis. The wastes of overprocessing and more
WIP inventory of detailed requirements could be avoided by lower-
ing the sub-item’s priority.

This is an important shift in product-management mindset and
behavior; traditionally, product management would have pushed a
large batch of coarse-grained requirements onto the R&D work
queue for implementation, and not be involved in finer-grained
investment, splitting, or decision making.

Avoid…Defect items in the Product Backlog—unless few

See
“Try…Avoid… 
Fixing defects” 
on p. 169.

A standard suggestion in Scrum is to record customer-reported
defects as PBIs. Excellent advice when there are only 10 defects; but
when there are 7214 defects, forget it. The latter case is unfortu-
nately typical for long-lived embedded-software systems. Then, use
a separate defect-tracking system.

Try…Add a sin-
gle placeholder 
PBI for all 
defects—when 
many

On the other hand, out of sight, out of mind; these defects and their
estimated effort should be visible to the Product Owner so that he
understands the defect situation and responds. Some of our clients
make coarse-grained placeholder PBIs at the top of the backlog, such
as “1000+ category-A defects,” “3000+ category-B defects” and so
forth, each with an overall estimate.

From a lean thinking perspective, Stop and Fix, the product should
never have gotten to 7214 defects…but…it happens. Large-product
groups commonly move to Scrum many years after formation.

Try…“Undone Work” and system-level NFRs as PBIs

See
“Avoid…Undone 
Work” on p. 173.

Assume that a system should start up within five seconds. The work
and proof involves at least a team writing and deploying acceptance
tests. And possibly they are also doing performance-tuning work to

https://less.works For Gene Gendel only, id:gene-gendel



226

7 — Requirements & PBIs

achieve the goal, if not already met. Record this, and all system-level
non-functional requirements (NFRs) as PBIs.9

And there may be Undone Work10 such as educating the sales people
or license reviews. Record Undone Work as PBIs.

Avoid…Try…Separate “Undone Work” from the Product Backlog

It might not yet be feasible to include the teams in the Undone
Work… or it might not be feasible to include them in all of it. Where
do you put the Undone Work then?

See
“Try…Include 
Scrum teams in 
a Release Sprint” 
on p. 175.

Avoid separating it, and keep it on the Product Backlog (as sug-
gested in the prior experiment)… because that increases the visibil-
ity towards the Product Owner, and otherwise there is the problem
of “out of sight, out of mind.” He can keep track of all the Undone
Work and that helps him to make release decisions. This also pro-
motes teams getting involved with the clearly-visible Undone Work,
and learning from the experience. Finally, definitely avoid separat-
ing it if there is no Undone Unit and the regular teams eventually
do this work, such as in a Release Sprint.

Try separating it from the Product Backlog (when there is an
Undone Unit)... because an Undone Unit does not work off the back-
log or apply Scrum—there is no such thing as an Undone Unit
Scrum; for example, a so-called test team Scrum is a contradiction in
terms. And by separating the Undone Work it is independently man-
aged by the Undone Unit (as a traditional project or however they
work) and they provide the Product Owner with a duration esti-
mate. In that way, the Product Owner can still decide on release
dates. Keeping the Undone Work separate can help during the early
days of agile adoption as it does not require immediate change from
the existing Undone Unit. Finally, putting release-2 Undone Work in

9.  Some use the term NFR to mean all requirements and tasks other 
than functional goals; for instance, including educating sales staff. 
We limit the term to qualities of the system, such as stability.

10. In Scrum, Undone Work is the difference between Sprint Definition 
of Done and Release Done. The perfection challenge in Scrum: no 
difference and therefore no Undone Work.

https://less.works For Gene Gendel only, id:gene-gendel



227

Organizing and Managing

the Product Backlog can be confusing when the teams have already
moved on to work for release-3. 

Of course, neither way of handling the Undone Work solves the prob-
lems that an Undone Unit creates. Risk and delay are hidden in the
Undone Work and it will (eventually) generate feedback that will
interrupt the teams—and that will impact focus and productivity,
and increase friction between groups.

Try…Genuine research work as PBIs

See “Try…Plan 
bounded 
research or 
learning items” 
on p. 166.

Some extraordinary things need unusual research before implemen-
tation. One of our clients built a financial trading system that
involved choosing third-party software, integrating it, and also
developing software in-house. The work to identify some candidate
software should be identified as a research item PBI. 

Moving up the innovation scale: One of our clients develops ship-
control systems. How to apply artificial intelligence to increase their
autonomy? Perhaps a research PBI is needed. Another example:
Someday, version 2.0 of the PDF standard will be released; printer
engines need to interpret it. Teams will need to digest at least some
non-trivial information before they can start some implementation.
Another research PBI.

Moving from recording research items to doing them: Doing
research should lead to recording new customer-centric items.

For example, rather than studying in depth a 500-page document of
the next PDF specification,11 people can 

In the end, the only way to ‘manage’ the Undone Work 
is to not have any—by expanding the Definition of Done.

Focus research work on useful output for the Product Owner, especially
identifying new PBIs. Limit study; quickly prototype and implement.

https://less.works For Gene Gendel only, id:gene-gendel



228

7 — Requirements & PBIs

1. identify large sections that can be studied in detail later

2. study only a smaller subset in detail

3. create new customer-centric PBIs; prototype; …

4. start implementation

Try…Research items quickly lead to customer-centric PBIs

This suggestion expands a point made in the prior one. When a
research item is worked on, it should yield useful results for the
Product Owner, especially the identification of new customer-centric
PBIs for the backlog. It is not necessary to read all 500 pages of the
new PDF specification before identifying some useful new features.

Avoid…Fake research items: regular analysis, …

Avoid…Giving 
research items to 
separate
‘research’ groups

We coached a group in the USA that included a team of interaction
designers. They resisted becoming bona fide full-time members of
regular Scrum teams; they wanted to do “their interaction design
work” separately and hand it off to the Scrum teams when finished.
When they heard about the idea of research items in Scrum, they
said, “Great! We will do the interaction design research work, and
then deliver it to the teams.” That is not research.

More not-research is deciding on and documenting a design solution.

All this is fake research—merely normal exploration and discovery.
Avoid that. A research item is for truly extraordinary discovery or
study far outside the familiar. 

Finally, avoid giving research items to separate ‘research’ teams;
research is done by normal Scrum teams, not separate groups.

11. Printer-product companies write software to interpret PDF.

https://less.works For Gene Gendel only, id:gene-gendel



229

Organizing and Managing

Try…Visual management for the Product or Release Backlog

Visualize the Product or
Release Backlog, probably on a
wall with tangible cards. (See
also the Toyota Big Room topic-
box.)

The photo does not show it well,
but this Release Backlog used
color papers to signify items
that were added after initial
backlog refinement. This was
helpful so that the Product
Owner could see the changes.

Try…Traceability with executable requirements as tests

See “Try…Accep-
tance test-driven 
development” on 
p. 42.

When traceability of requirements is truly needed, cut the Gordian
knot on this problem by originally writing the requirements as exe-
cutable tests rather than in a natural language (such as English).

Try…Organize requirement artifacts to include…

Figure 7.1 illustrates sample requirement artifacts and relation-
ships. This figure assumes wiki pages.

Toyota Big Room and Visual Management of a Release

In Toyota, in the Big Room (obeya) where the
chief entrepreneurial engineer sits and meets
with others, they use a variety of visual tools to
show new-vehicle release progress. The walls
are covered with big visible charts, color tokens
to signal status, and more. 

https://less.works For Gene Gendel only, id:gene-gendel



230

7 — Requirements & PBIs

Figure 7.1 artifacts

Product page—a product-portal page that, among other things,
points to release pages.

Release page—a portal to information of one release, including

! Vision page—a summary of the release business case, probable
high-level FURPS+ analysis (see topic-box), and more.

! System-level Non-Functional Requirements12 (NFR) Overview
page—a summary of system-level NFRs and constraints to help

Product
(wiki) Page

(current)
Release N Page

Release N+1 
Page

Vision Page

FURPS+

System Non-Functional 
Requirements (NFR) 

Overview Page

URPS+ Main Scenario
1. ...
2. ...

activity 2

activity 1

item-level
functional + NFR
acceptance tests

Item    Wiki 
           Link

A          ...

NFR-1  ...
 -------------- 
C          ...

D          ...

Product
Backlog

Item A Page

FURPS+

Release N

Release N+1

system-level NFR 
acceptance tests

Item NFR-1 Page

URPS+

item-level NFR
acceptance tests

. . .

12. For good reason, some dislike the terms “functional” and “non-func-
tional” requirements [BCK98], but they are very widely used. We 
are using these terms for familiarity, rather than our agreement.

https://less.works For Gene Gendel only, id:gene-gendel



231

Organizing and Managing

people grasp the big picture. Some details may be expressed as
acceptance tests. This material surveys probable “URPS+”
qualities and constraints of the system. 

A Vision and System-level NFR Overview are speculative overviews.
As high-level tools for envisioning or learning they are useful, but

Agile implies responding to change over following a plan. With re-
prioritization of items each iteration, there is no guarantee of fol-
lowing an early Vision or System-level NFR Overview.

Try…FURPS+

Whatever requirement approach is taken, from user stories to acceptance tests to
use cases, it is easy to miss stuff—often ‘non-functional’ stuff—when hundreds of
people are involved. Want a technique to miss less? Try remembering and teach-
ing other people to remember FURPS+ [Grady92, Larman04a], a simple, easily
remembered mnemonic with the following meaning: 

Use FURPS+ as a mental checklist. Apply it when analyzing the system or any
item—when writing acceptance tests, writing a use-case text, drawing a diagram.

• Functional—features, capabilities, 
security.

• Usability—human factors, help, 
documentation.

• Reliability—frequency of failure, 
recoverability, availability, predict-
ability.

• Performance—response, through-
put, accuracy, resource usage.

• Supportability—adaptability, 
maintainability, internationaliza-
tion, configurability.

The “+” in FURPS+ indicates ancil-
lary and subfactors, such as:
• Implementation—resource limita-

tions, languages, tools, hardware …
• Interface—constraints imposed by 

interfacing with external systems.
• Operations—system management 

in its operational setting.
• Packaging—for example, a physical 

box.
• Legal—licensing and so forth.

https://less.works For Gene Gendel only, id:gene-gendel



232

7 — Requirements & PBIs

they are not the list of requirements. They serve as inspiration for
the Product Backlog items and item pages.

Item page—a portal to the details for a specific item (functional or
NFR) in the Product Backlog. It may point onwards to anything
deemed useful for elaboration: use-case text wiki pages, photos of
activity diagrams, acceptance-test pages, ancestor items.

Avoid…‘Solving’ requirement problems with a documented 
meta-model

A requirements meta-model describes types of requirements and
their relationships. For instance: a feature is described by use cases,
and so on. This topic seldom comes up in small groups where there is
little time or money for waste. In big groups with process engineers
or document-writing quality managers, it is different…

We were invited to a meeting on how a group could better “manage
the requirements.” It devolved into discussions by the managers on
their existing requirements meta-model and proposals for a new
one. No one in the room was involved in the hands-on development
work—including us. But we had spent time applying Go See, and
knew there were deep problems at the team level where the real
work was being done—isolated specialists, handoff, ‘requirements’
that were technical tasks. We suggested that they could not solve
their problems with a new model…to no avail. Months later, they
had a new documented meta-model. But nothing had changed.

This behavior is part of a pattern in organizational waste. It starts
with these steps:

1. A writer writes a document for policy-X. 

2. People do not read the document. 

3. People do not follow the policy.

In Scrum, the Product Backlog lists the real
product requirements, not other documents.

https://less.works For Gene Gendel only, id:gene-gendel



233

Organizing and Managing

Upon observing the situation, what does the policy writer do?
Rewrite or add more documents for policy-X! There is no Go See
behavior; rather than going to the real place of work and inquiring
with Five Whys, there is the assumption that documents are the
problem and documents are the solution.

Avoid…A complex requirements meta-model

A requirements meta-model has its uses. For instance, when some-
one asks, “What are the epics?” or “What are the user stories in this
epic?” people need common understanding of these words and their
relationship. This is especially helpful in a group adopting new ideas
and terminology, such as agile development. However, the model
should be so simple that it does not need a document—people should
be able to grasp it quickly. 

Avoid…Describing a simple meta-model in a complex way

We have been involved in relatively complex (several thousand peo-
ple, hardware and software) products and never did the group need
a UML diagram or document for their requirements meta-model.

If diagrams or documents are created for what should be a simple
meta-model—these days for an “agile requirements meta-model”—
there may be a deeper problem. What might that be?

! The model is too complex. 

! It is simple, but people do not take the time to learn even sim-
ple ideas, so the ‘solution’ is to document the meta-model.

! It is simple, but there are people who fill time creating unnec-
essary documentation, either because they believe it solves real
development problems, or they only do overhead work.

– this is often process engineers or quality managers

Michikazu Tanaka, a student of Taiichi Ohno, said of his teacher:

[One characteristic of Ohno] was his dislike of written material.
He wanted us not to waste time producing useless documenta-
tion. He insisted that we could convey information better by

https://less.works For Gene Gendel only, id:gene-gendel



234

7 — Requirements & PBIs

showing people the workplace than by turning out documents.
[SF09]

The tenth agile principle: Simplicity—the art of maximizing the
amount of work not done—is essential. This suggestion does not
mean to avoid a clear meta-model; it is to avoid waste and focus on
simplicity and the real work.

Especially in large groups, there are myriad examples of waste when
more process-related documentation is introduced. For instance, at
one of our clients adopting Scrum, an “agile requirements meta-
model” was formally introduced with a diagram to describe…a fea-
ture is composed of epics, and an epic is composed of stories. Some
months later we were coaching at one of their sites in India and we
discovered the management had now introduced two backlogs:
There was a Feature Backlog and a Product Backlog! (We’re still
waiting for the Epic Backlog.) When we asked why, they explained it
was because of their new ‘agile’ meta-model. Now there was more
waste of information scatter and more complexity, but even worse,
behaviors, roles, and responsibilities had changed: In this relatively
small group, one person was responsible for the Feature Backlog,
and another for the Product Backlog…they were going back toward
old traditional habits, just dressed up with new agile terminology.

Their real problem relates to lack of learning and careful thinking.

TEAM ORGANIZATION

Cross-functional teams were explored in the companion book. The
following is reiteration—on purpose, because we noticed the follow-
ing change needs to be stated explicitly…

Avoid…Separate analysis or specialist groups

Avoid…Separate 
systems-engi-
neering group

Big traditional development has separate analysis groups—the busi-
ness analyst team, the interaction design team, the architecture
team, the systems engineering team, the requirements engineering
team, and more. When the organization moves to Scrum, a typical
response among these groups is “We understand that cross-func-

https://less.works For Gene Gendel only, id:gene-gendel



235

Team Organization

tional teams are for them and them, but of course not for us!” Yes
they are. 

Avoid…Separate 
interaction 
design group

Or, we are asked, “How do we do Scrum in the [analysis/architec-
ture/systems-engineering/interaction design, …] team?” You don’t. 

The proper question flips: Rather than, “How do we do Scrum in the
analysis team?” it becomes, “How do we do analysis in Scrum?”

see Teams and 
Feature Teams in 
companion

All these separate groups dissolve and members disperse into real
cross-functional Scrum teams doing hands-on development work.

Avoid ‘fake’ team members—We visit customers where someone—
usually an analyst, interaction designer, architect, or documentation
person—says, “Oh yes, I’m a member of the Scrum team!” What this
really means is that they visit seven different teams, collect a queue
of work requests from them, do their special work, and then hand off
the results back to the waiting teams. Stay clear of that.

Avoid…Separate 
architecture 
group

Another version of fake team member is a person allegedly on the
team but separately analyzing for the next iteration…“Sanjit is the
analyst on our Scrum team. He’s busy figuring out and writing the
specs for the next Sprint.”

Avoid…Fake 
team members

In the case of separate analysis groups or ‘fake’ team members,
there is handoff from that separate group or person to the Scrum
team, iteration by iteration (Figure 7.2). Not a good idea.

Figure 7.2 avoid 
separate analysis 
groups and fake 
team members that 
hand off 
requirements

iteration 1 iteration 2

Scrum team

iteration 3

analysts,
architects,
interaction designers, 
system engineers

iteration 1 iteration 2 iteration 3

https://less.works For Gene Gendel only, id:gene-gendel



236

7 — Requirements & PBIs

Avoid…Product Owner Team as separate analysis group

See “Avoid…Too 
‘inward’ product 
management & 
Product Owners” 
on p. 124.

The Product Owner or Product Owner Team is focused outward, on
customer analysis, marketing, branding, and so on—solid product
management. If the majority of their time is spent on inward activi-
ties such writing specifications and then handing them off to the
Scrum teams, there is the waste of handoff and mini-waterfalls, and
the Product Owner is not sufficiently outward-oriented. 

People with skills in business or requirements analysis are meant to
be part of the normal cross-functional teams in Scrum, not part of
the Product Owner Team. The regular teams (that contain analysts,
UI designers, architects, and system engineers) are deeply involved
in this work—usually during ongoing Product Backlog refinement—
in collaboration with guidance from an outward-focused product-
management “Product Owner Team.”

ANALYZING AND MODELING

Try…Write customer-centric requirements (PBIs)

Items on the Product Backlog should be requirements in the domain
of the customer or user—addressing their needs, in their language,
and of value to them.13

This reflects the first agile principle, Our highest priority is to satisfy
the customer through early and continuous delivery of valuable soft-
ware—lean thinking, and avoiding sub-optimizing on secondary
goals such as the work or convenience of particular teams. This sug-
gestion seems obvious—even trivial—but a recurrent problem we
see in large, multisite, or offshore development is that it is not fol-
lowed. In big groups, people become increasingly isolated from real

Test of a good Product Backlog? 
Your customers immediately understand every item.

13. One exception in Scrum is major internal improvement goals.

https://less.works For Gene Gendel only, id:gene-gendel



237

Analyzing and Modeling

customers and absorbed in their technologies because (1) sites are
added or moved, (2) people are organized into component teams that
only see work focused on their component, and (3) it is hard to grasp
an overview of a giant system.

Avoid…Technical task ‘requirements’ (PBIs)

During coaching we see “technical user stories” such as, As a systems
engineer, I want an interface for X… This “user story” is a contradic-
tion in terms, and in reality is a technical task. The point of user sto-
ries is that they are for users. This contradiction is a sign of phony
‘requirements’ that do not belong in the Product Backlog. 

We also see tasks in the Product Backlog when groups are organized
into component teams rather than feature teams. No one team does
complete ‘vertical’ customer-value work; the goal is split into techni-
cal tasks across teams. For example, if there is a UI and DB team, a
‘fake’ requirement (a task) will be appear in some guise such as

As the UI Team, we want the database to have a RECIPIENT table
with a SECOND-ADDRESS… The UI Team is not a real user, and
this has been written to coordinate tasks with the DB team. 

As the DB Team, we want the database… 

As a Shipper, I want the database…

Another variation is a technical task added simply to fulfill a cus-
tomer requirement. For instance, at a client in Singapore, we saw
the following prioritized Product Backlog:

1. change ProductB APIs so that ProductA can integrate with it

2. ProductA works with ProductB

Item-1 is a technical task, not a customer-centric requirement or
goal. Item-2 does properly belongs in the Product Backlog, but item-
1 should be removed. Later, as a task it might appear in a Sprint
Backlog when a team works on the customer-centric goal “ProductA
works with ProductB.”

https://less.works For Gene Gendel only, id:gene-gendel



238

7 — Requirements & PBIs

see the discus-
sion of compo-
nent teams in the 
Feature Teams 
chapter of the 
companion book

Avoid…Technical task PBIs in team-level “Product Backlogs”

Another situation we see: inappropriate technical tasks as PBIs…

Usually in Scrum there is one Product Backlog for the product—
regardless of the number of teams—so that the focus is on overall
product goals and avoidance of sub-optimization at the team level.
Large groups beginning Scrum adoption sometimes ignore this and
create a “product backlog” for each existing traditional (often single-
function or component) group because “then you don’t have to
change much” when adopting Scrum. Said another way, rather than
an organizational redesign toward a flow of value to the customer
implied by adopting real Scrum teams (that do end-to-end customer-
centric requirements), some groups adopt Scrum terms while keep-
ing the old structure—with the old limited value throughput.

Then, the existing single-function and component teams remain,
each doing only part of the overall customer feature. Each has its
own “product backlog.” Teams (usually via managers) coordinate
work by placing technical tasks on the so-called product backlogs of
other teams.

The result is a continuation of traditional development, with essen-
tially the same levels of handoff, WIP, delay, and coordination and
integration problems, all merely overlaid with ‘agile’ terminology. 

Try…Ask, “Would users understand every PBI?”

As a thought experiment to determine if inappropriate technical
tasks have been weeded out of the Product Backlog, ask, “If we show
the Product Backlog to real users or customers, will they understand
and relate to every item?”

Try…Prefer goal-oriented over solution-oriented requirements

A large package-shipping service in Europe is adopting Scrum. They
had complaints about usability at their website, and considered
writing a requirement as follows:

https://less.works For Gene Gendel only, id:gene-gendel



239

Analyzing and Modeling

As a Shipper, I want all the shipping option details on one webpage
so that I can find information faster.

This is a solution-oriented requirement that presumes a solution to
the problem. Stay away from those. Rather, prefer goal-oriented
requirements, such as this:

As a Shipper, I want to find critical shipping information fast
so that I have more free time.

see Teams chap-
ter in the com-
panion, for 
motivation dis-
cussion

In this form, the solution is unconstrained (or at least, low-con-
strained) and the team can do whatever to satisfy the goal. This is a
desirable, powerful way of working with teams because it increases
creative freedom. Who knows?—the final team solution may be bet-
ter or cheaper than one pre-specified, and motivation increases.

Sometimes pure goal-oriented requirements are not possible; there
can be constraints on requirements or solutions. For example, a cus-
tomer does not actually want an oil-well testing tool or a printer or a
webpage. They want subsurface reservoir extraction design (actually,
they want…money) or a paper printout or shipping information—
and if magic could solve their problem, they would be happy. But
these days, documents are in PDF format and printed via printers—
and there’s a short supply of magic. Solutions such as PDF (a stan-
dard created by engineers) and printers have entered the customer
domain, and then the customer says, “My requirement is a printer
that prints PDF documents.” This is a requirement in the context of
certain constraints—that there are standards and hardware for
printing. In fact, even paper printout is usually a constrained
requirement or solution to a deeper goal, such as “communicate
financial results to shareholders” (perhaps a deeper constraint is
that shareholders want a familiar old-style paper report). In reality,
‘requirements’ exist along a continuum from “more goal-oriented
and unconstrained” to “more solution-oriented and constrained.”

As far as possible, aim to write minimally-constrained goal-oriented
requirement statements. Because…

“If you tell people where to go, but not how to get there, you will
be amazed at the results.” — General George S. Patton

https://less.works For Gene Gendel only, id:gene-gendel



240

7 — Requirements & PBIs

A precondition for successfully using goal-oriented items is that the
goal and conditions of satisfaction are crystal clear.14 Words such as
critical and fast require quantification and clear acceptance tests for
this to work.

Try…Requirements workshops

Workshops reduce the waste of handoff and increase collaboration
and feedback within and between teams in multiteam development.
Experiment with holding requirements workshops with the teams
and Product Owner (or representatives). 

I (Craig here) have been involved in facilitating these since the early
1980s, because an early version called the Joint Application Devel-
opment (JAD) workshop [WS95] was created and popularized in
Canada,15 where I used to work. On reflection over these years, the
essential elements of a good workshop boil down to

! a formally designated facilitator who knows how to guide, and
knows tools for creativity, modeling, information organization,
and group decision making

! people with varied perspectives and skills, people who are sub-
ject matter experts, people empowered to make tough decisions

Requirement workshops are useful in these cases:

See “Try…Initial 
Product Backlog 
refinement work-
shop” on p. 158.

! for a vision workshop to evolve and communicate the high-level
big picture for overall product release

! for a detailed requirements workshop after a vision workshop

! for Product Backlog refinement each iteration

14. Supporting techniques for clear measurable goals include accep-
tance TDD and goal statements in Planguage [Gilb05, Larman03].

15. Requirement workshops extend back to at least 1977 with Chuck 
Morris at IBM Milwaukee, inspired by the book How to Make Meet-
ings Work [SD76]. In 1979, Tony Crawford at IBM Toronto worked 
with Morris to formalize and popularize this as JAD workshops.

https://less.works For Gene Gendel only, id:gene-gendel



241

Analyzing and Modeling

Figure 7.3 timing of 
requirement 
workshops

Durations—When Scrum is applied to small products, a vision work-
shop or detailed requirements workshop during initial Product Back-
log refinement may take less than a day. When a complex embedded
system, such as a new medical device or printer, is the product,
these workshops will take longer; we suggest “two days to two
weeks, with a preference to the shorter.”

Overview—Avoid looking at computer projections, PowerPoint pre-
sentations, and so forth. Do not sit around tables passively listening
to a speaker. One workshop saying is “If you’re not at the wall or on
the floor, there’s something wrong.” 

Avoid…Using 
computers in 
workshops

Encourage activities rather than large-group discussion or presenta-
tion, and organize these at whiteboards, flip charts, and the like. 

People sitting at tables is often a sign of a dead workshop, but table
work has its time and place, especially when the focus is on actions
rather listening or watching, as suggested in Figure 7.4.

Techniques—This section shares techniques for workshops. It is a
sample of a subject that facilitators need to study in depth. Scrum-
Masters should learn these skills and coach others in them.

! Visioning—Try building a Product Box. People create the
cover advertising of a product box, imagining that the box and
contents will be sold in a store. For similar activities see Inno-
vation Games [Hohmann06].

requirements workshop
for next iteration, 
Product Backlog refinement

iteration 1 (2 weeks) iteration 2

. . .

requirements workshop
for release vision, 
initial Product Backlog 
refinement

https://less.works For Gene Gendel only, id:gene-gendel



242

7 — Requirements & PBIs

! Establishing common vocab-
ulary and concepts—Try
sketching a domain model at a
whiteboard [Larman04a].

! Generating ideas (such as
features or constraints)—Try
brain writing in which many
people (separately or in pairs)
write ideas, one per card or
small piece of paper.

Figure 7.4 brain 
writing requirements 
during a multiteam 
joint requirements 
workshop; affinity 
clustering on the 
floor; mind map at 
wall

! Grouping and organizing ideas—Try affinity clustering the
brain-written cards: Cards are shuffled on the floor into fami-
lies. Try mind mapping [Buzan96]: The cards on the floor have
their information organized onto a mind map at the wall. The
mind map can then further evolve.

! Clarify and specify with examples—See “Try…Specifica-
tion by example—usually in tables” section on page 245.

Avoid…A large 
queue of well-
analyzed, fine-
grained PBIs

Try…Maintain only a small queue of fine-grained PBIs

Figure 7.5 illustrates how to do evolutionary PBI refinement in
Scrum. Keep only a small queue (a WIP inventory) of clearly ana-
lyzed, finely split, prioritized items. This reduces overprocessing and
supports the benefits of small queues, explored in Queueing Theory
in the companion book.

https://less.works For Gene Gendel only, id:gene-gendel



243

Analyzing and Modeling

Figure 7.5 refine 
the backlog 
incrementally

How to do this ongoing refinement each iteration? …

Try…Requirements workshops for Product Backlog refinement

Experiment with requirements workshops for refinement, with the
team(s) and Product Owner or representatives. Try them half way
through each iteration so that people have time to resolve discovered
issues (such as clarification) before the next iteration.

Refinement involves splitting, detailed analysis, estimation, and pri-
oritization. The next section is a workshop story focused only on
splitting and detailed analysis activities. It is an example from our
coaching, not a recipe. It assumes a single-team case; the subse-
quent suggestion shares multiteam tips.

Ideally, the setting is the team room itself.

1. Group identifies some big or vaguely analyzed items that are
worth refining. A well-prepared Product Owner identifies some
of these before the workshop. To avoid computers, the Product
Owner brings desired items written on cards, or the workshop
starts with card writing. 

2. Apply diverge-merge cycles for splitting and/or analysis…

Clear-Fine Items
1. ---
2. ---
3. ---
4. ---

Vague-Coarse Items
------------------
---------------
----------------------
------------
-------------------------
--------------------
------------------

Backlog

priority queue of items for 
implemenation by teams

queue of items 
for refinement
that may move 
to the priority 

queue

Product
Backlog

refinement

Scrum Teams

https://less.works For Gene Gendel only, id:gene-gendel



244

7 — Requirements & PBIs

3. Diverge—Rather than all eight people discussing and modeling

the same item, diverge into two or more sub-groups (at least
two people per group) and work in parallel on different items.
Each sub-group is at a different wall of the workshop room,
with their own creativity tools. The Product Owner and other
subject matter experts do not belong to any group; they rotate
between groups, spending a few minutes at one area to clarify
and decide and then moving to the next group. 

– This approach increases the speed of analysis or splitting,
and smaller groups tend to engage everyone; in large groups
some people become passive and there is more analysis
paralysis owing to an overload of simultaneous issues.

4. Merge—Agile development is based on whole team together, not

sub-groups, so it is important for everyone to synchronize,
learn, and feed back. After 30 or 45 minutes of separate analy-
sis, people come together and review each sub-group’s work. We
usually do this as “show and tell” in which the team visits one
area, the sub-group presents their results, there are question
and answers, and input. This visit is usually finished within 15
minutes; then the team moves on to the next wall area. 

5. Diverge and merge repeatedly—The team repeats these cycles
multiple times until the items under refinement are suffi-
ciently clear.

see Lean Think-
ing in companion

– Set-based development and diverge-merge cycles—The lean
practice of set-based development can also be applied with
diverge-merge cycles. Instead of each sub-group working on

https://less.works For Gene Gendel only, id:gene-gendel



245

Analyzing and Modeling

a different item, each sub-group works in parallel on the
same item, while subject matter experts rotate across the
groups. This sparks more creative variation and accelerates
overall learning or discovery regarding an item.

Techniques—(1) Write examples (usually in tables) using pseudo-

code for executable acceptance tests, and then derive business rules,
on whiteboards. (2) Each group maintains an “issues and questions”
flip chart. (3) Ask for each item, “Have we considered FURPS+?” 

Wrap up and take away?—Abstractly, the workshop output is more
learning and shared understanding. Concretely, it is cards, flip
charts, and whiteboard sketches. If new split sub-items need adding
to a Product Backlog in spreadsheet format, the Product Owner
enters the information from the cards. Move the flip charts back to
the team area. Take digital photos and store them on a wiki page.

Try…Specification by example—usually in tables

See “Try…Accep-
tance test-driven 
development” on 
p. 42.

See “Example: 
Robot Frame-
work” on p. 83.

This idea reiterates the “Try…Use examples” section on page 50
(and other sections) in the Test chapter. Using examples (in a
requirements workshop) to clarify and communicate is not compli-
cated, but it is surprisingly rare in requirements practice. That is
unfortunate, because this is a wonderfully helpful technique, and
attractive to non-technical experts—as they quickly find it a famil-
iar, concrete way to help bridge the communication gap.

People are so used to discussing and writing specifications for the
general case, such as in use-case narratives, that the deeper dynam-
ics behind examples are not usually grasped until applied.

https://less.works For Gene Gendel only, id:gene-gendel



246

7 — Requirements & PBIs

Although any familiar or natural format for examples is acceptable,
prefer a table format when possible; tables can improve the ability to
understand information and see discrepancies or patterns.

And because several acceptance test-driven-development frame-
works (including FitNesse and Robot Framework) use tables, these
table examples easily map or distill to executable table tests.

The recommended reading Bridging the Communication Gap: Speci-
fication by Example and Agile Acceptance Testing explains more.

Figure 7.6 using 
examples to specify, 
in tables

Try…Joint requirement workshops

Multisite: See 
“Interaction & 
Coordination” on 
p. 423.

With true feature teams the
need for a requirement work-
shop that spans multiple
teams is reduced. Neverthe-
less, there are still times
when a joint workshop is
useful…

! when early visioning 

! when teams are working on related features with a common
theme or common ancestor

https://less.works For Gene Gendel only, id:gene-gendel



247

Analyzing and Modeling

The diverge-merge pattern supports scaling the workshop to multi-
ple teams; the sub-groups are slightly larger and more wall areas
are used. Since there are more sub-groups, ensure enough subject
matter experts (Product Owner or representatives) rotating across
the groups to avoid a group being blocked too long without answers.
We have facilitated up to 50 people effectively in one workshop with
this approach.

See
“Avoid…‘Opti-
mizing’ the 
requirements 
workshop” on 
p. 51.

As with any workshop, this one may include all members of all
teams that want to attend, or if that is impossible because of overall
size, then team representatives—although avoid that if possible to
avoid handoff waste and information scatter. Figure 7.4 illustrates a
joint workshop with representatives from a big development group.

Try…Stop refining an item once it is fully INVESTed

When is an item refined enough to implement in an iteration? Apply
the INVEST test. Bill Wake [Wake03a] advocated that as items—he
was referring to user stories—are incrementally refined, they ulti-
mately have the INVEST qualities before development…

Independent: The item’s implementation order does not depend on
others—desirable but not always achievable, especially for small
items split from big ones. Negotiable: A user story is not a fixed
contract; through conversation a new or simpler definition of accep-
tance may arise. Valuable: A user story has identifiable value to the
customer. Estimatable: The item is clear enough that the team has
confidence that the estimate is not a complete fantasy. Small: Can
meet the Definition of Done within a third or quarter of an iteration
by the whole team working together.16 Testable: The definition of
acceptance is clear and can be verified with automated tests.

Try…Split Product Backlog items (such as stories)

“We cannot possibly fit our requirements into two-week iterations,
and there is no way they can be made smaller.” In response to this,

16. Normally, Scrum suggests even smaller items, but for the originally 
massive requirements for embedded-software systems, that is not 
usually desirable because of the overhead cost of so much splitting.

https://less.works For Gene Gendel only, id:gene-gendel



248

7 — Requirements & PBIs

we usually invite the person to tell us their largest, most impossible
item that could never be split into small customer-oriented items,
and together at a whiteboard we split it. 

Splitting Overview

This tip spans many pages because there are multiple aspects to
splitting, with differing trade-offs. “We have big requirements. What
do we do?” and “How do you split big requirements?” are two of the
most common questions we get. Plenty of examples help…

Why split?

! Small items increase control and visibility for the Product
Owner. Release goals and customer ‘promises’ are typically
made on huge items, but these consist of sub-items with differ-
ent priority that can—and should—be considered separately.

! Customer-centric ‘vertical’ splitting helps divide and parallel-
ize valuable work over multiple teams. 

see the Feature 
Teams Primer 
chapter

– In traditional large development, splitting is also done, but
into technical tasks for separate teams. The splitting is along
‘horizontal’ architectural or component lines. Each task is
not independently customer-centric, and there is a long
delay before the tasks across the components and teams are
integrated to finally deliver a valuable ‘vertical’ feature. 

! In Scrum, items chosen for implementation should be small.
See Queueing Theory in the companion book for some of the
justification of implementing small similar-sized requirements.

! Splitting supports evolutionary analysis and development. 

– identify smaller items within bigger ones that are worth
analyzing and implementing soon, versus parts that can be
done later—or never

For every requirement of every size and type—even those 
involving hundreds of people for many months—we have been able 
to split it into small customer-oriented items. We often hear that 
some requirement cannot be split, but we have never seen one.

https://less.works For Gene Gendel only, id:gene-gendel



249

Analyzing and Modeling

– deliver quickly a minimal viable product of high-value items

– reduce wastes of over processing, WIP, and inventory

– build, integrate, and test smaller items early, increasing
feedback and attacking key risks 

When?—During (1) Product Backlog refinement workshops, (2)
Sprint Planning when an assumed-small item is discovered to be too
large, and (3) Sprint Planning when a previously unseen item is
offered. (This last case is ill-advised, due to increased variability.)

Who?—Team and Product Owner or represenatives.

Tools?—If the entire team is involved in splitting an item, sketch
the splitting on a whiteboard. Paper cards are also handy; write
each split item on a separate card (Figure 7.7).

Figure 7.7 tools for 
splitting items

Splitting Perspectives

The following table lists some splitting perspectives we have found
useful to help people learn how to split items. 

use case - the major work 
flows or cases of use

configu-
ration

- a varying configura-
tion, such as type of 
operating system

scenario - a specific sequence 
of steps within a use 
case

I/O
channel

- an input or output 
channel, such as GUI 
or command line

https://less.works For Gene Gendel only, id:gene-gendel



250

7 — Requirements & PBIs

This list could be simplified. For example, several perspectives are
specializations of type: type of I/O channel, type of operating system
(configuration), and so forth. That said, this fine-grained list is use-
ful for new practitioners because it highlights common categories
they do not—at first—identify.

How to use this list? Ask, “What <perspective> are there in this
item?” For instance, “What configurations are there?” or “What data
formats are there?” Examples are in a following section.

Try…Ask, “What 
benefit from 
splitting in this 
way?”

Alternative splittings for value and risk—There is not one cor-
rect splitting. Maybe an item could alternatively be split by scenar-
ios or configurations. How to decide? Use these guidelines:

! early ‘value’: (1) better return on investment, (2) better cost
reduction, (3) satisfaction of key customers, (4) alignment with
strategic objectives, (5) critical to minimal viable product

! early risk mitigation—business and technical risk

! the sub-items are better INVESTed (p. 247)

When splitting, understand the benefits of your strategy.

data
part

- the data has many 
elements; a subset 
may be useful

data
format

- XML, …

type - varying types or 
kinds of things, such 
as types of trades

role or
persona

- novice or power 
user, administrator or 
clerk, …

know-
ledge

- one sub-item is 
understood, but oth-
ers need learning

NFR - moderate vs. high 
throughput, with or 
without recovery, …

test
sub-

group

- many acceptance 
tests exist, fulfill 
some sub-group

opera-
tion

- a system operation, 
such as HTTP GET

scenario
step(s)

- one or more steps in 
a multi-step scenario

CRUD - create/retrieve/
update/delete use 
case or operation

integra-
tion

- the solution requires 
integration with an 
existing element

stub - a ‘fake’ implementa-
tion of something

https://less.works For Gene Gendel only, id:gene-gendel



251

Analyzing and Modeling

For example, suppose an investment bank wants to trade three types
of financial derivatives (futures, options, and swaps) on three
exchanges (Nymex, ICE, Globex). This can be first split by derivative
or by exchange.

Years ago, the development group implemented something else (very
different) that involved interaction with Nymex and ICE, but they
have never worked with Globex. Their experience is that all
exchange integration is slow and difficult, involving poor documen-
tation, inconsistencies, and reliance on third-party exchange pro-
grammers who are too busy to help. In short, they know that
integration with all the exchanges will be slow, surprising, and awk-
ward, and will involve coordination with others. And in addition,
Globex is a black hole of uncertainty.

The Product Owner has no derivative-type preference—not true, but
let’s pretend. Implementing for all exchanges will be slow, Globex is
unknown, and there are no short paths to early value delivery. Then,
solely by the principle of risk mitigation, the first-level splitting (and
priority) is by integration or I/O channel:

1. trade derivatives on Globex

2. trade derivatives on other exchanges

More realistically, the Product Owner first wants futures trading on
all exchanges, because that’s where the big money is—they hope!
Combining a strategy for risk mitigation and early value delivery:

1. Trade futures on Globex.

2. Trade futures on other exchanges.

3. Trade other derivatives on other exchanges.

Example: DHCP (Networking)

The first larger example is from the domain of networking: server-
side support for Dynamic Host Configuration Protocol (DHCP). Here
is the original item:

dhcp.17 As a Network User, I want DHCP server support18 so that I
can easily get a viable IP address and then use the network.

https://less.works For Gene Gendel only, id:gene-gendel



252

7 — Requirements & PBIs

Split by use case—DHCP support has several main use cases
related to the life cycle of IP address leases (obtaining, renewing,
releasing, …). The dhcp item can be split by use cases as follows,
expressed in user story format:

! dhcp.request. As a Network User, I want the server to handle
requesting an IP address so that I can easily get a viable IP
address and then use the network

! dhcp.renew. As a Network User, I want the server to handle
renewing an IP address so that I can easily keep using my
current IP address when its lease expires

! …and more

Why split this item by use case? 

! A use case delivers independent customer-centric value.

! The use cases have different value-delivery priority;
dhcp.request is critical to a minimal viable product, but the
other uses cases are not.

! Implementing a use case requires ‘vertical’ development, inte-
gration, and testing across many components, addressing
major risks: (1) delayed feedback or verification of large archi-
tectural decisions, and (2) delayed integration.

! Use cases are natural to this domain;19 DHCP documentation
is frequently organized by these use cases.

Common misunderstandings or misuse of use cases: We work with
many groups purportedly “doing use cases” in Scrum and see funda-
mental mistakes. Understand the following:

! Use cases are not diagrams. Use cases are text documents and
involve writing, not drawing.

17. Notice that the requirement IDs—such as dhcp or dhcp.request—are
informative, in contrast to a conventional legal numbering scheme 
such as 5, 5.1, or 5.1.1. Try this informative style.

18. Ideally, items do not indicate technical solutions such as ‘servers.’ 
However, DHCP is a standard that mandates a server and its behav-
ior; this is a constraint.

19. In fact, use cases were first used in telecommunications.

https://less.works For Gene Gendel only, id:gene-gendel



253

Analyzing and Modeling

! In big systems, some incorrectly write use cases for internal
elements of a system (where one element is the client of
another element). This is a significant misunderstanding and
misuse. Use cases are meant to be written from the external
view of true outside actors, such as a human or ‘robot’ that
makes a phone call. 

For example, this is a use case: it is text, and written from the view-
point of actors truly external to the overall system: 

Evolutionary and partial splitting—From a Scrum perspective
it is not necessary to split a big item into all its possible sub-items—
at least not all at once, and perhaps never. That creates the wastes
of overprocessing and inventory (of WIP requirements). 

In DHCP, the dhcp.request item is critical, but other parts are
optional. Therefore—usually during a Product Backlog refinement
workshop—you can split like this:

dhcp. As a Network User, I want DHCP server support so that I can
easily get any viable IP address and then use the network.

! dhcp.request. …I want the server to handle requesting an IP
address…

! dhcp.full-support. I want full DHCP support

Once dhcp.request is complete or near-complete, return to splitting
dhcp.full-support into a few other sub-items by the guiding princi-
ples of value and risk.20

Use Case: Request IP Address
Main Success Scenario:
1. Client broadcasts a discover message.
2. System (a DHCP server) responds with offer message for IP address.
3. Client sends a request message to confirm reservation. 
4. System responds with an ack message.
5. …

20. The splitting need not be binary into only one useful sub-item 
(dhcp.request) and one ‘full-support.’ Yet, split into only a few sub-
items rather than all sub-items.

https://less.works For Gene Gendel only, id:gene-gendel



254

7 — Requirements & PBIs

In short, evolutionary and partial splitting, over time. 

Placeholder sub-items for “everything else”: The sub-item dhcp.full-
support is a convenient placeholder that captures an estimate for
the remainder of the ancestor. 

Split by scenario—A use case is a set of success and failure sce-
narios—all the specific paths from start to finish. For instance, sev-
eral scenarios of dhcp.request:

! dhcp.request.success.main. …I want a viable IP address when
requesting an IP address and free ones are available…

! dhcp.request.fail.none free. …I want to receive an error message
when requesting an IP address and none are free…

! dhcp.request.other. Everything else.

In many cases, splitting by scenarios is desirable. Why?

! All benefits of use-case splitting apply to scenario splitting.

! We guess an average use case has 20 or more scenarios, so sce-
nario splitting dramatically reduces a big item into many much
smaller ones, leading to more flexibility and visibility for the
Product Owner in terms of fine-grained items.

! If the ancestor item is a use case, scenario splitting is natural
and simple.

In this case, the scenario item dhcp.request.success.main is worth
early identification and implementation: it is critical to a minimal
viable product and it allows early integration testing of existing
DHCP clients with this new server under development.

Split by I/O channel; alternative splittings—In the DHCP case
we worked on, the customer’s network elements supported both IP
over Ethernet, and IP over ATM (asynchronous transfer mode).

In a way, this is simple advice. Yet it is very different behavior
than traditional requirements engineering. Breaking the “big
analysis” habit demands coaching and follow-up.

https://less.works For Gene Gendel only, id:gene-gendel



255

Analyzing and Modeling

These are examples of different I/O channels, and implementing the
DHCP server involved different work for these two channels. 

So, an alternative splitting of the dhcp item by I/O channel is

! dhcp.ethernet. As a Network User/Device with Ethernet, I
want DHCP server support over Ethernet…

! dhcp.atm. As a Network User/Device with ATM, I want
DHCP server support over ATM…

Is this a useful way to split? The teams knew that implementing the
Ethernet case required no Ethernet-specific work; but there was
specific ATM work—though only minor tweaks once the basic server
was built. It was low-risk wrap-up work.

Since dhcp.ethernet does not represent distinct work (specifically for
Ethernet), it is not worthwhile identifying it as a distinct item. In
contrast, dchp.atm is meaningful. A better splitting:

! dhcp.request. handle requesting an IP address

! dhcp.full-support. provide full DHCP support

! dhcp.atm. As a Network User/Device with ATM, I want DHCP
server support over ATM…

Split by scenario or data part or type?—This next example
illustrates that a splitting may be classified under several perspec-
tives or a mixture thereof. The classification is not really important.

When an IP address is requested, two noteworthy cases are (1)
reserve and give the client any free address (the common case), and
(2) reserve and give the client a specific address that they provided.

By scenario—This can be classified as scenarios of the use-case item
dhcp.request:

! I want any viable IP address when requesting an IP address
and free ones are available…

! I want a specific IP address, X, when requesting an IP address
and X is available, so that I can control my identification

https://less.works For Gene Gendel only, id:gene-gendel



256

7 — Requirements & PBIs

By data part—The DHCP REQUEST message record that is sent to
a server contains many data elements (fields). One particular ele-
ment is either empty, implying any free address, or filled with an
address, implying a request for that one. From this perspective, this
is splitting by data part.

By type—More abstractly, this is about two types of addresses:
generic versus specific. From this perspective, it is splitting by type.

Split by simple success scenarios—In a use case, there is one
main success scenario. How to write an item for a simple scenario
that ignores all complexity or concerns?

! …as simple as possible, I want any viable IP address when
requesting an IP address and free ones are available…

Why do this? Early identification and implementation of simple suc-
cess scenarios quickly delivers something customer-centric. Also,
implementing this engenders “tracer bullet development” [HT99] in
which a “walking skeleton” of the system across various architec-
tural elements is designed and tested. This gives early feedback
about architecture and integration, addressing these risks. 

There is a risk: Have you seen a demo of a “happy path” to product
management, and the response is a variation of “Great! We’re nearly
finished.” There are still failure cases to handle—and in some sys-
tems, doing those is the major effort.

And, sometimes—especially in massive systems—the estimated
effort for even a simple success scenario is too high for the team to
implement within an iteration. For either of these cases, consider…

Split by simple failure scenarios—DHCP is not complicated; a
simple end-to-end success scenario can quickly be done by a team. In
contrast, we were involved in implementing the 3G telecom stan-
dard HSDPA (High-Speed Downlink Packet Access) in a Radio
Access Network. Even a simple success scenario was too much work.

The development team started the splitting by trying to simplify the
success scenario. They discussed

! Make an HSDPA call in the simplest possible network configu-
ration, ignoring all error cases.

https://less.works For Gene Gendel only, id:gene-gendel



257

Analyzing and Modeling

But they quickly discovered that even this was too much to do in the
first iteration. Thus, instead of looking at success scenarios, they
started splitting from a failure perspective—there are many in a
radio network. They first split for the simplest possible failure sce-
nario—no network connection—and then gradually worked down
the stack and the protocol, implementing more failure scenarios.
After two iterations, the cumulative failure scenarios had put
enough stuff in place for them to work on the simplest success sce-
nario. Then they could implement more complicated success scenar-
ios, and leave exotic failure cases until the end.

Why is this useful? By splitting on failure cases they gradually build
up functionality while still focusing on a customer perspective. Plus,
they are addressing some risks early, and increasing learning.

Split by operation—In this
context, operation or system
operation means exactly one
kind of computer message or
signal sent to a computer sys-
tem, requesting it to do some-
thing. The system sequence
diagram in this photo illus-
trates a scenario of DHCP and
shows two system operations:
discover and request. This
offers another way to split the
dhcp.request item:

! dhcp.request.opDiscover. Server handles discover operations

! dhcp.request.opRequest. Server handles request operations

Implementing only the customer-visible DHCP discover system
operation by itself does not deliver an end-to-end solution, because
request is also needed for the two-step scenario. However, it may
reduce risk or increase feedback while incrementally building up the
feature. The “potentially shippable” perfection challenge for each
iteration in Scrum does not imply that all items must be stand-alone
useful, although that is a very worthy goal.

https://less.works For Gene Gendel only, id:gene-gendel



258

7 — Requirements & PBIs

If risk were associated with discover or request, that could motivate
splitting by operation—in our experience not the case with DHCP. 

In contrast to discover, sometimes one system operation is indepen-
dently valuable as a customer solution. For instance, in the HTTP
protocol the GET operation is independently useful.

Split by CRUD—CRUD is the acronym for create, retrieve, update,
delete. When each CRUD case by itself is a set of complex scenarios,
then these four common cases are modeled and realized as four sep-
arate use cases, such as Create Account and Update Account.

On the other hand, when each case is simple and involves only one
signal to a computer system, these can be modeled and realized as
four system operations, such as the messages createAccount and
updateAccount.

Therefore, when you work on CRUD items, consider splitting by
operations or use cases. 

Recall: “Try…Defer or ignore implementation and analysis of sub-
items” section on page 223. Not all CRUD sub-items must be done.

Split by integration—There are open-source DHCP solutions.
Assume the plan is to use one and then modify it with some embel-
lishments—for instance, to improve scalability. Then, for example:

! dhcp.integrate. …Provide a DHCP server by integrating an
open-source solution

! dhcp.scaling. …DHCP server support with a mean-response
time (when 100 simultaneous requests) < 0.3 seconds…

It is inadvisable to embed a technical solution (such as, “by integrat-
ing with an open-source solution”) in requirements since they should
focus on ‘what’ rather than ‘how.’ But this is arguably a reasonable
exception because the Product Owner is involved in this key ROI
choice, and then the solution dominates how work is split.

Split by acceptance test sub-groups—Usually, an acceptance
test represents a splitting by a perspective already discussed, such
as splitting by scenario. Then, it is not useful to think about “split-

https://less.works For Gene Gendel only, id:gene-gendel



259

Analyzing and Modeling

ting by acceptance tests” as a distinct strategy. There are excep-
tions…

One of our customers was implementing DHCP and had found a
published public-domain document describing 74 acceptance tests.
For example, here is acceptance test TS-5.4 from the suite:

If the selected server is unable to satisfy the DHCP REQUEST mes-
sage (e.g., the requested network address has been allocated), the
server SHOULD respond with a dhcpTypeNack message.

This test represents a scenario; in fact, all the 74 tests represent
splittings by scenario, data part, and more. But the point in this
example is that the Product Owner may use the list as the organiz-
ing model for splitting; he may say, “Let’s identify a sub-group of
tests that ‘make sense together,’ and satisfy them as one item.” 

Example: Automated Derivatives-Trading Deal Capture (Finance)

Some of our work is with investment banks and energy-trading com-
panies. The following item represents a use case:

adtdc. As a Derivatives Trader, I want automated derivatives-trade
deal capture (ADTDC) so that I have more free time, there are less
errors, and the deal is processed faster.

This was then split by I/O channel because trading on exchanges
was more much more frequent than trading via a broker. Also,
implementing exchange trading first was more valuable:

! adtdc.exchange. …when trading via an exchange…

! adtdc.broker. …when trading via a broker…

There are several exchanges; Nymex was used most frequently, so
automating that was most valuable. Again, a split by I/O channel:

! adtdc.exchange.nymex …trading via Nymex …

! adtdc.exchange.other…trading via everything else…

There are several derivative types; futures were traded most and
generated the most profit. Split by type of derivative:

https://less.works For Gene Gendel only, id:gene-gendel



260

7 — Requirements & PBIs

! adtdc.exchange.nymex.futures …trading futures on Nymex…

! adtdc.exchange.nymex.other …trading everything else…

See “Try…Lots of 
stubs, plus 
dependency 
injection” on 
p. 318.

Split by stub—Another common and useful strategy is to split by
stubs21 for dependent elements. This is especially useful when the
dependent element is hardware or a remote service or remote compo-
nent needing network or inter-process communication. For embed-
ded-software systems, a stub is an invaluable tool to decouple from
hardware dependencies.

Our client (an energy company) has developers, and Nymex has
developers. To implement items for trading, our client had to ask
Nymex to make a software change on their side; Nymex software
was outside our client’s control. Our client had to wait months before
the change was ready. 

Introducing a local stub for Nymex solves several problems:

! reduction of the waste of waiting, since we can implement our
part of the solution with a stub

! ability to test our solution quickly and in isolation, without the
delays and setup complexities of remote communication

! our assumptions recorded in learning tests

Introducing a stub could delay integration with the real dependent
element if when the dependent was available, people still avoided
integrating with it. Delayed feedback—bad idea. But that is not jus-
tification to avoid local stubs, just to also integrate early. 

Therefore, split by stub:

! …trading futures on a stubbed Nymex…

21. A local stub is useful even when it is a simple fake component whose 
operations do little or nothing. We sometimes meet people who 
express a false dichotomy thinking about a stub: If it is not a perfect 
simulation, it is not useful and should not be done. Not true!

Stubs are good. Early integration is good. Do both.

https://less.works For Gene Gendel only, id:gene-gendel



261

Analyzing and Modeling

! …trading futures on real Nymex…

When splitting by stub, always include the complementary stub and
non-stub versions as two related items.

Split by I/O channel: API and GUI channels—An endemic prob-
lem in software development is that developers embed application or
functional logic in the GUI22 layer (or more broadly, UI layer) rather
than maintaining a separation of concerns and keeping the logic in a
distinct layer. We see this problem exacerbated in big, multisite, and
offshore groups because there is less concern for hiring master pro-
grammers, and no culture of coaching from masters.

This problem inhibits

! reuse of the logic when other UIs are introduced

! automated testing because one must test the functionality
through the GUI layer—difficult to write and to maintain

! test-driven development because of slow test cycles

All this can be solved by applying the guideline that whenever an
item involves a GUI, split by I/O channel with a version that uses a
non-GUI API, and a version that uses the GUI. For instance:

! …when trading futures, via an API

! …when trading futures, via a GUI

When splitting this way, always include the complementary API and
GUI versions as two related items.

Implement the API version first. This will require the development
team to implement the application logic in non-GUI layers and com-
ponents, and enable simple fully automated testing of the function-
ality via the API (rather than via GUI testing).

22. For instance, a browser or Java Swing client. There are, by the way, 
solutions so that browser-hosted JavaScript can be organized into 
separate UI and application-logic layers, and developed/tested sepa-
rately. Probably the most well-known is Google Web Toolkit.

https://less.works For Gene Gendel only, id:gene-gendel



262

7 — Requirements & PBIs

Notice that the benefit is related to maintenance and development
speed rather than the immediate concerns of the derivatives trader.
Not doing this will become a concern to business people when devel-
opment becomes slower and slower because of bad engineering.

Split by NFR—Reducing the interaction steps, complexity, and pos-
sibility for errors is important when the user is a derivatives trader,
whose per-minute profit or loss capacity exceeds most of our incomes
in a lifetime. It is great if we can automate the deal capture; it is
even more valuable if we can make the solution extremely usable. As
with most non-functional requirements, ‘usability’ is not binary but
relative; it can be measured and improved over time. 

Most NFRs can be split to gradually improve things. For instance:

! …I want deal capture when trading futures on Nymex, with
90% of standard deals complete in 60 seconds

! …I want deal capture when trading futures on Nymex, with
90% of standard deals complete in 30 seconds

Example: Automation of a manual printing process (Commercial Printing)

One of our clients creates solutions that help print operators who do
large-volume customized printing (such as marketing leaflets). Print
operators set up print jobs that have page templates in which vari-
able data (such as customer names or photos) is inserted uniquely
on each page. This can involve manual steps.

One of the original items represented splitting by use case:

handleVariableData. As a Print Operator, I want automated prepa-
ration and processing of variable data, to have more free time and
fewer errors.

Split by scenario step—Often, splitting by scenario step delays
delivering value because (usually) all steps must be implemented.
But in the case of automating an existing manual process, even
automating one step or two steps is useful and deliverable…

1. handleVariableData.associate. (step 1) I want to associate a
container and a queue…

https://less.works For Gene Gendel only, id:gene-gendel



263

Analyzing and Modeling

2. handleVariableData.verify. (step 2) I want to view and verify
an associated container…

3. …

Furthermore, even if one customer-visible step did not realize a com-
plete stand-alone solution—as with splitting by operation—imple-
menting it can mitigate risk or provide feedback while incrementally
building up the complete scenario.

Example: Data transfer (Geophysical Analytics)

One of our clients analyzes geophysical data to make decisions
related to subsurface oil, gas, and water extraction or injection. They
transfer large sets of measurement data between their products; for
example, one calibrates models and another does simulations. The
following item represents a use case:

As a Geophysicist, I want to transfer measurement data between Pro-
ductA and ProductB so that I can analyze it.

There were three kinds of data to transfer, in very different formats
and with different content. The work was quite different for each
type. The following splitting was used; it could be classified as split-
ting by type (of data) or by data format or by scenario:

- transfer well data; transfer log data; transfer horizon data

Well data was the critical case—most frequent and associated with
the most money. Splitting this way created smaller, independently
valuable items. 

When dealing with measurement data and different applications,
one can encounter problems related to units and coordinate systems.
Sometimes, units, precision, or coordinates have to be transformed
for a receiving system. The following splitting was used; it could be
classified as splitting by scenario or by data format:

! transfer well data when no transformation is needed…

! transfer well data when units and coordinates trans-
formed are needed for the receiving system…

https://less.works For Gene Gendel only, id:gene-gendel



264

7 — Requirements & PBIs

Transforming units is major work distinct from the work to trans-
form the coordinate system. This is splitting by data parts:

! transfer well data with units transformed

! transfer well data with coordinates transformed

Split by NFR—Transferring and transforming data takes time. A
geophysicist would like the data before retirement. It takes signifi-
cant software engineering effort to go from sluggish to zippy. Split
by non-functional requirements for incremental improvement…

! transfer well data with units transformed in less than 60 sec-
onds per megabyte

! transfer well data with units transformed in less than 10 sec-
onds per megabyte

Example: Virus detection (Security)

Several of our clients develop security software. A use-case item:

detect viruses

The following splitting was used; it could be classified as splitting by
I/O channel or by configuration (of input channels):

- detect when email; detect when browser; detect when USB stick

For browsers, the following splitting was used; classifiable as split-
ting by type (of browser) or by configuration (of browser):

- detect when FireFox; detect when MSE; detect when Safari, …

It was also useful to split by use case (or scenario):

! detect when MSE when downloading a file

! detect when MSE when downloading & installing plug-in

Split by NFR—When people start a computer, they do not want to
wait hours while the virus software loads. And they do not want it to
consume 50% of processor resources. Suppose that “ten seconds and
ten percent” vaguely annoys people but “five seconds and five per-

https://less.works For Gene Gendel only, id:gene-gendel



265

Analyzing and Modeling

cent” is a happy customer. It could take plenty of engineering effort
to reach that goal. Split by non-functional requirements for
incremental improvement…

! load in 30 seconds; load in 10 seconds

! maximum 10% of processor capacity; maximum 5% …

Split by role—Software security companies have internal power
users who want to detect viruses; their job is exploratory observation
and probing to see what viruses are infecting systems. They want to
be notified and see what is going on in great detail. General com-
puter users also want virus detection, but they (usually) just want
silent resolution while they carry on downloading torrents from
PirateBay. This leads to splitting by role:

! As a Virus Security Analyst, I want virus detection….

! As a Computer User, I want virus detection…

Splitting by role is not useful unless it implies role-distinct work.

Split by knowledge (or research)—Suppose your organization is
creating a new virus-detection product. There are some viruses (or
categories of viruses) people in your group understand and can
implement to detect, others that outsiders have described but are
not yet understood by your group, and others that nobody under-
stands and that require deep investigation. 

See “Try…Genu-
ine research work 
as PBIs” on 
p. 227.

This leads to splitting items into families of requirements that are
understood and can be implemented, and those needing research. 

We see this frequently with our customers. As a different example in
the printing domain…“The X-part of the new PDF specification is
like stuff we’ve worked on before. But the Y-part is going to take
some research before we can implement it.” Y-part requirements will
need to be distinct items in the Product Backlog.

Conclusion

With these techniques, we decompose large requirements into much
smaller slices that are still fully or partially customer-centric, rather
than splitting big requirements only into myriad technical tasks.

https://less.works For Gene Gendel only, id:gene-gendel



266

7 — Requirements & PBIs

Avoid…Adopting user stories because they are ‘agile’

“We are doing agile development, therefore we must apply user sto-
ries.” Incorrect. Scrum does not mandate any particular approach to
requirements, and there is no guaranteed relationship between writ-
ing a user story and being agile.

The companion book briefly explored cargo-cult process adoption—
ritualistic adoption of practices, often without judgment or skill.
“Cargo-cult user-story adoption” happens in several situations:

! A group of people want to be agile and adopt agile develop-
ment, but they assume a particular practice is necessary.

! A group—usually a large group in an “enterprise transforma-
tion”—does not want to adopt agile development, but are
pushed to do so by top-down directive. People just follow orders
(or do what appears necessary to meet “agile adoption” targets)
and do superficial “agile stuff.”

Avoid…Believing writing user stories means user stories

As a Mobile Device User, I want HSDPA support in the network
so that I can download faster and have more free time.

First, writing a user story in the above format does not mean it is a
‘correct’ user story. As originally described, user stories do not
require any particular format; they must simply be very short and
understandable to the customer.

Second, and far more important, writing a user story is not applying
user stories. What is?…

Try…Apply user stories with card, conversation, confirmation

Big product groups usually have high ceremony around their
requirements work. The culture is comprehensive documentation
over working software, and not talking frequently with customers to
evolve understanding. Then, when “do user stories” is pushed onto
this group, the intention and behavior is not grasped; what remains

https://less.works For Gene Gendel only, id:gene-gendel



267

Analyzing and Modeling

is superficial practices such as writing statements As a <Customer-
Role> I want <Goal> so that <Reason>.

The concept of user stories comes from Extreme Programming (XP),
where the intention and behavior is emphasized in the ‘3Cs’ that are
the heart of applying user stories [Jeffries01]:

! Card—One user story is first written on one index card. The
deeper point of ‘card’ is that a user story (1) is a short state-
ment—just a label for a requirement that does not contain all
information, and (2) it is easy to change or discard.

! Conversation—Alistair Cockburn succinctly described a user
story as “A promise to have a conversation.” This is a key
behavioral change in adopting user stories: Teams increase
their conversation and collaboration with customers and the
Product Owner rather than emphasizing detailed up-front
written documentation. This reflects the third agile value, cus-
tomer collaboration over contract negotiation.

– No false dichotomy: Written documentation is acceptable
but is the result of ongoing conversation.

! Confirmation—Before a user story can be implemented, the
Product Owner needs to define the acceptance criteria that
confirm the user story is fit for the purpose. This is another key
behavioral change in adopting user stories.

To quote Ron Jeffries, one of the original agile thought-leaders, who
first described the 3Cs of user stories:

…the writing is not the most important part. Quite likely it is
the least important part, far behind the thinking, the communi-
cating, and the testing.

Avoid…User stories good; other models bad

“In Scrum, requirements must be written as user stories, because
they are good.” Not true. Scrum is requirements-model neutral—one
of its strengths, not a weakness. Officially, the Product Backlog con-
tains items—a flexible abstraction. Scrum’s strength and longevity
lie precisely in not prescribing how teams should work.

https://less.works For Gene Gendel only, id:gene-gendel



268

7 — Requirements & PBIs

Avoid false-dichotomy suggestions such as “user stories are better
than other models.”23 A backlog item may be explored as user sto-
ries, use cases, or anything else…

Try…Learn many analysis skills: user stories, use cases, …

Expand a team’s detailed-analysis literacy to multiple approaches—
each applied in the spirit of agile modeling [Ambler02]: simple
tools, “barely good enough,” active stakeholder participation. Apply
these varied techniques to small batches of detailed-requirements
inventory (low WIP) in a small queue—detailed analysis will focus
on the next few iterations.24 Evolve details with conversation. 

What techniques to use? Many! See Figure: Experiment with many
analysis techniques. The graphic is merely hints; see the recom-
mended readings for a deeper dive.

Combine techniques—For
example, when we facili-
tate a detailed require-
ments workshop, we may
first sketch some system-
sequence diagrams, fol-
lowed by an activity dia-
gram, then expand and

clarify this with use-case text, evolve that into executable accep-
tance tests, and either before or after create UI mock-ups and proto-
types. (This is an example, not a recipe.)

23. User-story experts do not promote this dichotomy; it is from novices.
24. Unless estimating and bidding on a fixed-price, fixed-scope project.

https://less.works For Gene Gendel only, id:gene-gendel



269

Analyzing and Modeling

Figure: Experiment with many analysis techniques.

As a
 G

eo
ph

ys
ici

st,
 I w

an
t to

 tr
an

sfe
r m

ea
su

re
men

t d
ata

 

be
tw

ee
n P

ro
du

ctA
 an

d P
ro

du
ctB

 so
 th

at 
I c

an
 an

aly
ze

 it.

us
er

 st
or

ies

Con
trib

uti
on

? (
1)

 S
im

pli
cit

y, 
(2

) 

re
du

ce
d w

as
tes

 of
 ov

er
pr

oc
es

sin
g 

an
d W

IP
 in

ve
nto

ry,
 (3

) e
mph

as
ize

s 

co
lla

bo
ra

tio
n a

nd
 co

nv
er

sa
tio

n, 
an

d 

(4
) e

nc
ou

ra
ge

s a
cc

ep
tan

ce
 te

st-

dr
ive

n d
ev

elo
pm

en
t.

re
mem

be
r...

us
er

 st
or

ies
 m

ea
ns

 ca
rd

,

co
nv

er
sa

tio
n, 

co
nfi

rm
ati

on

acceptance TDD
Contribution? (1) Improve the 

understanding and agreement 

of acceptance between the 

Product Owner, teams, and 

other stakeholders, and (2) 

move from “mini-waterfalls” to 

concurrent engineering.

What are the 
system operations 

in a scenario?

system sequence diagrams

https://less.works For Gene Gendel only, id:gene-gendel



270

7 — Requirements & PBIs

Main Scenario
1. ...
2. ...

use-case text

read it

Acti
vit

y d
iag

ra
m

s 

ex
pr

es
s d

at
a 

flo
ws

an
d 

co
m

ple
x 

de
cis

ion
 lo

gic
. 

Th
ey

 su
pp

or
t 

de
co

m
po

sit
ion

int
o 

su
b-

dia
gr

am
s.ac
tiv

ity
 d

iag
ra

m
s

state-machine diagrams

What are the 
states, events, 
and transitions 
of an object?

It is easy to 
automatically

generate code 
from state tables 

or diagrams.

UI mockups & prototypes

Users experience 

a system through 

the UI, so skillful 

interaction design 

is paramount! 

!

https://less.works For Gene Gendel only, id:gene-gendel



271

Analyzing and Modeling

See “Try…Accep-
tance test-driven 
development” on 
p. 42.

Try…Explore requirements as automated tests

This practice was identified in the previous tip, but deserves high-
lighting. It reduces the waste of defects and enables concurrent engi-
neering. It applies to both functional and non-functional
requirements. 

Try…Prefer PBI titles in C-style user-story format—usually

Requirement items of every size need a short title or name in the
Product Backlog. Try this “C-style” user-story format:25 As a <Cus-
tomerRole> I want <Goal> so that <Reason>. 

The C-Style User-Story Story

There is a belief that user stories must be written in the As a…I want…so that… for-
mat, but this is incorrect. Any short form is possible; “Sell a put option” is a story.
The As a… format was created to solve a particular problem in context, at Connextra
(in England, circa 2000). Co-founder John Nolan wrote us, “The whole team partici-
pated in continuous improvement of the format that fitted our process and context. In
other places the evolution of story formats has gone in different directions to address
particular needs. The ‘As a...’ format is a good place to start for teams but should not
be considered an end point.” 

Connextra co-founder Peter Marks first proposed the I want…so that… format, with
collaboration from the entire Connextra team.a Peter wrote, “It took us quite a while
to find what was useful to us. The ‘I want to’ clause forced us to focus on the desired
consequence of new functionality. It struck the balance between describing a design
(too specific) and stating some business requirement (too vague). ‘I want to’ describes
something you will be able to do once the feature is implemented that you can’t do
now.” (continued…)

a. Rachel Davies, Tim Mackinnon, and others.

https://less.works For Gene Gendel only, id:gene-gendel



272

7 — Requirements & PBIs

Most requirements can be summarized in this format. For example:  

Why prefer this format?

! for readers: summarizes who, what, why—provides more con-
text and information 

! for readers: consistent format—improves readability

! for writers: when writers think to clarify the role (who) and
motivation (why), this can lead to useful learning

25. Why “C-style”? See The C-Style User-Story Story box.

a classic function 
style (IEEE 830)

use-case-
name style C-style user-story format

The system shall 
transfer data 
between productA 
and productB

Transfer
Data

As a Geophysicist, I want to 
transfer data between Pro-
ductA and ProductB so that I 
can analyze it

(continued…) Peter also wrote, “The ‘so that’ clause started off as a way of describing
what would happen to information after you entered it, so you might have ‘I want to
enter contact details so that they are listed in my address book.’ Quite quickly, this
became a business justification for your desired consequence: ‘I want to enter contact
details so that I won’t lose them.’ Without this it was very easy to invent things we
could build that we didn’t really need. This justification was particularly important as
we didn’t have any real customers at the time. The ‘As a’ clause came naturally. As
Rachel Davies pointed out to us, it allows you to consider roles and that leads to access
rights. However ‘As a’ served another, more fundamental purpose—it allowed us to
check that someone would actually use the functionality described.”

Why call this the C-style format? Because of its connection to Connextra, and its
widespread popularization by Mike Cohn in User Stories Applied [Cohn04].

The innovative Connextra team also created other improvements: mock objects, Gold
Cards, and heartbeat retrospectives.

https://less.works For Gene Gendel only, id:gene-gendel



273

Tools

Big requirements too!—It is important to notice that gargantuan
goals (which will involve thousands of people a long time) can be
expressed in this format:

As a Printer Operator, I want color printing so that I can convey
more information and influence emotional response to material.

This suggestion does not mean to avoid a variety of analysis tech-
niques; it does not mean “avoid use cases.” Even though the PBI is
titled in user-story format, it may be analyzed and described in
detail as a use case, a state machine, and so on.

This format is not always appropriate. For example:

As a Mobile Device User, I want HSDPA support in the network
so that I can download faster and have more free time.

Telecommunications people understand the roles and benefits well
enough that the sentence above is largely noise. It is sufficient if the
following user story (not in C-style format) is in the backlog:

HSDPA call

TOOLS

Avoid…Requirements management and ALM tools—for N years 
after agile adoption

The key, first agile value is individuals and interactions over pro-
cesses and tools. Yet an early-adoption question we are often asked is
“What tools should we buy?” We see attempts to solve the systemic
problems of requirements with tools—including requirements man-
agement tools and application life-cycle management (ALM) tools—
rather than addressing the root causes: People, interactions, and
organizational design.

This is not a concern with tools; it is a concern with the quick fix
behavior of believing that systemic problems can be fixed with tools.

https://less.works For Gene Gendel only, id:gene-gendel



274

7 — Requirements & PBIs

Avoid the seductive lure of “tools to solve requirement problems” for
at least the first <N> years after starting to adopt agile or lean
development, so that people’s focus can be where it belongs: on the
system.

After <N> years? Prefer free tools so that the cost of experimenting
is low and there are fewer barriers to discarding tools.

Agile expert Ron Jeffries shared a frequently observed result:

I have surveyed a few clients who use [‘agile’ management tool
X] and so far have found one individual who actually liked it.
[Jeffries09]

Avoid…Old-style, centralized, and hierarchical document tools

Documents are so 1980s. We agree that Apple Pages, Microsoft
Word, and OpenOffice Writer are great tools for editing a separate
text document. But one of the wastes in lean thinking is the waste of
information scatter. A related one is delay. Requirement information
is intensely related; actually, most development information—status,
requirements, design, and tests—is related.

When development information (such as requirement details) is
stored in separate documents (on network drives, in document-man-
agement tools, or worse…on Bob’s laptop), there is…

! more information scatter

! weak, slow navigation between information elements

! difficulty and delay in creating new relationships or links

! delay in accessing information

Contrast the utility and speed of finding and relating information by
using the World Wide Web versus a document. Your development
project has information needs much more like the Web, especially in

Start with simple tools: cards on walls, spreadsheets, wikis.

https://less.works For Gene Gendel only, id:gene-gendel



275

Tools

developments with many people and sites. Therefore, for lean and
agile development, experiment with avoiding

! old-style text documents and document-centric tools

! old document-centric management tools such Lotus Notes and
MS SharePoint; these are centralized and hierarchical 

Try…“Web 2.0” decentralized, networked tools

A wiki26 is the quintessential example of a “Web 2.0 tool.” Google
Wave is another example. Such tools encompass Web 1.0 qualities
(webpage-centric, decentralized, a network of hypertext) plus com-
munity-oriented content in which many people can easily edit or add
webpages, using the browser. To quote Wikipedia, “[Web 2.0 tools
facilitate] communication, information sharing, interoperability, and
collaboration…” These are qualities aligned with agile values, and
especially useful in big, multisite development.

Experiment with Web 2.0 tools (probably a wiki) for requirements
and other product information. Similarly, try web-based list-tools for
the Product Backlog, such as Google Spreadsheet. For each item,
include a URL (such as wiki page link) in the backlog. Item details
(acceptance tests, photos of sketches, …) are accessible through the
item’s portal webpage.

Try…Baseline and version-control in your “Web 2.0” tools

Baselining—Some of our clients develop regulated products—such
as medical devices—that require more traceability. Then, take
(using an automated script) an end-of-day snapshot of the product
‘web’ or wiki site. One client compresses the entire site into one file
and saves it daily. Another alternative: Some wikis support tagging
all pages within a wiki-name-space with an arbitrary tag.

Version control—It is wonderful that anyone can improve require-
ment-X wiki page, until… oops. Not to worry, many wikis have ver-
sion control: every version of every page can be recovered. Google

26. Wiki technology was created by Ward Cunningham (also one of the 
founders of agile development) in 1994.

https://less.works For Gene Gendel only, id:gene-gendel



276

7 — Requirements & PBIs

Spreadsheet also has built-in version control. These have authenti-
cation and access control, to identify who changed a page or—not
recommended but possible—control who can modify content.27

Avoid…Require-
ment informa-
tion in email

Try…Aggregate email and discussion threads on webpages

Information scatter and delay are heightened when a requirement—
or any kind of—clarification is buried in someone’s email. It defi-
nitely does not scale. Instead, use a wiki feature in which all emails
related to a project or requirement are automatically aggregated,
threaded, and displayed on a webpage.

Similarly, if teams use wiki text for all requirement elaboration, use
the built-in, blog-like threaded-comment feature on the page for peo-
ple to discuss or clarify a requirement.

Try…RSS feeds on requirement page changes

With many people in many sites touching or discussing a require-
ment webpage, a simple way to keep informed is to subscribe to an
RSS feed for changes on the page; several Web 2.0 tools support this.

Try…Multiple page labels for a requirement page

Several Web 2.0 tools provide the ability to tag a webpage with mul-
tiple labels. For example, a page that contains a digital photo of an
activity diagram for an item whose top-level requirement is “PDF
1.7 level-3 printer support” can have the two labels “activity dia-
gram” and “pdf 1.7 level-3.” This is useful for searches and for tool-
generated lists based on label, such as all pages labeled “activity dia-
gram.” 

CONCLUSION

Reflecting on our observations (while coaching) of requirements
work in big systems, a few problem-themes repeatedly dominate

27. This may be important in safety-critical products.

https://less.works For Gene Gendel only, id:gene-gendel



277

Tools

! handoff from one group doing the analysis (product managers,
UI designers, business analysts, architects, …) to separate
development teams

! ‘fake’ requirements—technical tasks that are mis-labeled as
requirements, usually to coordinate work between single-spe-
cialist component teams

! development teams disconnected from the real customers and
real requirements

! a lack of agile modeling skills across all team members

Broadly, many suggestions in this chapter—such as Avoid…Sepa-
rate analysis group and Try…Write customer-centric requirements—
are aimed squarely at addressing these key problems.

Another major set of suggestions address scaling issues related to a
large Product Backlog and large requirements; these include
Try…Group items into requirement areas, Try…Prefer cell-like split-
ting over tree-like splitting, and the longest tip in the chapter,
Try…Split Product Backlog items. Why so long? In every large prod-
uct group we visit, the splitting of big requirements is one of the first
questions—people can seldom imagine that they could finish a cus-
tomer-centric requirement in an iteration. Therefore, we devoted
plenty of time to show that it is possible and clarify how. 

RECOMMENDED READINGS

Basic requirements analysis:

! Bridging the Communication Gap: Specification by Example
and Agile Acceptance Testing by Gojko Adzic was also recom-
mended in the Test chapter; it emphasizes acceptance TDD,
requirements by examples, and includes a chapter on agile
requirements workshops.

! Requirements by Collaboration by Ellen Gottesdiener describes
how to organize and facilitate requirement workshops.

https://less.works For Gene Gendel only, id:gene-gendel



278

7 — Requirements & PBIs

! Writing Effective Use Cases by Alistair Cockburn is an excel-
lent book on use cases, and widely considered the de facto stan-
dard for this subject.

! Patterns for Effective Use Cases also includes useful tips.

! A Use Cases chapter, based on the Cockburn system, is avail-
able in the Articles section of www.craiglarman.com.

! User Stories Applied, by Mike Cohn, is a great introduction.

User interface, user experience, and interaction design:

! In the classic The Design of Everyday Things and his more
recent Emotional Design, Donald Norman emphasizes that
human factors need to be front and center.

! Interaction design is a fast-moving field of publication. Broadly,
search for material that emphasizes lightweight modeling, iter-
ation, prototyping, and cross-functional teams. For example,
see Sketching User Experiences by Bill Buxton.

More on analysis and modeling:

! Agile Modeling by Scott Ambler emphasizes lightweight and
collaborative approaches to modeling.

! Applying UML and Patterns demonstrates a variety of model-
ing techniques, including domain models, activity diagrams,
and state-machine models.

https://less.works For Gene Gendel only, id:gene-gendel

www.craiglarman.com


This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Thinking About Design 282

• Behavior-Oriented Tips 289

• Technically Oriented Tips 317

• Introduction to Interfaces and Interactions 
Tips 323

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



281

Chapter

8
DESIGN & ARCHITECTURE

There are 10 types of people: those who
understand binary, and those who do not.

—anonymous

In landscape architecture there is an evolutionary
design technique using desire lines.

Problem: Where to build, and how wide to build,
outdoor pathways?

Solution: Wait for a year and observe the paths
people naturally walk, and traffic volume. Create
permanent paths along these desire lines, as wide
as appropriate. Design is pulled from demand
rather than speculatively pushed. 

Although challenging to apply in product design, this is one source
of inspiration in lean or agile design—a kind of emergent design.1

There is probably a market for a great book on Agile Large-Scale
Design; this is not it. This is not a treatise on technical design; it
offers a few behavior-oriented tips related to design and large-scale
development with agility, with a few noteworthy technically oriented
tips—some analogous to desire lines. Some tips reflect lean software
principles such as decide at the last responsible moment. Some
reflect agile principles such as the most efficient and effective method
of conveying information is face-to-face conversation. And many sug-
gestions reinforce the ninth agile principle: Continuous attention to
technical excellence and good design enhances agility.

1.  No false dichotomies: This example is not meant to suggest avoiding 
technical excellence or thoughtful design; it suggests design and 
architecture that is gracefully adaptable in response to learning.

https://less.works For Gene Gendel only, id:gene-gendel



282

8 — Design & Architecture

THINKING ABOUT DESIGN

Try…Think ‘gardening’ over ‘architecting’—Create a culture of 
living, growing design

See “Try...Clean 
up your neigh-
borhood” on 
p. 346.

We considered calling this chapter simply Design, but decided on
Design & Architecture because of the extant belief that the software
code, design, and architecture are separate things, and therefore
that ‘architecting’ and programming are separate.2

The word architecture has at least two broad implications in com-
mon parlance in software development:

! (noun) the large-scale static and dynamic themes and patterns

– there is also intended architecture (speculated, wished for)
versus actual architecture—which may not be wished for

! (verb) the creation and definition of the intended architecture,
as in ‘architecting’ or, “When will you do the architecture?”

– it is performed once near the start, often in documents

– it overlaps with requirements analysis

The term was borrowed from building architects. It turns out to be a
weak analogy3 with interesting side effects for software develop-
ment. Buildings are hard and so in that domain the act of architect-
ing is only done once before construction—at least, these days—and
then the building or architecture is more or less permanently fixed.
Note also that the architects are different from the construction
workers. But software is not a building, software is soft, and pro-
gramming is not a construction process; “software architecture” is
merely one imperfect analogy from a large list of metaphors that
could be chosen.

2.  They are separate things when one is creating a physical object such 
as a hardware device; we refer to software architecture.

3.  The term “software architecture” is not a ‘truth’; the name arose 
haphazardly by some people in a young field looking for analogies. 
Like all analogies (including ‘gardening’), it has strengths and 
weaknesses.

https://less.works For Gene Gendel only, id:gene-gendel



283

Thinking About Design

What other metaphors apply? In the oft cited paper “What is Soft-
ware Design?” [Reeves92], the author observes

… the only software documentation that actually seems to sat-
isfy the criteria of an engineering design is the source code

I (Craig here) wrote a book on software analysis, design, modeling,
patterns, and architecture [Larman04a]. I mention this not to sug-
gest I’m any good (I have average development skills), but I’m prob-
ably not a ‘hacker’ (in the bad sense); I appreciate the art and value
of modeling and ‘architecting.’ However, having also worked as a
hands-on programmer since the 1970s, I recognize that diagrams
and documents are not the real design but rather that the source
code is the real design. To reiterate, “…the only software documenta-
tion that actually seems to satisfy the criteria of an engineering
design is the source code.”

The source code (in C, C++, …) is the real blueprint.
And near-unique to software, construction or build-
ing is almost free and instantaneous.4 Consequently,
many do not see it for what it is: Building (construc-
tion) is the compile and link step. It is no coincidence
that in development tools, the menu option to per-
form compile and link is labeled Build.

Scenario: In the early days of ProductX, suppose there were specula-
tive but high-quality design documents for the large-scale elements,
idioms, and interactions of the intended architecture, and suppose
somehow the real design (the source code) well reflects these inten-
tions. Seven years pass, all the original programmers are no longer
programming, and 300 new developers have been hired who are
poorly skilled and do not really know or care about the original
large-scale design ideas. Imagine they have added 9.5 million lines
of code—9.5 MLOC, suppose it is 95 percent of the total code—and it
is a mess. 

Where is the real architecture—good or bad, intentional or acciden-
tal? Is it in documents being maintained (or not) by an architecture
group, or is it in the ten MLOC of C and C++ within tens of thou-

4.  Three-dimensional (3D) printing, in which complex objects are built 
from a 3D printer, is similar in this respect. 

https://less.works For Gene Gendel only, id:gene-gendel



284

8 — Design & Architecture

sands of files? Obviously the latter—the source code is the real
design and its sum reflects the true large-scale design or architec-
ture. The architecture is what is, not what one wishes it to be. The
‘architecture’ in a software system is not necessarily any good or
intentional.

First observation—The sum of all the source code is the true design
blueprint or software architecture.

The software design/code improves or degrades day by day, with
every line of code added or changed by the developers. The software
architecture is not a static thing. Software is like a living thing,
more like a plant or garden than a building, and the living design or
architecture is growing better or worse day by day. 

Second observation—The real software architecture evolves (better
or worse) every day of the product, as people do programming.

The analogy to gardening, parks, and plants is salubrious [HT99].
For example, there is the noun and verb landscape architecture—it
is normal and skillful to consider and ‘architect’ the big picture when
planning a big garden or park. And yet people do not leave it at that.
Because of the visible nature of a park, and because plants grow, it is
crystal clear that the actual landscape architecture will quickly
devolve into a jungle of weeds without constant gardening or prun-
ing by hands-on master gardeners mindful of the park’s original or
evolving vision. We have a friend who works as a landscape architect
for golf courses. He sees with his own eyes the details of the real, liv-
ing course while it is being created, walking around it and playing
golf—in touch with the reality of what is.

This shift from the metaphor of architecting and building software
to growing it like a plant has influenced many people reflecting on
successful development. For example, Frederick Brooks, in his
famous article, No Silver Bullet, shares his shift in understanding:

The building metaphor has outlived its usefulness… If, as I
believe, the conceptual structures we construct today are too
complicated to be accurately specified in advance, and too com-
plex to be built faultlessly, then we must take a radically differ-
ent approach… The secret is that it is grown, not built…
Harlan Mills proposed that any software system should be

https://less.works For Gene Gendel only, id:gene-gendel



285

Thinking About Design

grown by incremental development… Nothing in the past
decade has so radically changed my own practice, or its effec-
tiveness… [Brooks87] (emphasis added)

Third observation—The real living architecture needs to be grown
every day through acts of programming by master programmers.

Fourth observation—A software architect who is not in touch with
the evolving source code of the product is out of touch with reality.

Fifth observation—Every programmer is some kind of architect—
whether wanted or not. Every act of programming is some kind of
architectural act—good or bad, small or large, intended or not.

What does this have to do with large-scale development and agility?

In a small product group with 20 people, people well understand the
above, and there is rarely an institutionalized false dichotomy or
division between architecting and programming. Also, if there is an
official ‘architect,’ then this person is typically a master program-
mer, close to the code. But in a large product group with 600 people
in a colossal enterprise, there is a common mental-model mistake—
that design or architecting is definitely separate from the code and
act of programming. Consequently, it is not uncommon to find an
official architecture and/or systems-engineering group, an institu-
tionalized ‘architecting’ step by them (before programming), and its
members are not daily hands-on developers or (at least, no more)
world-class code craftsman.

This architecture group (or systems engineering group) generally
contains well-intentioned and bright people. But (there had to be a
but here), in a traditional organization they slowly lose touch with
the reality of the source code and become what are called PowerPoint
architects, ivory-tower architects, or architecture astronauts—so high
up and abstracted from the code (real system) that they are in outer
space [Spolsky04].

The repercussions? In a large product group with (1) the mental
model that the weak metaphor of architecting and building a soft-
ware system like a building is believed to be a good metaphor; (2) the
lack of realization that the true architecture is in the sum of the
source code; and, (3) a cadre of architecture astronauts, all this leads

https://less.works For Gene Gendel only, id:gene-gendel



286

8 — Design & Architecture

ironically to a degrading architecture over time. Why? Some of the
dynamics in play are shown in the system dynamics model in
Figure 8.1. Note the several positive feedback loops that can rein-
force degradation or improvement over time.

Figure 8.1 causal 
loop diagram of 
some dynamics 
related to the 
‘architecting’ 
metaphor

Also, what happens to the code—the real design—in a group with
the following cultural value and message?… There is the architec-
ture group over there; you regular programmers are not architects.
The programmers naturally feel that the architecture is not their
responsibility, and degradation of architectural integrity continues.

% “PowerPoint 
architects”

% leaders who 
appreciate the 

real design/
architecture is in 

the code

value given to 
master-programmer

architects
over

PowerPoint architects

belief: ‘architecting’ and building are 
an excellent metaphor in software

belief: architects should 
not program regularly

belief: the 
code is not the 
architecture

% master-
programmer

architects

respect by regular 
programmers for 

the architects
%  regular 

programmers
caring about 
architectural

integrity and high-
quality design

quality of the code/
design/architecture

feature velocity

handoff
waste and 
batch size O

O

O

O

O

https://less.works For Gene Gendel only, id:gene-gendel



287

Thinking About Design

If the system dynamic increases the influence of PowerPoint archi-
tects, the outcome is that they have decreasing influence over time,
since they are not in touch with the reality of the code. Eventually,
they lose complete touch and end up writing documents for each
other or for business stakeholders. The real accidental-architects
(the programmers) basically ignore them.

We once had a discussion with a skilled programmer who wrote
device drivers for network processors, part of a very large product.
He was concerned because the ivory-tower architects—who were
located two floors up, literally in another tower—had selected a new
network processor that would require a complete rewrite of all the
drivers—estimated to be at least nine months of programming work.
And that did not even account for testing and resolution of unex-
pected behavior from a new processor family. Having written drivers
for many processors, the developer was an expert on the subject, and
he agreed that the new processor was better—at least on paper.
However, he also knew that upgrading the existing processor to a
newer model in the same family would achieve almost the same ben-
efits, and with zero effort to change any drivers. He seriously
doubted that the ivory-tower architects were aware of the effort and
impact on the software development—none of them had talked with
him; nor in fact did they spend time talking with any real hands-on
programmers.

Architectural foundation?—“It is important to have the architec-
tural foundation before you implement anything else, otherwise you
can’t have an architectural foundation.” This false dichotomy idea
stems from the building metaphor, as though a software system
were made of concrete rather than software—as though major sys-
tem elements could not be improved through learning cycles and
refactoring. Coincidentally, while we were writing this section, we
had a beer at a pub in Oxford, England, with Alistair Cockburn (an
agile thought leader) who told us that he and his wife wanted a
basement added to their existing house. The builders lifted the
entire house, dug a basement beneath it, and put the house back on
top. It’s amazing what ‘architectural’ foundational changes are pos-
sible if one thinks outside the box—and software is a lot softer than
a house. 

Certainly it is important to have great architecture. It is so impor-
tant that every act of agile modeling and programming for the life of

https://less.works For Gene Gendel only, id:gene-gendel



288

8 — Design & Architecture

the system should be treated as an architectural act. We all agree
that good architecture is important; the question is, what is a skill-
ful way to achieve it? Most of the tips in this chapter offer sugges-
tions for how to create and maintain a great ‘foundation’ that is not
based on the building metaphor or sequential life cycle. All of the fol-
lowing and more are detailed in the next subsections. 

No false dichotomy: Upfront modeling is fine, documents describing
the intended architecture are fine, and so forth. But the architec-
ture, and our learning about it, can improve. Speculative software
architecture should be made concrete and not of concrete. 

• Try…Architectural analysis 
before architectural design 

• Try…Question all early design 
decisions as final 

• Avoid…Conformance to bad or 
outdated architectural decisions 

• Avoid…Architecture astronauts
• Avoid…“Don’t model” advice 

from extremists 
• Try…Design workshops each 

iteration 
• Try…Joint design workshops for 

broad design issues

• Try…A couple of days to a couple 
of weeks of design workshops 
before first iteration 

• Try…Incrementally build ‘verti-
cal’ architectural slices of cus-
tomer-centric features 

• Try…Do customer-centric fea-
tures with major architectural 
impact first 

• Avoid…Architects hand off to 
‘coders’

• Try…Tiger team conquers then 
divides

Agile architecture comes from the behavior of agile archi-
tecting—hands-on master-programmer architects, a cul-
ture of excellence in code, an emphasis on pair-
programming coaching for high-quality code/design, agile
modeling design workshops, test-driven development and
refactoring, and other hands-on-the-code behaviors.

https://less.works For Gene Gendel only, id:gene-gendel



289

Behavior-Oriented Tips

BEHAVIOR-ORIENTED TIPS

Try...Design workshops with agile modeling

See
“Try…Require-
ments work-
shops” on p. 240.

A requirements workshop brings together customers and developers
in face-to-face facilitated workshops. They are tremendously helpful,
not only to better learn user needs but—key point—to create a com-
mon understanding among all participants. 

These same benefits apply to a design workshop. In contrast to a
requirements workshop it does not include customers, but it does
include all members of the feature team—the people with skill in
programming, system engineering, architecture, testing, UI design,
database design, and so forth. 

When?—Consider holding design workshops at the start of building
each new item (for example, three design workshops for each of
three items in an iteration), and just-in-time whenever else the team
finds agile modeling at the walls useful.

Figure 8.2 design 
workshop—feature 
teams model in 
large ‘whiteboard’ 
spaces

Model what?—During a design workshop, feature teams focus on
modeling related to their upcoming goals, or to the overall system
architecture—or both. All kinds of design modeling occur: low-fidel-
ity UI modeling with sticky notes or in prototyping tools, algorithm
modeling with UML activity diagrams, object-oriented software
design modeling usually sketched in UML-ish notation, and data-
base modeling likewise. 

https://less.works For Gene Gendel only, id:gene-gendel



290

8 — Design & Architecture

Figure 8.3 agile 
modeling applies to 
UI design as well

This is not a requirements workshop; by the time your teams come
together in design workshops, you should more or less understand
the requirements under design. Naturally, there are always require-
ments clarifications or issues raised during a design workshop.

Vast ‘whiteboards’—A design work-
shop requires massive ‘whiteboard’
space. Standard whiteboards are possi-
ble but not usually sufficient—and in
fact are often an impediment, because
modeling is best done on vast open
wall spaces without borders. You will

want to cover virtually all wall space with ‘whiteboard’ material,
usually about two meters high. 

We have noticed over the years as we facilitate agile design 
workshops that there is a linear correlation between their 

effectiveness and the amount of whiteboard space. 

https://less.works For Gene Gendel only, id:gene-gendel



291

Behavior-Oriented Tips

At office supply stores or sites you can
buy “cling sheet” or “sticky sheet”
whiteboard-like materials that either
cling to the wall by static cling or by
adhesive.5 You can also buy “white-
board wallpaper”—an excellent solu-
tion for floor-to-ceiling ubiquitous
whiteboards. One organization we
coached bought cheap bathroom water-
proofing plastic wall panels that
worked great as whiteboards; they cov-
ered the entire room with them. Once
these ‘whiteboard’ areas are formed,
they can be left up permanently. Observe in Figure 8.2 how the
cling-sheet material on the walls is set up.

The best modeling tool?—I (Craig here) wrote Applying UML and
Patterns. As a result, people who know this sometimes ask me what
CASE or “model-driven development” (MDD) or “model-driven
architecture” (MDA) UML tool I use. Or, if I’m facilitating a design
workshop, they might ask what CASE/MDD/MDA tool to set up.
They are usually amused when I answer, “The best modeling tool
that I know of is a fresh black marker pen, a group of people, and a
giant whiteboard area. Sketching UML on the wall is great.”

UML software tools are sometimes useful, and there are situations
when we will recommend one. For example, they can be useful to
automatically and quickly reverse engineer the code base into a set of
diagrams that help one see the big picture. But for forward engineer-
ing or code generation, they can—given today’s technical limita-
tions—inhibit some important goals, explored soon.6

5.  For example, the brands Write-On Cling Sheets or Magic Chart.
6.  It is noteworthy that we know several people who used to—but no 

longer—work for UML CASE/MDD/MDA tool vendors, and none of 
them use those tools in their current development. It is also note-
worthy that programmers at CASE/MDD/MDA tool vendor compa-
nies often do not use their own tool to develop their own tool!

https://less.works For Gene Gendel only, id:gene-gendel



292

8 — Design & Architecture

Figure 8.4 useful, 
simple UML on an 
excellent UML 
tool—a wall

This collaborative sketching, simple-tool, and decades-old approach
falls under the category of what has been agile modeling
[Ambler02].

Leaving aside the many tips and techniques of agile modeling, why
model in a workshop?

model to have a conversation

This is a reiteration of The First Law of Diagramming explored in
the Systems Thinking chapter of the companion book:

The primary value in diagrams is in the discussion while dia-
gramming—we model to have a conversation. 

We encourage teams not to model together at the walls to specify, but
to have a conversation—to explore and discuss together and come to
a shared understanding about designs and requirements, to help
develop a shared mental model, and learn together. No doubt some
of the object-oriented UML models or UI prototypes on the walls will
end up successfully realized in code, but that is a side benefit of tak-
ing the time to think, talk through, and sketch ideas together.

https://less.works For Gene Gendel only, id:gene-gendel



293

Behavior-Oriented Tips

See “Try…Agile 
SAD with views 
& technical 
memos” on 
p. 310.

Models are not specifications—Any model created before code is
just a guess (and a context for a conversation), not the real design,
which only exists in the source code. In agile modeling it is rightly
viewed that diagram sketches and text are inspiration, not specifica-
tion. The best design documentation (for maintenance purposes) is
created after code is complete, using the SAD workshop technique
described in.

All models are ‘wrong,’ and that’s OK—People model to have a
conversation, for inspiration and growing understanding, especially
shared understanding. It is natural that models are ‘wrong’—that
design evolves as people hit the reality of programming and learn.

Wiki photos—Teams often take photos of wall sketches and put
them at their product wiki site.

Design workshops and architectural integrity—On a tiny six-
person software project, it is possible to get by without structured
group modeling workshops. As we scale to larger teams and projects,
the value of group modeling to build shared understanding of design
ideas is increasingly appreciated. Architectural integrity is a key
issue in scaling systems; maintaining that integrity really boils
down to the design ideas in the minds of programmers—are they
converging or diverging? Design workshops help develop converging
design ideas and architectural integrity.

Waste reduction, teaching—In lean thinking, there is a focus on
improving through reducing the wastes, and lean product develop-
ment focuses on outlearning the competition. Design workshops
support these goals:

! Workshops reduce the wastes of handoff and delay. Rather
than a technical designer or architect creating a design docu-
ment and sending it to developers,7 rather than a person get-
ting feedback on design ideas through indirect document
review, in a design workshop these parties come together and
communicate and give feedback directly and immediately. This
also supports agile principle six—The most efficient and effec-

7.  It may be useful to create design documents, but to reduce the waste 
of handoff a skillful means to discuss and understand its ideas is 
during a design workshop—at the walls.

https://less.works For Gene Gendel only, id:gene-gendel



294

8 — Design & Architecture

tive method of conveying information to and within a develop-
ment team is face-to-face conversation.

! They reduce the waste of information scatter, as people are in
close conversation, discussing details together at a whiteboard. 

! They reduce the waste of underutilized people, as people learn
from each other and thus grow in capability.

! They increase knowledge, both in terms of teaching others and
in terms of generating new ideas through the cross-pollination
effect of a group of seven people creatively exploring together.

! In a lean organization, managers and seniors are also teachers.
Design workshops provide an excellent forum for leaders to
coach others in design skills and architectural themes. 

! They encourage simple visual management. 

! They encourage the lean principles of building consensus and
cross-functional integration. 

Figure 8.5 halls are 
excellent places to 
set up large 
whiteboard areas, 
and they intrigue 
others in the 
practice of agile 
modeling as they 
walk by a team 
actively engaged “at 
the walls”

Simple tools, flow, participation—Humans are not built visually
and biomechanically to stare at tiny computer screens and move a
mouse around. People are built for cave art. Try to have a collabora-
tive, creative five-hour design workshop with seven people around a
computer display. Death-by-meeting. Yet invite those same people to
vast ‘whiteboard’ areas, give them marker pens, and good things will
happen (especially if they have had some workshop and agile model-
ing coaching). These simple enjoyable tools—especially the vast

https://less.works For Gene Gendel only, id:gene-gendel



295

Behavior-Oriented Tips

whiteboard space—encourage creative flow and participation. That’s
important. 

Simple UML—Since humans grasp information well in graphical
forms (“bubbles and arrows” rather than just text), we encourage
people to become comfortable with some basics of a few UML nota-
tions, including activity, class, and communication diagrams. But
detailed notation is quite unimportant—model to have a conversa-
tion, not to specify.

How long?—Two hours to two days. As with all events in Scrum,
timebox the workshop beforehand so teams know the limit.

Multisite? Dispersed teams?—Some hints are offered in the Mul-
tisite and Offshore chapters.

Try…Just-in-Time (JIT) modeling; vary the abstraction level

In addition to larger and longer whole-team design workshops, con-
sider this scenario: Someone (or a pair) is programming and
becomes blocked. They need a different perspective. We often see
such a pair grab a small piece of paper and sketch, but if they were
working in a team room and the walls were covered with some kind
of vast ‘whiteboard,’ this person, more effectively, could stand up,
turn around, invite a colleague, and start sketching and discussing
for a few minutes or a few hours. JIT modeling.

Notice that this allows people to vary their abstraction level fre-
quently and easily—from code to models to code. A common false
dichotomy is that the only time for high-level abstraction-thinking
about the system is during a pre-programming phase. Not so. With
the practice of agile modeling and a supportive environment, people
can flip levels all the time.

Try…Design workshops each iteration

Plan for and hold at least one design workshop each iteration, at
least near the start—and possibly more for each item undertaken in
the iteration. Timeboxed in the range of two hours to two days. The
focus will usually be for features of the iteration, though sometimes

https://less.works For Gene Gendel only, id:gene-gendel



296

8 — Design & Architecture

farther-horizon modeling makes sense. A team may hold a small
design workshop before the first item goal, then another workshop
four days later before the second goal, and so forth.

For very young systems, sometimes the design is so unclear in early
iterations that the following is necessary: Suppose it is the last week
of the iteration. After the Product Backlog Refinement workshop (it
usually occurs mid-iteration and looks forward to future iterations),
also hold a design workshop related to the likely goals of the next
iteration, or beyond—if large-scale architectural issues need to be
explored. This will clarify planning during the Sprint Planning on
the first day of the next iteration.

Try…A couple of days to a couple of weeks of design workshops 
before first iteration

Large products are rarely new products, but when it is an initial
release cycle (there is no code yet), before the first iteration of the
nascent product, hold design workshops with agile modeling for a
few days or even a few weeks, depending on scale. This is not a
‘waterfall’ in sequential development; it is a middle way—the pur-
pose is to have a conversation while sketching rather than to spec-
ify—and there will be ongoing design workshops each iteration to
evolve the design according to the feedback of actually coding, inte-
grating, and testing. Evolutionary design is a theme of agile meth-
ods—it is skillful to not be attached to original ideas that hold back
improvement.

Figure 8.6 model of 
the physical 
architecture of a 
large system with a 
UML deployment 
diagram

https://less.works For Gene Gendel only, id:gene-gendel



297

Behavior-Oriented Tips

Wide and shallow with deep dives—In the earliest workshops of
a first-release large product, try agile modeling to explore widely
across potential major structural elements (both physical and logi-
cal) and some of their communication pathways. Logical architec-
tural modeling with UML package diagrams can help. Try
physical architectural (or deployment) modeling with UML
deployment diagrams to explore the compute nodes, processes
deployable to them, and inter-process communication mechanisms
(SOAP, MOM, …). In addition—and opposite this “wide and shallow”
advice—it is useful (because dealing with a concrete case clarifies
design ideas) to do agile modeling for deep dives into some specific
customer features that have non-trivial architectural impact; for
example, a feature touching many elements or needing fault toler-
ance. 

Try…Design workshops in the team rooms

It is useful if the walls of each team room are covered in vast ‘white-
board’ material so that design workshops can be held there. When
developers sit to program, they can easily look at the walls for inspi-
ration, or get up for quick modeling conversations, and easily do JIT
modeling.

Figure 8.7 the team 
is surrounded with 
whiteboards in a 
team room; people 
can see models on 
walls for inspiration 
while programming, 
and easily do JIT 
modeling

https://less.works For Gene Gendel only, id:gene-gendel



298

8 — Design & Architecture

Try…Joint design workshops for broader design issues

See “Try…Plan 
infrastructure
items by regular 
teams” on p. 168.

How to work on cross-
team system-level design
and architecture issues?
How to work on cross-
system “product line”
design issues? 

More broadly, suppose…

! several feature teams work on a common component or frame-
work, since feature teams work cross-component and synchro-
nize at the code level

! one team or product group takes on a common shared goal
(such as a common feature or infrastructure) that will eventu-
ally be used by other groups

! teams are (suboptimally) organized as component teams rather
than feature teams, and one customer feature spans several
component teams

! representatives from many teams want to get together to
explore and decide on system-level architectural design issues

In any of these cases, it is useful if the teams or team representa-
tives—within one product or across products—hold a joint design
workshop together. This is not a PowerPoint presentation while sit-
ting around a table; this is people (from different teams) at the walls
sketching together—agile modeling. They all work together on vast
whiteboard spaces, or sub-groups may work on separate walls and
visit each other’s work to learn and give feedback. Some teams may
send a representative to the other team (wall) during the workshop.

Who attends? This is attended by regular feature team members,
technical leaders involved in the hands-on programming—and not
by PowerPoint or astronaut architects.

When? Consider a product-level joint design workshop (for system-
level ‘architectural’ issues) at least once every few iterations.

After a joint design workshop, participants return to their home
teams. Later, during the repeating single-team design workshops,

https://less.works For Gene Gendel only, id:gene-gendel



299

Behavior-Oriented Tips

the returning people who attended the joint workshop share the
decisions made at the joint level, and help the single team express
these large-scale architectural decisions in their agile-modeling
sketches on the wall—and then in the code through pair-program-
ming coaching. So, there is a transmission of broad-design ideas and
decisions from the joint design level to the team design level. 

Note the emphasis on a culture of ongoing human infection and
mentoring, rather than “documenting the architecture” and handing
off The Architecture Document.

A joint design workshop is a community of practice activity—in this
case, for a design or architecture CoP. So, who organizes regular
joint design workshops? It may be a design CoP facilitator.

Another reason to have multiple teams in a joint design workshop is
described next…

Try…Technical leaders teach at workshops

Problem: lack of general design
skill and of specific knowledge
(about the architecture, other
components, …). Education is a
remedy. In lean, master-engi-
neer managers are also teach-
ers, coaching people in
engineering. During design
workshops, technical leaders, managers, and programmer-architects
help their own ‘home’ team or help other teams. They may spend
many hours with one team at the walls, educating to deepen people’s
skills and to establish and maintain architectural integrity. 

https://less.works For Gene Gendel only, id:gene-gendel



300

8 — Design & Architecture

Try…Architects and system engineers are regular (feature) team 
members

Avoid…System 
engineers and 
architects outside 
of regular feature 
teams

The prior suggestions related to joint design workshops could give
the impression that there is a separate architecture group or system
engineering group—a misunderstanding. Teams in Scrum are cross-
functional and do all the work necessary to deliver customer solu-
tions—and that includes architecture and systems engineering. So,
as a product group transitions to agile development, they dissolve
the prior separate single-functions groups (such as an architecture
group) and the members join regular Scrum feature teams, partici-
pating in the hands-on engineering—and, especially, mentoring dur-
ing design workshops, joint design workshops, pair programming,
and agile SAD workshops.

Try…Serious attention to user interface (UI) skills and design

Try…UI design-
ers in regular 
(feature) teams

This tip is not uniquely related to agile development or scaling, but
we cannot help but share it, as we see poor UI, interaction and “user
experience” design as a universal problem. The interface is primarily
what people experience and value in (most) software-intensive sys-
tems. It is ironic that so much attention is devoted to non-UI archi-
tectural issues in a large product group, when the UI architecture—
and there is a UI architecture, accidental or intended—is Job One
from the user perspective.

Avoid…UI 
designers in a 
separate UI 
design group

Consequently, dissolve the separate UI or user experience design
group8 and merge the experts into full-time membership within
cross-functional Scrum teams, so that this key concern is addressed
within the teams, and there is constant UI-design coaching from
experts to others. If there are no existing UI design experts, invest
in educating Scrum team members.

“Member of the team” does not mean a ‘fake’ team member—a 
person who receives work requests from one or more teams, does 

‘their’ tasks separately, and gives ‘their’ completed work back.

8.  A separate UI group reflects sequential life cycle, promotes big 
batches of handoff, and inhibits learning by non-specialists.

https://less.works For Gene Gendel only, id:gene-gendel



301

Behavior-Oriented Tips

To reiterate…“member of the team” does not mean a ‘fake’ team
member who separately does work requests for various teams.

See “Try…Com-
munities of Prac-
tice” on p. 207.

There is also a scaling issue: On large or multisite products with UIs
being created by different teams, there is a risk of low UI integrity
or consistency. The standard solutions are to hire usability engi-
neers, educate developers, develop style guides, and so forth. Two
practices frequently applied in the agile community, (1) design work-
shops and (2) communities of practice, can help. 

Try…Architectural analysis before architectural design (repeat)

Some think of ‘architecting’ as primarily a design activity (such as
deciding large-scale elements), but it includes architectural analysis,
investigation that focuses on forces, requirements, and constraints
that strongly influence the technical ‘architecture.’ 

There are simple tools to organize and guide architectural analysis,
including architectural factor tables, quality scenarios, and Plan-
guage [BCK98, Larman04a, Gilb05]. With early identification of
architectural factors, you can find and prioritize those drivers that
truly require early or upfront design decisions. For example, per-
haps you decide that choice of programming language is a factor
requiring an early decision.

Agile development emphasizes learning and ongoing evolution of the
system design; therefore, architectural analysis is not done once, but
repeatedly across the iterations—perhaps at the start of repeating
joint design workshops.

Try…Question all early architectural decisions as final

So, you do some early architectural analysis and decide that the pro-
gramming language should be chosen early, suppose C++. Encour-
age everyone to question and challenge all these assumptions and
decisions, and to find ways to apply the lean thinking principle of
decide as late as possible or defer commitment. For example, do fast
prototyping in Ruby to first learn more. We know of one product that
started with C++ for four iterations, and then switched to Java with
relatively little effort.

https://less.works For Gene Gendel only, id:gene-gendel



302

8 — Design & Architecture

Avoid…Conformance to outdated architectural decisions

All developers have had the experience, “Well, this is pretty awk-
ward, but I’ll fit what I’m doing into the existing approach because it
isn’t worth the effort to change things.” Effort includes technical
effort and the political effort to convince the ivory tower of archi-
tects. On little systems, a culture of conformance over challenge-
and-improve only creates moderate weakness because the technical
debt is not so large…yet. In large systems—or systems that are des-
tined to become large—this technical debt becomes a monstrous
boat anchor that anchors the entire product group…forever. It is
especially in the early years when the big and growing product is
still ‘small’ that you want to encourage lots of challenge to the origi-
nal architectural decisions and promote deep-change ideas (achieved
with refactoring and continuous integration) before the boat anchor
starts to drag your product under water. 

Try…Hire and 
strive to retain 
master-program-
mer ‘architects’

Avoid…Architecture astronauts (PowerPoint architects)

In small organizations there is little money or time for “architecture
astronauts” or “PowerPoint architects” or ivory-tower architects who
draw and talk about systems at abstract levels, but cannot code
them and are out of touch with the reality of the code. In large prod-
uct groups, this type does appear. In the book that won the 2005 Jolt
Productivity Award (for contribution to software development), the
author comments:

These are the people I call Architecture Astronauts. It’s very
hard to get them to write code or design programs, because they
won’t stop thinking about the architecture… They tend to work
for really big companies that can afford to have lots of unpro-
ductive people with really advanced degrees that don’t contrib-
ute to the bottom line. [Spolsky04]

In lean thinking, there is an emphasis on manager-teachers who are
masters of the work and who mentor others, and on working as a
hands-on engineer for years. Large product development following
lean practices encourages a chief engineer with up-to-date “towering
technical competence” as well as business vision. Architects who
look down upon “only coding” as something they have evolved
beyond have no place in a lean and agile organization. 

https://less.works For Gene Gendel only, id:gene-gendel



303

Behavior-Oriented Tips

See “Try…Think 
‘gardening’ over 
‘architecting’—
Create a culture 
of living, growing 
design” on p. 282.

As discussed in the “gardening over architecting” tip, several dys-
functions arise from the beliefs that the code is not the real design
and that the technical leaders do not have to be in touch with the
reality of the code.

Plus, always-evolving programming-designing practices and tools
(test-driven development (TDD), refactoring, …) should influence
the thinking of the technical leadership. For example, really compre-
hending the subtlety and influence of TDD or refactoring takes long
hands-on practice. Without that insight, an ‘architect’ is ignorant of
certain forces, dynamics, or action tools in developing systems.

You want master-programmer architects, who are in touch with the
code, and who are active developers and mentors—probably through
pair programming and design workshops. 

This tip does not imply that technical leaders only sit and program;
naturally, they decide and communicate major design decisions (per-
haps in joint design workshops) and stay in touch with the intersec-
tion of market forces and the architecture [Hohmann03]. 

As explored in the causal model in Figure 8.1, a “PowerPoint archi-
tect” is often physically and socially disconnected from the real work
and the real workers—inconsistent with the lean Go See principle.

Avoid…“Don’t model” advice from extremists

There are several agile methods; of them all, only Extreme Program-
ming (XP) had an extremely lightweight approach to design model-
ing before programming. And there are some extremists in the XP
community who even discount any modeling before programming,
although prohibiting modeling was not part of Kent Beck’s original
XP message. The “no modeling” idea is a distortion; for example, Ron
Jeffries, a key XP proponent who helped coach with Kent Beck on
the first XP project, wrote the foreword to Scott Ambler’s Agile Mod-
eling book, encouraging the practice for all software developers:

Well, it turns out that Scott recognized something that I did not
[that agile modeling is useful]…read this book if you are a soft-
ware developer who needs modeling skills as part of your devel-
opment—that is, if you are a software developer. [Jeffries02] 

https://less.works For Gene Gendel only, id:gene-gendel



304

8 — Design & Architecture

In any event, the extreme advice is not part of lean thinking or
Scrum, which is neutral/silent on the amount of modeling; a Scrum
team could spend days modeling if they found it useful toward the
goal of potentially shippable product each iteration.

On the other hand, agile principle 10 is Simplicity—the art of maxi-
mizing the amount of work not done—is essential. (This reflects
avoiding the lean waste of overprocessing). In terms of design, this
covers the common advice to avoid overengineering or overmodeling.
At the same time, a skillful developer knows that some agile model-
ing is a powerful tool, remembering the advice of that great architect
Tolkien’s Bilbo Baggins in The Hobbit:

It will not do to leave a live dragon out of your plans.

The “no design modeling before programming” message is odd
advice from an extremist fringe promoting a false dichotomy—that
the only two options are just programming or taking a big, upfront,
‘waterfall’-design-specification approach. Ignore it and ignore them.

Especially for large or multisite development, agile modeling in
workshops—done by hands-on master programmers—is invaluable.
Successful, robust big systems need some forethought regarding
structure, elements, communication. For multisite projects there is a
risk of low architectural integrity without time for people—across
sites—to talk, model, and come to shared understanding of design.
In this way, agile modeling supports the ninth agile principle:

9. Continuous attention to technical excellence and good design
enhances agility.

Try…Prototypes in a different language

A throw-away prototype is an excellent way to learn more about a
skillful architectural core, but if we had a dollar for every ‘prototype’
we have seen that mutated into the real system rather than being
thrown away, we would be rich. Unfortunately, since the prototype
was appropriately done with a quick-and-dirty attitude, there is
then a foundation of dirty code/design. Valtech avoided this mistake
when developing an oil-field economic modeling product by doing a
prototype in Visual Basic, when they knew the client insisted on an

https://less.works For Gene Gendel only, id:gene-gendel



305

Behavior-Oriented Tips

implementation in Java. This is an excellent way to resist the temp-
tation of reinvigorating Frankenstein.

Try…Very early, develop a walking skeleton with tracer code

Old and wise advice is to develop a walking skeleton of a system—be
it large or small—very early, to learn about an appropriate architec-
ture by programming and testing vertical and horizontal (and every
other direction) slices of the system [Cockburn04, Monson-
Haefel09]. This is not component-oriented development or layer-ori-
ented development; rather, it is cross-component, cross-layer ‘verti-
cal’ development that evolves a suitable skeleton in code. Nor is it
prototyping; this is production-quality development in which an
architectural foundation is implemented. The creation is a learning
process that can include short cycles of architectural analysis,
design workshops with agile modeling, and programming and refac-
toring by master-programmer architects. This tip is related to many
subsequent tips.

The programming part of this is essentially what Hunt and Thomas
have called tracer code development [HT99]. 

Try…Incrementally build ‘vertical’ architectural slices of cus-
tomer-centric features

I (Craig here) remember in 1995 at ObjectSpace we were developing
a product for a customer. They wanted reporting and management of
their business consultants and skills. For byzantine reasons beyond
the scope of this story, we had to write our own object-relational
(O-R) mapping subsystem in C++. So for the first three iterations
(three weeks each, if I recall) the ‘talented’ developers developed the
O-R component, focusing on creating that one subsystem first. Ele-
gant lazy-materializing proxies with templatized smart pointers, and
other geeky qualities. Then the customer visited for a demo of
progress. The team was proud.

The customer was angry.

They had no idea what the point was of our subsystem, and it
seemed to them we had spent nine weeks of their money doing noth-

https://less.works For Gene Gendel only, id:gene-gendel



306

8 — Design & Architecture

ing they cared about. They wanted reporting, they wanted consult-
ant information management. They wanted to pull the plug. 

The moral of this story—that we learned the hard way—is a classic
agile guideline: Focus iteration goals on customer-centric features or
activities, not on components or subsystems. Yet as will be seen in the
following tip, there is an important design qualification to this. 

In Scrum, this is what is meant by doing a complete Product Backlog
item within the iteration. In the context of XP, this has been called
story-based development. In the Unified Process (UP), it is called
use-case driven development.

Although there is no ‘vertical’ in software, given the way software
structure diagrams are usually depicted, one could say to implement
‘vertically’ across layers and components (UI, database, …) to fulfill
the one-user story or scenario, evolve and discover the required
architecture to support the user feature, and get feedback. Rather
than fully developing ‘horizontal’ subsystems divorced from cus-
tomer features, develop vertically across the layers and components
to fulfill the feature, slowing building out horizontally the compo-
nents as more customer-centric features are tackled.

These ‘vertical’ customer features are developed by the Scrum fea-
ture teams.

This can be summarized as Incrementally build, iteration by itera-
tion, architectural slices that tend to be vertical-cross-layer rather
than horizontal-within-layer, driven by architecturally significant
customer features.

Figure 8.8 incre-
mentally add 
architecturally
significant
customer-centric 
features each 
iteration, across 
layers or 
components

UI

L1

L2

L3

UI

L1

L2

L3

iteration 1

stories
1 & 2

stories
3 & 4

iteration 2

in an iteration, a vertical 
customer-centric

feature is created that 
cuts across layers or 

components

https://less.works For Gene Gendel only, id:gene-gendel



307

Behavior-Oriented Tips

This last clause, driven by architecturally significant customer fea-
tures, is discussed in the next tip…

Try…Do customer-centric features with major architectural 
impact first

This tip is similar to some of the previous tips, but with a stronger
emphasis on the risk-driven prioritization.

We were coaching a small-ish (100 person) product group in Berlin
some years ago. One of the operation and control user stories had a
concurrency scaling goal of 80 simultaneous sessions (all with high
responsiveness). Do that early.

In Boehm’s spiral invariants model (of good architectural practices
in large-scale development, [Boehm00b]) the fifth invariant implies
that early iterations aim toward the milestone named life cycle
architecture. By this milestone the core architecture elements (both
hardware and software) should be programmed and in place—
proven through early integration and serious testing of production
code rather than speculation or mere prototyping (though prototyp-
ing in addition to this goal is also good). This is very sensible advice.

Therefore, choose to do, in early iterations, customer-centric goals
(user stories, use cases, activities, …) while at the same time choos-
ing from a set of features that also have major architectural implica-
tions (for example, a feature with hard performance requirements or
one that requires touching many components). Choose customer-
centric features that by being implemented force people to discover
and deal with major architectural issues early on. Not all customer
features compel people to identify and resolve the major layers, com-
ponents, communication themes, or performance issues. Ignore
those features in early iterations and instead choose the hard ones.

This tip is an example of risk-driven development (a theme of the
spiral invariants), in this case addressing two risks: 

! business risk—of not aligning with what the client values

! technical risk—of not building a solid architecture

Both have to be addressed in early iterations. No false dichotomy.

https://less.works For Gene Gendel only, id:gene-gendel



308

8 — Design & Architecture

Try…Architects clarify by programming spike solutions

In a gargantuan 20 MLOC product with a host of people titled
‘architect,’ it is so tempting and safe for these good people to think,
“Well, that’s a pretty big and messy system now, and it’s been 23
weeks since I did any programming. It is so much simpler for me to
write a document explaining what I want changed in the architec-
ture. Why not? I know what’s going on.” Avoid that temptation; leave
your comfort zone. Rather, encourage master-programmer architects
to first refine and discover ideas through programming a spike solu-
tion—exploratory programming that drives a thin vertical spike
through components [Beck99]. Follow that, perhaps, by leading a
design workshop with agile modeling that conveys the insights to
other developers or by documenting the discoveries in an agile docu-
mentation workshop.

Avoid…Architects hand off to ‘coders’

In large product development, this handoff is a common problem.
Instead, move to a model of master-programmer architects, archi-
tects as pair programming mentors, architects as design workshop
coaches, and so forth.

Try…Tiger team conquers then divides

For the initial release for a new product or a major rewrite of core
architecture, try starting the work with a co-located “tiger team” of
great programmer-architects in one team room. Do not start off with
a giant group. Keep it to a small tiger team until it hurts; they first
program and conquer the key architecturally-significant features.

Repeating a quote (from page 1) on the 1950s large SAGE develop-
ment, a senior project manager was asked about lessons learned:

He was then asked, “If you had it to do all over again, what
would you do differently?” His answer was to “find the ten best
people and write the entire thing themselves.” [Horowitz74] 

https://less.works For Gene Gendel only, id:gene-gendel



309

Behavior-Oriented Tips

Then, assuming it is starting to hurt (more people are needed; the
feature velocity is much too low), explore ways that the tiger team
members can divide to help in the formation of multiple teams. 

Perhaps half the tiger team members disperse to join new feature
teams. This may mean returning home to Bangalore after four
months in Boston. Maybe four or five new people join the now-
shrunk first team.

Any roaming tigers will play a technical leadership role and educate
new team members in new teams on the core ideas, through pair
programming and during design workshops. See Figure 8.9.

Figure 8.9 start 
programming a new 
product with one
tiger team

Elssamadisy and Elshamy [EE06] have cleverly coined this practice
Divide After You Conquer.

We remember a horror story from a product group that did not apply
this tip (we started coaching there during release-3): The first
release was a disaster. What happened? It was a new product, imple-
mented in C++. They took ‘experienced’ Powerpoint-architect
‘experts’ from a successful legacy product—who had never imple-
mented a C++ or object-oriented (OO) system—to write architecture
documents. Then 200 programmers started development from day
one, distributed across two sites. Many had never worked with an
OO language, so they were given a three-day course in C++. The
product was two years late and during release-3 they were still fix-
ing major quality issues and redesigning “the architecture.” 

...

one small tiger team,
co-located

I1 I2 I3 I4 I5

multiple teams,
!tigers" join

https://less.works For Gene Gendel only, id:gene-gendel



310

8 — Design & Architecture

Try…SAD workshops at end of “tiger phase”

A system architecture documentation (SAD) workshop may be use-
ful at the end of the tiger team phase, to provide a learning aid for
the new teams that will soon join (Figure 8.10). It may be useful to
start the teams with a second SAD workshop, for education. Note
that these practices try to reduce the lean wastes of handoff and
information scatter. See subsequent experiments for more on SAD
workshops and creating an agile SAD.

Figure 8.10 a time 
to get SAD

Try…Agile SAD with views & technical memos

In a large system with 900 developers, inevitably multisite, docu-
mentation is helpful for some aspects of the design or architecture,
though it can’t replace “human infection” (see next tip). How to
structure the SAD? What to say? How to record it? Try…

Try…Back up “human infection” with an agile SAD workshop

The lean waste of document handoff is a major invariant in software
development—handoff just does not work well. Indeed, design docu-
ments rarely even get read by hands-on developers. Therefore, a
theme of this chapter of tips has been to focus on educating develop-
ers through “human infection,” through careful and ongoing face-to-
face coaching from manager-teachers who are up-to-date master-
engineers, and from other technical leader-teachers. By ongoing—
each iteration—participation in design workshops, system architec-

...

one small tiger team,
co-located

I1 I2 I3 I4 I5

multiple teams,
!tigers" join

SAD
work-
shop

SAD
WS

SAD
WS

SAD
WS

SAD
WS

SAD
WS

https://less.works For Gene Gendel only, id:gene-gendel



311

Behavior-Oriented Tips

ture documentation (SAD) workshops, pair programming, and code
reviews, these technical leaders and master teachers ‘infect’ their
colleagues with ever-broader and deeper understanding of the sys-
tem design.

Figure 8.11 an agile 
SAD workshop, 
sketching different 
architectural views; 
note the many 
whiteboards

Yet, this agile advice could be mutated into another false dichotomy:
human infection or documentation. Especially in large systems, try
both. Emphasize leaders-are-teachers, while at the same time back-
ing this up with a SAD. Plus, by creating or evolving a SAD in agile
SAD workshops, the event itself—involving a medium-sized group,
often with representatives from many teams—becomes another
opportunity for teaching and learning.

A SAD workshop is different than an agile design workshop. How?

! Design workshops are done before doing real design—the
source code. The output of the workshop is conversation, learn-
ing, and speculation—sketches on walls. For large-scale system
speculation, joint design workshops apply. Design workshops—
for one item or the overall system—are highly creative.

! SAD workshops are done after the implementation (for exam-
ple, shortly after a release every six months). A SAD workshop
looks backwards at the finished system, and describes it. It is
not creative, but it is informative—as the participants learn
more about the existing architecture, and generate ideas for
improvement to consider in future joint design workshops.

For the content of a SAD, consider the N+1 view model and technical
memos; see the Documenting Architecture chapter in [Larman04a].

For recording the SAD, take digital photos of the N+1 view sketches
on the whiteboards and store in them in a wiki. Also, type technical
memos into wikipages. 

https://less.works For Gene Gendel only, id:gene-gendel



312

8 — Design & Architecture

Try…Technical leaders teach during code reviews

Code reviews are customarily characterized as an event for identify-
ing defects and are seldom done (it seems) by senior product archi-
tects. But the event can be used for education rather than just defect
discovery—especially to help improve design skills and to maintain
architectural integrity. A key lean principle is “Go See” or “go see at
the place of the source of the problem and fix it there.” Architects or
technical leaders who attempt to establish and maintain architec-
tural integrity only through creating presentations or documents
will not succeed well. But master-programmer architects, who regu-
larly spend time doing code reviews (the “real place”) with develop-
ers, have a chance to educate others in these goals in the most
concrete way, while also keeping close to the true design—the code.
This tip supports the lean focus of seniors-as-teachers.

Try…Experts 
participate in 
ongoing design 
workshops rather 
than late 
approval reviews

Avoid…Approval reviews by experts at the end of a step

What’s wrong with this picture?

1. Person or team creates a speculative design and documents it.

2. Send document to an expert (usually, an ‘architect’) for review
and approval.

3. People wait for approval or amendments.

To start with, this increases the lean wastes of delay, handoff, and
information scatter. There is also a lost opportunity for coaching and
education: If the expert who received the document for review and
approval is critical to ensure a good design, they should be at the
early agile design workshops with the team, so that the original
design is better, and so that they can teach the team to improve their
speculative designs during original creation.

An external approver also forces an external process on the team;
they are no longer fully in control of their work practices and
improvement experiments. 

At Nokia (where Bas used to work), they used to apply a traditional
review/approval process: a document was inspected and approved
(or not) after it was written. As common with handoff waste, there

https://less.works For Gene Gendel only, id:gene-gendel



313

Behavior-Oriented Tips

was a delay until it was reviewed, and feedback was indirect. Plus, if
corrections were required, the cycles repeated. 

To improve, they introduced a workshop technique called RaPiD7
[Kylmäkoski03]. The document was written and approved during
one workshop with all the relevant stakeholders there so that there
was no need for a separate inspection/approval cycle, and also to
increase learning.

This experiment is not about stopping reviews or feedback; it is
about changing the ways of work so that reviewing is a positive
experience: value-adding, fast, and educational—rather than the
traditional negative experience of delayed-approval processes.

Try…Design/architecture community of practice

See “Try…Com-
munities of Prac-
tice” on p. 207.

Communities of practice (CoP) are an organizational mechanism to
create virtual groups for related concerns. The technical leaders or
programmer-architects who are responsible for knowing and teach-
ing the architectural vision are members of feature teams. If these
technical leaders are scattered onto various teams, they have a need
to regularly get together for many reasons, and to have a shared
information space. They can form a CoP and share a CoP wiki space.

Try…Show-and-tell during workshops

If related teams participate in a common design workshop, it is use-
ful both for feedback and education for teams to visit other teams’
walls once or more, to hold “show and tell” sessions. This is also use-
ful if one team (of seven people) decides to split into two sub-groups
during the workshop and model different features in parallel. Group
One is invited to the Group-Two wall to see and learn the design
ideas, and help evolve them. And, vice versa.

https://less.works For Gene Gendel only, id:gene-gendel



314

8 — Design & Architecture

Try…Component guardians for architectural integrity when 
shared code ownership

“Try…Transi-
tion from compo-
nent to feature 
teams gradu-
ally” section on 
page 391

This tip was covered in the Shared Responsibility for Design section
of the Feature Teams chapter in the companion; it examines several
ways to support architectural integrity when there are feature
teams and collective code ownership (rather than component teams).

Successfully moving from solo to shared code ownership supported
by agile practices doesn’t happen overnight. The practice of compo-
nent guardians can help. Super-fragile components (for which
there is concern9) have a component guardian whose role is to teach
others about the component ensures that the changes in it are skill-
ful, and help remove the fragility. She is not the owner of the compo-
nent; changes are made by feature team members. A novice person
(or team) to the component asks the component guardian to teach
him and help make changes, probably in design workshops and
through pair programming. The guardian can also code-review all
changes using a ‘diff ’ tool that automatically sends her e-mail of
changes. This role is somewhat similar to the committer role in
open source development, but with the key distinction of not block-
ing commits from others; blocking would create massive bottlenecks
and delay.10 They are teachers and component-improvers, not
‘gates.’ Component guardians are another example of the lean prac-
tices of regular mentoring from seniors and of increasing learning.

Try…Component mailing lists

Another technique to supported shared code ownership is a mailing
list (or other channel) for each delicate component. People working
often on a component discuss refactoring, structure, bugs, code
reviews, announce training, and so forth. Of course, anyone can join

9.  A typical reason for concern about delicate components is that the 
code is not clean, well refactored, and surrounded by many unit 
tests. The solution is to clean it up (“Stop and Fix”), after which a 
component guardian may not be necessary.

10. But the roles are not identical. Guardians (or ‘stewards’) do more 
teaching and pair programming, and allow commits at any time. 
Committers also teach, but less so, and control the commit of code. 

https://less.works For Gene Gendel only, id:gene-gendel



315

Behavior-Oriented Tips

or leave a list according to need; any component guardians are long-
term members.

Try…Internal open source with teachers—for tools too

See “Try…Plan 
infrastructure 
items by regular 
teams” on p. 168.

Agile development encourages shared code ownership. And feature
teams imply working on all necessary code for a feature. In this
sense, agile development in similar to an internal open-source model
of development, but with the difference of even more collective code
ownership and no committer ‘gates’ that create delay; rather, compo-
nent guardians—if needed—help without blocking. As an agile
coach, “internal open source, with some guardian-teachers” can be a
useful way to explain the idea of collective code ownership, because
most people know that various open-source models can work well.

Extend this to internal tools, not only shared components. Rather
than “the team in Poland maintains our test tool,” experiment with
an internal (or even public) shared code or open source model. Good
developers master and evolve their tools; this model promotes that.

Try…Configurable design for customization

Avoid…Branches 
for customization

Several of our clients have dug themselves into a rather difficult
hole by creating a separate branch for each customization of their
product for different clients. Those who have experienced this—
especially in very large systems—know all-too-well that this
increasingly becomes a configuration, maintenance, and testing pain
as the years and number of branches grow.

See “Avoid… 
Branching” on 
p. 358.

Rather than branches, try configurable designs (for example, with
meta-data or some pluggable architecture) that activates/includes
(or not) specific components or features.

https://less.works For Gene Gendel only, id:gene-gendel



316

8 — Design & Architecture

Avoid…Create ‘designs’ and then send them for offshore imple-
mentation

See
“Try…Experts 
coach/review 
rather than dic-
tate design” on 
p. 474.

We sometimes visit organizations that claim they no longer “do the
waterfall” and yet have a requirements group, a design team, an
implementation group, and a testing department—the waterfall
expressed in their organizational structure, filled with the waste of
handoff and silo mentality. Some groups starting to offshore work to
India or China reintroduce and aggravate these problems by, for
example, having a group in Europe do detailed UML diagrams of a
speculative design that is then sent to a group of programmers in
India to code. This is a familiar variation of waterfall mentality;
avoid it. It is simply a mini-waterfall in short iteration cycles. 

Also: See “Avoid…Architects hand off to ‘coders’” on p. 308.

Try…Architectural and design patterns

Detailed architectural design for large systems is beyond the scope
of this chapter, which emphasizes process-oriented design tips. But
there is a wealth of well-written robust solutions in the design pat-
tern community to help create an agile architecture. Get the books,
learn and apply them (see Recommended Readings).

As a theme, patterns provide a protection at some variation point
in the architecture, through indirection, meta-data, interfaces and
polymorphism, and more. These techniques reduce dependencies
and enable more, and faster, concurrent development in large prod-
ucts with many teams. Creating more knowledge faster and deliver-
ing value quicker are key goals in lean thinking.

The ninth agile principle emphasizes good design: Continuous atten-
tion to technical excellence and good design enhances agility.

Try…Promote a shared pattern vocabulary

If technical leaders consistently develop and communicate (both in
words and how they name software components) with well-known
patterns, they help establish shared-design understanding and per-
haps more architectural integrity. This occurs in part through creat-

https://less.works For Gene Gendel only, id:gene-gendel



317

Technically Oriented Tips

ing a shared vocabulary among developers. Patterns have official
published names, such as Layers, MVC, MVP, Strategy, Broker, Ser-
vice Locator, and so forth. These proper names can be used consis-
tently in documentation, speech, and code—for example, an
interface named RoutingStrategy. Although the prime value of pat-
terns is reusing good design ideas, they can also establish a common
vocabulary for your system’s design. When scaling to a system with
300 developers in many sites, that helps.

This tip seems obvious, but some technical leaders are not sensitive
to the positive influence they could have as teachers. Creating
shared vocabulary is a tool that skilled educators apply. 

Try…Test on the old hardware as soon as possible

Usually, large embedded products have been around for some time
and there is an existing hardware platform. A new hardware revi-
sion may be underway and will require unique integration testing,
but it is not necessary to delay testing until the new hardware is
ready. Integrate and test on existing platforms as soon as possible. If
new software features being written depend on new hardware fea-
tures, use data-driven configuration or stubs to disable or fake those
elements when testing on older platforms.

TECHNICALLY ORIENTED TIPS

Over the time that we have worked with large products, usually
embedded systems, we have built up a list of common tips that could
have reduced some of the pain and suffering we see and our clients
feel. This section lists a few of these tips. An entire book could easily
be written on this subject…

Try…HTML-ize and hyperlink your entire source code, daily

With a small system one can navigate rapidly through all the source
code simply loaded within your development tool. When there are
36,839 files and 15 MLOC, navigation is not easy. Use a free tool
such as Doxygen (www.doxygen.org) to transform your source code

https://less.works For Gene Gendel only, id:gene-gendel

www.doxygen.org


318

8 — Design & Architecture

into a set of HTML pages, in which all source code elements (func-
tions, …) are hyperlinked. Doxygen (and similar tools) will also gen-
erate diagrams that reflect larger structures and groupings in your
code base. Regenerate the pages daily. This is immensely useful for
understanding and evolving a massive code base. 

Try…Lots of stubs, plus dependency injection

Create stubs11—or ‘fake’ code alternatives—for many things:
classes, interfaces to other components, hardware, and so forth.
Stubs are usually created with an alternative interface implementa-
tion or by subclassing the ‘real’ class in object-oriented designs, or
with function pointers or alternate implementation files on a vary-
ing link path in C-based designs [Feathers04]; for example:

interface PrinterMotor {
void start();
…

}

class CanonPrinterMotor implements PrinterMotor {
…

}

class PrinterMotorStub implements PrinterMotor {
…

}

If there is no interface (and even if there is), stubs can be created
through subclassing and overriding relevant methods:

class CanonPrinterMotor {
…

}

class PrinterMotorStub extends CanonPrinterMotor {
…

}

Further, provide a “back door” in many classes that makes it easy to
inject a dependency to an alternative stub rather than the real
object; for example, with constructor injection [Fowler04].

11. Some incorrectly use the term mock when what is meant is a stub 
or, more broadly, a test double. Martin Fowler has addressed this 
in his online article Mocks Aren’t Stubs [Fowler07]. In practice, 
stubs are far more common than mocks [Meszaros07].

https://less.works For Gene Gendel only, id:gene-gendel



319

Technically Oriented Tips

class LaserPrinter {
private PrinterMotor motor = new CanonPrinterMotor(); //

default
…
public Printer( PrinterMotor alternativeMotor ) {

motor = alternativeMotor;
}

}

The combination of many stubs with many back doors for depen-
dency injection opens up tremendous advantages: increased con-
current engineering, early integration with stubs when the real
components are not available, testing with stubs, stubs that provide
fast and well-known demo data. In the context of large product
development, massive use of stubs is a key technique to work in par-
allel and go faster, reducing the lean waste of waiting.

Avoid…Using stubs to delay integration

Wonderful! Now that everyone has stubs you can delay integrating
all the code for months or even years. Don’t even think about.

Try…Test-driven development for a better architecture

TDD can help improve the architecture of a system. How?

When we are coaching, a frequent request is help for dealing with
our client’s “inflexible architecture.” This most often boils down to
problems in high coupling between components—a common problem
in legacy code written without TDD because the original developer
did not try to test the component in isolation.

On the other hand, when a developer creates a new component (such
as a class) with TDD, or refactors a legacy component to be unit-test-
able, they must break the dependencies of that component so that it
is testable in isolation. That requires designing (or refactoring) for
dependency injection and increased use of mechanisms for flexibil-
ity: interfaces, polymorphism, design patterns, dependency injection
frameworks, function pointers, and more.

In this way, TDD encourages lower coupling and simple, flexible con-
figuration—qualities of a good architecture.

https://less.works For Gene Gendel only, id:gene-gendel



320

8 — Design & Architecture

Try…Dependency injection framework

Dependency injection and easy, flexible configuration are desirable
qualities for an agile architecture; they make it easier to (1) test
components, (2) quickly develop without waiting for completion of
third-party components, and (3) evolve in response to change.

There are several frameworks for dependency injection and configu-
ration, including Spring (for Java) and Spring.NET. Although less
well known, frameworks also exist for C++.

Try…Use an OS abstraction layer

We work with two clients of similar large multi-MLOC embedded
products. Client-A created a homegrown operating system (OS) and
wrote the higher layers directly coupled to it. Client-B created an OS
abstraction layer on top of their original OS (VxWorks)—a level of
indirection for protection at that variation point. At some point, they
both decided to move to a real-time Linux OS. Client-B finished the
port in a couple of months; after some years, Client-A is still explor-
ing. Agility through low coupling.

This tip is automatically satisfied if you are using Java or a similar
platform. However, most of our embedded-product clients are using
C and C++. In this case, try one of the existing open-source OS
abstraction layers, such as Boost or the Apache Runtime Library.

Try…Create a low-level hardware abstraction layer (HAL) API

As an example in the Unix-like world, calling device drivers and
thus controlling hardware is often realized through a low-level sys-
tem call to the ioctl (“I/O control”) function:

int returnCode = ioctl( 12, 17, printerStruct );

As we are sure you can tell, someone is asking a printer to eject a
page!

Some large product groups write their systems with many ioctl calls
throughout their code (or equivalent), directly coupling to the low-
level hardware control mechanism. This introduces a variety of

https://less.works For Gene Gendel only, id:gene-gendel



321

Technically Oriented Tips

problems: obscurity, mixing levels of abstraction, old-fashioned error
handling, and more.

Start to improve the design by introducing a thin HAL API layer on
top of this lowest level, with well-named and stateless functions that
express intent, and use modern exception handling. For example:

void ejectPage( printerStruct );

Or a similar low-level API class wrapper.

class PrinterAPI {
public:

static void ejectPage( printerStruct ); …

Try…Create a mid-level object-oriented HAL

Create a mid-level object-oriented HAL that calls the low-level HAL
API, provides abstractions, may be stateful, exploits polymorphism,
and easily allows object-oriented stubs and other dependencies to be
injected. For example:

interface PrinterMotor {
void start();
void ejectPage();

}

class CanonPrinterMotor implements PrinterMotor {
// public methods that call the low-level HAL API
// private state
…

}

Try…Create simulation layers for hardware, etc.

Most of the large product groups we have served with are creating
embedded systems: military radios, set-top digital TV boxes, net-
work elements, printers, mobile phones, operating systems. A design
tip that makes a significant improvement toward agility is to invest
in creating a simulation layer of the hardware (or some part of it) or
any software component that we need to integrate with but that is
not available to us. Or, we want to simulate the hardware/software
component because integrating with the real component slows us
down, for example, having to download software onto a real printer
every time we want to test something. Simulation layers—an expan-

https://less.works For Gene Gendel only, id:gene-gendel



322

8 — Design & Architecture

sion of the concept of stubs—support the lean practice of concurrent
engineering and reduce the waste of waiting.

Most of the embedded systems groups we have worked with have
experimented with simulation layers or fakes in the past, but it is
usually of the form, “Well, I think Jill built something three years
ago, but she’s gone now. I’m not sure where the source code is.” Man-
agement, unaware of the many degrees of freedom that having use-
ful simulation layers provides, are often unwilling to meaningfully
fund the effort. It’s worth it.

A simulation layer does not have to be terribly complex. We have
used and seen several approaches to lighten the effort:

! When there are existing hardware or software components to
be simulated, create a record-playback solution that captures
signals or output from the component. In the simulation layer,
play these back as appropriate.

! Most hardware can be modeled with a finite state machine
(FSM). Try open-source FSM tools that automatically generate
state machine code from state tables.

A simulation layer can be realized through an alternative imple-
mentation of the low-level or mid-level object-oriented hardware
abstraction layer discussed previously.

Voltaire noted, “Le mieux est l’ennemi du bien.” (The best is the
enemy of the good). Some groups block themselves from building a
simulation layer because they think in terms of a great or perfect
simulation, or discussions devolve into “what about that special
case…” Start simple, don’t delay.

Try…More FPGAs and fewer ASICs

In lean product development one tries to outlearn the competition.
Themes include (1) trying to generate more and faster knowledge
and feedback and (2) creating more alternative designs in parallel. 

But some clients we work with focus their early hardware efforts
only on ASIC development and along one design path. Slower devel-
opment and lower feedback.

https://less.works For Gene Gendel only, id:gene-gendel



323

Technically Oriented Tips

In contrast, FPGAs are an excellent alternative to quickly explore
more alternatives, get earlier prototypes to software people, and
deliver more quickly.

Although FPGAs can and should be used for specialized logic, it is
now also possible to define more general ‘soft’ microcontrollers
embedded within an FPGA; for example, using Xilinx PicoBlaze or
alternatives. In addition to the chip-internal advantages—microcon-
trollers provide more efficient use of FPGA resources for some
tasks—a microcontroller provides a higher-level abstraction for soft-
ware that interacts with the FPGA. Software developers can pro-
gram to a higher-level API provided by the FPGA, and this API may
also remain (relatively) stable across new generations of chips.

Introduction to Interfaces and Interactions Tips

Defining and evolving interfaces between components and inter-
component interaction are major issues in large-systems develop-
ment. In fact, what Grady Booch12 has called “designing at the
seams” [Booch96] is arguably the dominant architectural issue in
big applications. Note also that the pain of ‘integration’ in multisite
or super-large products is a reflection of interaction. When you are
working with a 15 MLOC behemoth composed of 234 major compo-
nents, each containing on average 64 KLOC, it is the interactions
and interfaces that tend to dominate day-to-day overarching archi-
tectural concerns, not the design of any one module—or even what
modules are present. 

Interfaces—In this section, the notion of ‘interface’ includes

! interface as used in Java or C# (local or remote)

! operation signature (function name and parameters)

! web service interface (for example, with WSDL)

! and the like 

12. Software is a fast-changing field; thought leaders quickly become 
lost to a new generation. Do not miss studying the writings of Grady 
Booch, an OOD pioneer.

https://less.works For Gene Gendel only, id:gene-gendel



324

8 — Design & Architecture

Large systems are usually old; lots of C code is common, and the
‘interface’ to another component may be simply a function signature,
such as debit( int, float ). Another context for these tips is that in a
250-person product group, the client-programmer using a published
API may be different than the service-programmer who imple-
mented it years before.

Avoid…Big upfront interface design

An old—and unnecessary—strategy for the interface problem was
“Before programming, define and freeze the interfaces between major
components. Then, use a change-control process when interfaces need
to evolve.” This is a decide-early push model of design; problems
associated with it include

! delayed definition—owing to complexity and the many people
involved

! lack of usage-based feedback

! incorrect interfaces (from lack of realistic feedback)

! slow change process 

! extra conversion or adaptation code on both sides of an inter-
face to deal with inevitable evolution when constrained by a
frozen interface

There are workable alternatives to this unnecessary idea. The fol-
lowing tips offer lean thinking decide-as-late-as-possible alterna-
tives.

Try…Start with some weakly-typed interfaces, then strengthen

Here, a weakly typed interface means to invoke operations of
another component by using a simple perform(Map) method: 

Map results = componentB.perform( request );

where componentB is some big foreign component and request is an
instance of a Map of key-value pairs, perhaps of type String; for
example, 

https://less.works For Gene Gendel only, id:gene-gendel



325

Technically Oriented Tips

Map request = ("opName" = "debit", "accountNum" = "1234", 
"amount" = "10.00");

The contents of the request Map, especially the values of the key-
value pairs, may be more complex objects than simple Strings. The
example is simplified for exposition.

The perform operation is implemented to analyze the request Map,
and invoke the appropriate action based on the value of opName, for
example, a debit action if the value is “debit”.

Note also that the return type is a Map object—an arbitrary collec-
tion of key-value pairs. With this, unanticipated return values (from
none to anything) are possible. 

This is in contrast to a strongly typed interface such as

interface Account {
void debit(int accountNum, Money amount);
void credit(int accountNum, Money amount);

}

With weakly typed interfaces, the evolving details of the requests or
operations—the operation names and parameters—are encapsu-
lated within the request Map, and results are likewise encapsulated
in a Map. If the client-programmer sees the need to add another
parameter or a new operation, she is not delayed (1) by the steps
required to change a strongly typed interface, (2) by the coordination
between her and other programmers, and (3) by the code itself.

For example, the programmer (in the role of a client to another com-
ponent) discovers that a currency parameter is needed and changes
the content of the Map:

Map operation = ("opName" = "debit", "accountNum" = "1234", 
"amount" = "10.00", "currency" = "euro");

Of course, her changes will not immediately work in the service com-
ponent—she still needs to change its code. But there are advantages: 

! First and most important, before implementation the minimal
‘interface’ design effort is simply to add support for a per-
form(Map) operation on all components—fast, straightforward,
flexible, supportive of change and learning, and no long, ardu-
ous upfront design effort to identify and freeze all interfaces.

https://less.works For Gene Gendel only, id:gene-gendel



326

8 — Design & Architecture

! Changes do not break existing code; no new compilation errors,

! The programmer is not delayed in making a change,

! Others are not impacted or delayed by the programmer’s
change.

The discovery and improvement of operations through weakly typed
interfaces is a simple, light process.

Middle way—Of course, you are not limited to—and we are not rec-
ommending—only the ultra-simple step of just adding a perform
operation and ignoring further early interface modeling and design.
It is perfectly appropriate to speculate likely operations (such as
‘debit’ and ‘credit’ and their parameters) and implement support for
them through strongly typed interfaces and also through the per-
form interface. Weakly typed interfaces simply give us another degree
of freedom to go faster and to increase agility.

Strengthen them—Strongly typed interfaces have advantages,
including performance, clarity, compile-time type checking, refactor-
ing, and automated code generation. So, people start with weakly
typed interfaces when it seems useful. Then, after the operations of
a component have stabilized through an evolutionary discovery pro-
cess (that could take weeks or months), they strengthen them—
replacing the flexible-but-obscure perform calls with strongly typed
calls. The perform(Map) interface is always kept for future discovery
steps, but stabilized operations are strengthened.

Conclusion—This tip is an analog to desire lines mentioned at the
start of this chapter; you discover the paths in the ground through
usage and then strengthen them. It illustrates the lean principle of
decide as late as possible and supports learning and evolution.

Try…Simplify interface change coordination with feature teams

As explained in the Feature Team chapter in the companion book, a
feature team is cross-component and changes all the code across all
components necessary to complete a customer-centric feature. This
reduces coordination problems related to interfaces because the
same person or team works on both the calling and called side of the

https://less.works For Gene Gendel only, id:gene-gendel



327

Technically Oriented Tips

interface. In contrast, separate component teams increase the com-
plexity of interface coordination.

Avoid…Freezing interfaces

There are times when a published API truly needs to be frozen. But
challenge these decisions, keep things as unfrozen as possible, and
experiment with techniques to support evolution of interfaces. Some
techniques are suggested here and others in the Recommended
Readings.

Try…Wrap calls to remote components with proxies or adapters

Remote components—called via JMI, RPC, SOAP, message-oriented
middleware (MOM), or a socket—are a guaranteed point at which
people will want to inject a stub to allow testing in isolation, no
longer talking to the remote element. Further, it is common that the
remote communication mechanism (such as RPC versus MOM) will
change.

Therefore, you want protection at this variation point in the archi-
tecture by always wrapping the calls to other remote components
with objects and polymorphism, using the Proxy or Adapter design
patterns [GHJV94]. 

Try…Start with indirect interaction between major components, 
then replace as needed

Large systems are typically composed of hundreds of major compo-
nents, and these may be local or remote to each other. We see com-
mon problems related to interaction between major components
(such as subsystems) in big systems:

! dependency on knowing what major component is the receiver
of a message or operation call

! dependency on knowing the communication mechanism, such
as a direct function call, RPC, SOAP over HTTP, and so forth

! complex and repetitive communication failure handing

https://less.works For Gene Gendel only, id:gene-gendel



328

8 — Design & Architecture

! inability to use pluggable features/components because of high-
coupling problems

The following tip may help…

The computer scientist David Wheeler was famously quoted as say-
ing, “Any problem in computer science can be solved with another
layer of indirection.” 

A resolution to the above issues is to use an indirect communication
mechanism between major large components (such as subsystems),
in contrast to something direct such as a Java RMI or SOAP call.
This “indirect interaction” is deeper than just adding an adapter or
proxy between components; it means using some form of indirect
messaging system.

There are several options for indirect messaging between major
large components. One robust choice is message-oriented middle-
ware (MOM), such as JMS and MSMQ. Rich with options, support-
ive of pluggable architectures, MOM is worth a close look. Home-
grown or open source lighter-weight “message bus” MOM solutions
are another option. Doing inter-component communication with
MOM provides a degree of freedom that enables lower coupling and
more pluggable architectures. MOM solutions also offer built-in
communication fault-tolerance and recovery features.

Actually, there was a second sentence in Wheeler’s quote that is less
known; here is the whole thing: 

Any problem in computer science can be solved with another
layer of indirection. But that usually creates another problem.

Sometimes, “another problem” is a performance impact. 

A potential MOM disadvantage is a performance drop. In this case,
as with the weakly typed interfaces tip, you can start with a MOM
solution to discover the “desire lines” of communication while ignor-
ing the performance degradation. Then, as communication path-
ways stabilize and you discover performance hot spots, you replace
slower MOM interactions with faster mechanisms such as the Java
RMI. This is another example of pull design. MOM remains the
default mechanism unless it is not performant for a case.

https://less.works For Gene Gendel only, id:gene-gendel



329

Technically Oriented Tips

If this tip is combined with the tip to always use proxy or adapter
objects for remote-component communication, then when the back-
end mechanism is changed from MOM to RMI, the internal code is
not affected—one simply needs to inject an alternative adapter. 

CONCLUSION

Buildings are hard and static. Software is soft and dynamic. So,
‘architecture’ is far from an ideal metaphor for creating software; it
can even promote the misunderstanding that there is some design
other than the source code, and that the design is essentially frozen. 

But the software design is continually evolving and emerging with
every modification to the code by every programmer. The key ques-
tion is: Will it emerge as a beautiful well-tended garden, or as a jun-
gle of weeds? 

The tips in this chapter encourage high-quality emergent design by
a development culture of gardening and shorter and richer feedback
cycles, rather than ‘architecting.’ And that requires great gardeners:
master-programmer architects who actively code the architecture
and who continually coach other programmers during pair program-
ming and agile modeling design workshops.

For sustainable large-scale agile systems, it is vital for people to
master design techniques for flexibility: design patterns, depen-
dency injection, test-driven development, refactoring, and more. But
without a culture of coaching-while-coding by technical leaders,
these techniques will not be sticky or pervasive.

We suggest no false dichotomy between coding and modeling; the
latter is valuable—especially in large-scale systems. In addition to a
focus on code, agile modeling design workshops are a great, light-
weight technique to quickly explore speculative designs and learn
together. Perhaps the key ingredient is massive ‘whiteboard’ spaces,
therefore, take over the walls!

https://less.works For Gene Gendel only, id:gene-gendel



330

8 — Design & Architecture

RECOMMENDED READINGS

This section reiterates several texts recommended in the Legacy
Code chapter; this is to be expected because agile design recognizes
that the real software architecture is in the code.

! The site www.codingthearchitecture.com emphasizes the need
for architects to be master hands-on active developers.

! Many of our clients have vast quantities of messy legacy code
that is difficult to test in isolation and difficult to evolve.
Michael Feather’s Working Effectively with Legacy Code is an
important antidote, covering the techniques that allow devel-
opers to start designing a more agile architecture within their
existing code base.

! A key element of technical agility is design patterns. Consider
these texts: Design Patterns, Pattern-Oriented Software Archi-
tecture (five volumes), Applying UML and Patterns, and Pat-
tern Languages of Program Design (five volumes). 

! Two books by Bob Martin encourage a more agile architecture:
Agile Development, Principles, Patterns and Practices and
Clean Code: A Handbook of Agile Craftsmanship.

! Two more useful quality-code-oriented books include Code
Complete by Steve McConnell and Implementation Patterns by
Kent Beck.

! Growing Object-Oriented Software, Guided by Tests by Steve
Freeman and Nat Pryce reinforces a culture of growing rather
than specifying “the architecture.”

! Domain-Driven Design by Eric Evans encourages thoughtful
iterative design, shared understanding, and a domain model
that must be well-expressed in the code.

! The paper Agile Product Development [TR98] explores the busi-
ness value of product development and design agility, and how
how development flexibility can be quantified.

https://less.works For Gene Gendel only, id:gene-gendel

www.codingthearchitecture.com


This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• How to Write New Legacy Code 334

• How to Avoid Writing New Legacy Code 335

• OK, I’ve Got Legacy, Now What? 343

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



333

Chapter

9
LEGACY CODE

I don’t want to achieve immortality through my work…
I want to achieve it through not dying.

—Woody Allen

Avoid...Legacy 
code

If you work for a large product group, then by the time you are read-
ing this chapter you are probably thinking, “This book contains some
useful ideas, but we have five million lines of code in our homegrown
programming language that we need to maintain. These ideas do
not work in my environment.” Well, this chapter is for you.

Existing well-structured reusable code is a valuable asset. However,
this asset can turn into legacy code—poorly structured, inade-
quately documented code with lots of duplication and without auto-
mated tests. Legacy code constrains organizational agility and, as
will be seen, leads to a serious competitive disadvantage. This chap-
ter is about how to write that legacy code, and how to avoid it.

But before diving into the subject, it is worth appreciating how
many jobs exist because of legacy code. We travel around the world
and frequently work in developing countries. In these places, people
have risen out of poverty because of the jobs created to maintain leg-
acy code. In countries such as India and China, several cities
exploded in size and wealth over the last decade because of the out-
sourcing industry, and much of this outsourcing relates to legacy
code. It is worth appreciating this.

On the other hand, what would have happened if all this energy was
put into creative, innovative new products? Besides which, legacy
code has also destroyed companies…

https://less.works For Gene Gendel only, id:gene-gendel



334

9 — Legacy Code

Figure 9.1 browser 
market share and 
releases

One of the best examples
is Netscape, which once
owned the browser mar-
ket. But in 1995,
Microsoft realized the
huge potential of the
Internet and started
what would later be
known as “the browser
wars” [CY00]. In 2000,
Microsoft won the first
battle of the browsers. 

There are many reasons
for this. One is that Netscape did not release a new browser for three
and a half years. Why not? “Because the browser was rewritten inde-
pendently of the ‘legacy’ code that formed the basis of Netscape’s
Communicator browsers” [Festa00]. In 2007 AOL, (which bought
Netscape in 1999) officially killed the Netscape browser
[Netscape08].

This chapter solves all your legacy code problems... okay, maybe not.
It will make your legacy code problem a little less painful and per-
haps, one day, resolved.

HOW TO WRITE NEW LEGACY CODE

Writing legacy code is easy—we can explain it in a few simple steps.
Companies have generated piles of legacy code for decades. At Xerox
we once heard a maxim, “There are many lessons taught, but few
lessons learned.” This is particularly true for legacy code. How to
prevent the lesson of legacy code being taught over and over again,
but was never learned?

How long has it been taught? In 1967, in what is perhaps the first
book on software project management, the author taught us:

Equally responsible for the initiation of project with predefined
failure is management that insists upon having fixed commit-
ments from programming personnel prior to the latter’s under-

0%

20%

40%

60%

80%

m
ar

ke
t s

ha
re

100%

96 97 98 99 00 01 02
year

Netscape
Explorer

Other

https://less.works For Gene Gendel only, id:gene-gendel



335

How to Avoid Writing New Legacy Code

standing what the commitments are for. Too frequently,
management does not realize that in asking the staff for “the
impossible”, the staff will feel the obligation to respond out of
respect, fear or misguided loyalty. Saying “no” to the boss fre-
quently requires courage, political and psychological wisdom,
and business maturity that comes with much experience
[Lecht67].

There are clear causes of legacy code:

! unrealistic deadlines with fixed content

! poor development skills

And of course, in these causes lie the keys to prevent legacy code…

HOW TO AVOID WRITING NEW LEGACY CODE

Avoid…Fixed content with unrealistic deadlines

“We promised this release to our key customer, and the only accept-
able commitment from R&D is the first of February,” said an angry
email sent by a director to the management of the product group we
were coaching. We read it in disbelief and wondered about the only
acceptable commitment. We decided to ignore the email—for now—
and get back to normal work—coaching a developer in refactoring a
legacy component that was hacked together last release to meet that
deadline.

See
“Avoid…Product 
management
negotiating a 
“release con-
tract” (scope & 
date) with R&D” 
on p. 106.

Many companies are stuck in a vicious cycle of forced promises and
unrealistic commitments. In today’s time-to-market era, customers
‘force’ them to promise too much. “If you cannot deliver by the end of
the year, we will buy from your competitor who will make that prom-
ise.” Sales people or executives could respond by being transparent
and by working toward a mutual beneficial long-term relationship
(customer collaboration), but instead they check whether the con-
tractual penalty for being late is tolerable (contract negotiation) and
reply, “Yes, no problem, we can do it!” After which the same cycle
starts within the organization. The executive orders the head of
R&D to “do it” and “make it happen” because “it is a customer prom-

https://less.works For Gene Gendel only, id:gene-gendel



336

9 — Legacy Code

ise.” The promise travels through the organizational hierarchy to
the developer, who cannot pass it on any further.

see secret toolbox 
in Systems 
Thinking in the 
companion book

see Lean Think-
ing in the com-
panion for 
overburden—one 
source of waste

How does the developer react? Charles Lecht [Lecht67] already
warned us over 40 years ago: The developer will “feel the obligation
to respond out of respect, fear or misguided loyalty” and reluctantly
commit to the deadline. The developer opens his secret toolbox and
does everything possible to make the short-term deadline by using
tools such as hardcoding, copy-paste-modify programming, skipping
testing, working overtime, and other quality-destroying shortcuts
[Schwaber07a]. Nobody notices the use of these ‘tools,’ and so the
deadline is made. Management rewards developers for their hard
work and applauds their “great teamwork” and “fighting spirit.”

These quality-destroying shortcuts result in bad legacy code, which
slows down the development and the organization falls behind its
competition. A predictable scenario unfolds. They need to reclaim
the market and therefore make new promises, starting the vicious
cycle all over again. The technical debt—the legacy code—makes
development go slower. The learning debt—lack of renewal in
developer skills—compounds this slowdown. Developers are so busy
keeping unrealistic commitments that they have no time to keep up
to date and refresh their skills (Figure 9.2).

Figure 9.2 dyna-
mics of unrealistic 
deadline

Bob Martin, in Clean Code, argues that a software craftsman would
not make such an unrealistic promise, and that the legacy code prob-

unrealistic
schedules to 
development % of overtime

unrealistic promises 
to customers

% of legacy code

development
speed

O

time for learning

O

developer skills

O

# of quality-destroying 
shortcuts

Goal:
beat the 

competition

https://less.works For Gene Gendel only, id:gene-gendel



337

How to Avoid Writing New Legacy Code

lem can be solved by educating developers to be more professional
[Martin08]. 

Martin is partly right. But this view ignores the fact that a devel-
oper is part of a larger system that reinforces this behavior. Not only
should software craftsmanship be enhanced, but also the system in
which developers work. 

In Europe, we once visited the director of a large (embedded system)
product group and his management team. The director explained
that the group had successfully met their last release goal, and so
questioned the motivation to adopt large-scale Scrum. Just then, one
of his managers spoke up and said, “Well, what really happened was
that near the end of the last release we were far behind and so we
did serious overtime work and pulled over one hundred people off
another product and got them to help. That’s why we shipped on
schedule. Now, we are seriously behind on the current release,
because so much bad code was created in the last release that we are
spending most of our time fixing defects reported from our custom-
ers, and having to work with a mess of a code base.”

see Lean Think-
ing in companion

Observe the relationship between these situations and the absence
of lean thinking. For example, the waste of wishful thinking plays
out in these scenarios. One of the three sources of waste in lean is
overburden—it is easy to see how the heroic push near the end of
release creates more waste in the future. And there is no stop and fix
culture—quite the opposite, it is “carry on and don’t fix.”

Try… Transpar-
ency and cus-
tomer 
collaboration

Telling your customers “We do not know the content and we have no
idea when it will be done” is commercial suicide. But this concern,
which we frequently hear from executives, is a false dichotomy—
either make unrealistic commitments or do not make any commit-
ments at all.

see False Dichot-
omies chapter, 
companion

There is an alternative where both the customer and the client
accept the reality of product development: It is not 95% predictable.
You can accept this reality by being transparent toward your cus-
tomers during development. How? For example, by…

! reporting your development status to your key customer itera-
tion by iteration; for example, with a Release Burndown chart
and updated Product Backlog

https://less.works For Gene Gendel only, id:gene-gendel



338

9 — Legacy Code

! allowing key customers to give feedback on priorities and mod-
ified goals as they see how things are unfolding, and then
adjusting the plan accordingly

! giving estimates with probability distributions or giving multi-
ple estimates [DL03] 

! other techniques that promote cooperating with customers fre-
quently, based on realism and transparency

By such changes in how product companies relate to customers, the
pressure to create bad legacy code is reduced.

see Systems 
Thinking in com-
panion for a 
detailed look at 
the effects of add-
ing people

A common quick-fix response by management to market pressure is
to ‘order’ development to “add more resources,” since they are
‘cheap.’ A product group we worked with was forced to add hundreds
of people within a one-year period. An exception? No, another exam-
ple: The leader of a product group we worked with recently got ‘pro-
moted’ to a new product. The new product had 900 people, 12
different sites, and 20 active branches. It was behind the competi-
tion, and the previous management tried to save it by adding more
people—now it was even more behind.

This is another lesson that has been taught again and again. Per-
haps the first large-scale project in the world was the Semi Auto-
matic Ground Environment (SAGE) system that was developed
during the 1950s. The project was in a hurry so…

Within a year approximately 1000 people were involved with
the development of the SAGE system. People were recruited and
trained from a variety of walks of life. Streetcar conductors,
undertakers (with at least one year training in calculus), school
teachers, curtain cleaners, and others were hastily assembled,
trained in programming for some number of weeks, and
assigned parts in a very complex organization … The originally
hoped for capacities of the system were cut considerably.
The system was first delivered over a year late and consider-
ably more cost than was originally expected.1 [Schwartz74] 

1.  emphasis added

https://less.works For Gene Gendel only, id:gene-gendel



339

How to Avoid Writing New Legacy Code

Avoid…Hiring 
many weak 
developers

Instead of a focus on cultivating great developers or hiring a few
great people, there is a focus on hiring the maximum amount of bod-
ies (or heads, as in head count) which in turn results in a rushed and
inadequate new-hire education program. This quick fix leads to
groups with low-average development skills, groups with a low apti-
tude for being great developers, and so ultimately to more and more
bad legacy code.

Poor Development Skills

The organizational dynamics of promises and commitment does not
explain the whole legacy code story. Bob Martin is right—the indus-
try definitely needs software craftsmanship.

It seems to us that the average skill level of software developers in
large product groups is quite weak. Developers are frequently not
familiar with basic good development techniques—simple practices
such as information hiding and encapsulation, or good design princi-
ples [Martin02]. In embedded systems we sometimes hear develop-
ers exclaim, “Those are object-oriented techniques, but we are
developing in C”, not realizing that some of these concepts were
developed in non-object-oriented technologies (for example,
[Parnas72]). We observed a trend:

But these practices are essential for sustainable software develop-
ment [Tate05]. Fortunately, development skills are not solely depen-
dent on raw talent; they can be taught and improved by

! schools

! organizational support

! self-study

The leadership of a product group may believe they understand how
these educational forums are working, but it may not be so…

The larger the product group, the smaller the 
knowledge of ‘modern’ development practices.

https://less.works For Gene Gendel only, id:gene-gendel



340

9 — Legacy Code

Avoid…Believ-
ing universities 
teach develop-
ment skills

Schools—Universities are not doing a good job in teaching basic
skills to developers. There is a shocking gap between what is hap-
pening in industry and in universities. Many educators have never
worked in industry and have not seen the long-term dynamics of
development skills and legacy code. They also lack a Go See attitude.
Some universities recently added agile development practices to
their computer science curriculum. This is good. However, deep
experience is required to really grasp agile practices such as test-
driven development, and educators seldom have this experience.

As such, do not assume that university graduates have much skill in
software development—especially in agile development.

Try…Increase 
organizational
support for learn-
ing development 
skills

Organizational support—Most companies do a poor job at educat-
ing developers. We frequently hear, “Everybody who graduated from
university can code,” thereby implying that educating basic develop-
ment skills is unnecessary. Our coaching experiences suggest other-
wise. Many developers in large product groups lack fundamental
skills such as good design of software, efficiently working with edi-
tors, effectively using their programming language, or automating
tasks by writing scripts. Organizations are failing to educate in
these areas because many business leaders have reasonably but
incorrectly assumed that people learned these skills at university—
unaware that a computer science curriculum does not teach software
development skills, and that most university professors do not know
and cannot teach modern development practices.2

In contrast, lean organizations invest in educating their employees.
One study shows that Japanese lean companies spend eight times as
much effort educating new employees than their USA counterparts
and twice as much as their European counterparts [WJR90].

see Lean Think-
ing in companion

Organizations also fail to recognize the need for continuous improve-
ment. They not only need to provide education in basic skills, they
need to create an environment in which employees are constantly
challenged and learning. How? Managers acting as teachers, peers
educating one another (for example, by pair programming) and
internal or external dedicated coaches—all supporting an environ-
ment of learning and continuous improvement.

2.  “Use your editor” is perhaps the most productivity increasing course 
you can give in many companies.

https://less.works For Gene Gendel only, id:gene-gendel



341

How to Avoid Writing New Legacy Code

Try…Support 
more self-study

Self-study—Many developers do not keep themselves up to date.
Quality guru Philip Crosby saw lack of knowledge caused by a short-
age of learning as a main cause of bad quality.

People subconsciously retard their own intellectual growth.
They come to rely on cliches and habits. Once they reach the age
of their own personal comfort with the world, they stop learning
and their mind runs on idle for the rest of their days. They may
progress organizationally, they may be ambitious and eager,
and they may even work night and day. But they learn no more.
[Crosby80]

In 1999, Dave Thomas and Andy Hunt published an excellent book,
The Pragmatic Programmer [HT99], summarizing the attitude and
behavior of a modern, professional developer. We encourage people
to read this, and more broadly, to take responsibility for keeping up
to date.

Avoid…Trivializing programming

“I’m an architect, writing code is something the low-level implemen-
tation people do.” We hear statements such as this from ivory-tower
architects who consider programming to be beneath them. The orga-
nization for which this architect works has created a culture of trivi-
alizing programming. Such a culture de-emphasizes code, devalues
writing clean code, and devalues learning about programming. In
such a culture people want to rise in the social and organizational
hierarchy—and that means move away from programming. Coding
is just the early career phase that they have to go through. Such a
culture is one that gives rise to legacy code.

Organizations trivialize programming by

! outsourcing the programming

! career paths

! salary differences

Outsourcing the programming—Especially in large product
groups, we encounter businesses that do not consider writing code
their “core business” and so have outsourced it. They write specifica-

https://less.works For Gene Gendel only, id:gene-gendel



342

9 — Legacy Code

tions, architectural documents, and design documents, and then
send them to cheap-rate developers offshore to “do the implementa-
tion and testing.” A recipe for disaster. The source code is the place
of real value—gemba. For more, see:

! See “Try…Think ‘gardening’ over ‘architecting’—Create a cul-
ture of living, growing design” on p. 282.

! See “Try…Architects and system engineers are regular (fea-
ture) team members” on p. 300.

! See “Avoid…Architecture astronauts (PowerPoint architects)”
on p. 302.

! See “Avoid…Architects hand off to ‘coders’” on p. 308.

! See “Avoid…Create ‘designs’ and then send them for offshore
implementation” on p. 316.

see Organization 
in the companion

Career paths—Large organizations want to offer a future for their
employees; predefined management or technical career paths are a
typical solution. People who follow the management path shift away
from technical work and become “professional managers.” Those
who follow the technical path spend their time writing “architec-
tural documents.” Whatever career path you follow, it won’t contain
any programming.

Salary differences—Of all software-development-related jobs, the
salary of programmers is, on average, among the lowest [Jones08].
Naturally but unfortunately, these salary differences do not promote
becoming a better developer but instead promote stopping work as a
developer. Is there an alternative? Pete McBreen promotes a model
of software craftsmanship in which salary is directly linked to skill.
Development skill is measured by a developer’s portfolio and peer
references [McBreen01].

Try…Raise awareness of the negative impact of legacy code

More legacy code is more than a liability, it’s a boat anchor. It is hard
to deliver value fast and adapt quickly when your massive 15 mil-
lion lines of code is a steaming pile of… well, you know.

https://less.works For Gene Gendel only, id:gene-gendel



343

OK, I’ve Got Legacy, Now What?

Some developers and many nontechnical people in product develop-
ment do not grasp the negative impact of legacy code—in terms of
cost servicing this technical debt and in terms of opportunities lost
because of degradation of speed and ability to change.

We encourage technical leaders to proactively educate their business
and technical community on this issue, and to explore the cost of leg-
acy code. 

OK, I’VE GOT LEGACY, NOW WHAT?

You probably recognize these causes of legacy code, but you already
have piles of it. How to get rid of it? In Working Effectively with Leg-
acy Code [Feathers04], Michael Feathers provides concrete code-
level techniques for gradually improving your code. This chapter
does not repeat these; we recommend Feathers’s book. But we do
cover some general strategies for dealing with legacy code.

Avoid…Rewriting legacy code

When confronted with legacy code, developers frequently suggest
rewrite, redesign, or rearchitect—scrap the legacy and write it
again. Next time it will be better… Resist that temptation. Why?

In a product group with a 30-year-old code base, a developer asked
us if we could help refactor a 5000-line function. We thought he was
exaggerating. But when we paired up and measured the function,
we discovered it was slightly larger than 5000 lines of code (LOC).
How are 5000 LOC functions created? Does a developer wake up and
think, “Gosh, what a wonderful day today! Let’s write a 5000 LOC
function?” Probably not. When a developer writes new code, he usu-
ally will write it with decent quality. But over time the quality
degrades. A function becomes 5000 LOC. Why does this happen? The
customer requests a new requirement and this is hacked in because
of poor development skills or unrealistic schedules. Code quality
goes down and the effort needed to make changes goes up (see
Figure 9.3).

https://less.works For Gene Gendel only, id:gene-gendel



344

9 — Legacy Code

Figure 9.3 code 
quality decreases 
over time

After some time it is too painful and takes too much effort to make
changes to the code; developers start asking for a rewrite. At first
the Product Owner refuses—a rewrite means high cost without new
value. But as development speed drops, developers complain more,
and eventually the Product Owner ‘agrees’ to the rewrite. During
the rewrite, the ability to respond to changes—new requirements—
is zero. But after the rewrite the code is of high quality, and conse-
quently, new development is fast (see Figure 9.4).

Figure 9.4 rewrite 
increases code 
quality

After the rewrite is finished, what happens? Pressure to rush in new
requirements leads to hacks in the freshly cleaned code, causing the
quality to degrade again and the implementation effort to increase
(Figure 9.5). After a while, developers demand another rewrite. In
some large product groups, we have seen components being rewrit-
ten three times.

co
de

/d
es

ig
n 

qu
al

ity

time

code base quality

ef
fo

rt
 n

ee
de

d 
fo

r 
ch

an
ge

time

responsiveness to change

co
de

/d
es

ig
n 

qu
al

ity

time

code base quality

ef
fo

rt
 n

ee
de

d 
fo

r 
ch

an
ge

time

responsiveness to change

 re
wr

ite  rewrite
!

https://less.works For Gene Gendel only, id:gene-gendel



345

OK, I’ve Got Legacy, Now What?

Figure 9.5 code 
base quality 
degrades again 
after the rewrite

The focus needs to be on preventing the creation of new legacy code
instead of on the legacy code itself. It needs to be on growing code
healthfully instead of allowing it to degrade over time. How?
Improve the code every time a change is made. “If we all checked-in
our code a little cleaner than when we checked it out, the code simply
could not rot” [Martin08] (see Figure 9.6).

Figure 9.6 growing 
the code healthfully

Key insight: 
The problem is not having legacy code, 

it is creating legacy code.

co
de

/d
es

ig
n 

qu
al

ity

time

code base quality

ef
fo

rt
 n

ee
de

d 
fo

r 
ch

an
ge

time

responsiveness to change

 re
wr

ite  rewrite
!

co
de

/d
es

ig
n 

qu
al

ity

time

code base quality

ef
fo

rt
 n

ee
de

d 
fo

r 
ch

an
ge

time

responsiveness to change

https://less.works For Gene Gendel only, id:gene-gendel



346

9 — Legacy Code

Try...Clean up your neighborhood

Growing healthy code is a key strategy for eliminating legacy code.
You can do so by cleaning up your neighborhood; by gradually fixing
your “broken windows” [HT99]. Every time you make a change, look
around your change point—the neighborhood—for code that can be
improved—the broken windows—and add a couple of tests and
refactor (see Figure 9.7). When starting this practice, every change
is a little slower. But over time the code improves and the develop-
ment speed increases because of the healthier code base.

Figure 9.7 clean up 
your neighborhood

Having legacy code means having technical debt—and it costs to get
out of debt. A rewrite strategy attempts to settle the debt all at once.
On the other hand, cleaning up your neighborhood distributes the
payments. It focuses the effort to the parts that change most—the
most important ones. The legacy code that does not change does not
get improved—and that is okay.

Try…Write both high-level and unit tests

see the Test chap-
ter

We are frequently asked whether to start with unit tests or high-
level tests. Another false dichotomy. They are both important! It is
often easier to add high-level tests to a legacy code base, and they
help in ensuring that existing functionality works. But unit tests
run fast. Fast-running unit tests help when you are gradually refac-
toring legacy code. Therefore, write unit tests and high-level tests
when cleaning up your neighborhood.

component

change point

neighborhood

https://less.works For Gene Gendel only, id:gene-gendel



347

OK, I’ve Got Legacy, Now What?

Try…Rewrite lethal legacy code

Sometimes it is impossible to gradually grow the code base health-
fully. For example, suppose that part of the low-level code is written
in PL/M and no one is willing to learn PL/M. Or, part of your code
base is written in a home-grown language, whose compiler only runs
on VAX/VMS. When gradual change is impossible3—the legacy is
lethal—then it is necessary to ‘amputate’ that part of the code
instead of letting it kill your product [Parnas94].

While replacing lethal code:

! cover it with test

! do not add functionality to the old code

! do not add functionality to the replacement code

CONCLUSION

There are billions of lines of legacy code in the world, and the total is
increasing every day. This has created massive problems (for exam-
ple, Y2K), and it will still create monumental ones in the future. But
legacy code will not disappear unless the root causes are tackled:

! unrealistic deadlines with fixed content

! poor developer skills

These can be solved by educating people in the causes of legacy code
and by improving developer education. However, the industry has
failed to recognize these causes for decades. It is not likely to change
in the next few years.

How to deal with existing legacy code? It is better to gradually
improve the code than to replace it. This requires investing in devel-
opment skills and applying modern practices such as test-driven
development. The only way to grow better code is to develop excel-
lent people. This is a theme in lean thinking.

3.  It is rarely impossible to do a gradual change. Therefore, challenge 
each time someone says that a gradual change is not possible.

https://less.works For Gene Gendel only, id:gene-gendel



348

9 — Legacy Code

Making things is about making people. [Kato06]

RECOMMENDED READINGS

At the time we write this book, surprisingly little has been written
about such a huge and costly problem as legacy code. Here are some
references we found useful related to improving your code gradually:

! Working Effectively with Legacy Code, by Michael Feathers.
Concrete advice on how to gradually improve your legacy sys-
tem at code level. 

! Refactoring: Improving the Design of Existing Code, by Martin
Fowler. The classic work on improving existing code.

! Refactoring Workbook, by Bill Wake. A concrete guide for
becoming better at refactoring code.

! Refactoring to Patterns, by Joshua Kerievsky. In this book,
Joshua explains how to gradually refactor your code to stan-
dard, robust design patterns.

! Refactoring in Large Software Projects, by Stefan Roock and
Martin Lippert. Large systems might need large refactorings.
This book explains how to do these in as small steps as possible
so that your systems stays stable.

The following material covers the organizational dynamics behind
legacy code:

! Enterprise Scrum, by Ken Schwaber. Chapter 9 of Enterprise
Scrum is one of the few descriptions explaining the relation-
ship between customer promises and the creation of legacy
code.

! Sustainable Software Development: An Agile Perspective, by
Kevin Tate. This book does not cover many new techniques but
provides an excellent overview of the practices for creating soft-
ware in a sustainable way.

Software craftsman prevent creating legacy code and hence develop
software at a sustainable rate. Some material on being a software
craftsman:

https://less.works For Gene Gendel only, id:gene-gendel



349

OK, I’ve Got Legacy, Now What?

! The Pragmatic Programmer: From Journeyman to Master, by
Andrew Hunt and Dave Thomas. Classic book on modern soft-
ware craftsmanship.

! Software Craftsmanship, by Pete McBreen dives in craftsman-
ship approach and compares it to the traditional software engi-
neering perspective.

! Agile Development, Principles, Patterns and Practices, by Bob
Martin. Also known as Agile PPP, links good code, modern
practices, and eternal design principles to explain what it
means to be a craftsman.

! Clean Code: A Handbook of Agile Craftsmanship, by Bob Mar-
tin. The subtitle says it all. Clean Code is the code-focused pre-
quel to Agile PPP.

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Try…Continuous integration 351

• Developer Practice 352

• Keep a Working System 353

• Small Changes 355

• Growing the System 355

• At Least Daily 356

• On the Mainline 358

• Supported by a CI System 359

• With Lots of Automated Tests 360

• Scaling a CI System 361

• Try…Speed up the build 361

• Try…Multi-stage CI systems 364

• Try…Visual management with CI 367

• Avoid…Large changes 369

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



351

Chapter

10
CONTINUOUS INTEGRATION

The use of COBOL cripples the mind; its teaching should,
therefore, be regarded as a criminal offense.

—Edsger Dijkstra

Try…Continu-
ous integration

Continuous integration (CI) is essential for scaling lean and agile
development:

Our conclusion is that there is no inherent reason why Continu-
ous Integration and Automated Build processes won’t scale to
any size team. In fact… [they] become more essential than ever.
[Magennis07]

With CI, developers gradually grow a stable system by working in
small batches and short cycles—a lean theme. This enables teams to
work on shared code and increases the visibility into the develop-
ment and quality of the system.

There are misconceptions about CI; it seems a simple concept, but in
practice it’s not. To get one misconception out of the way: Continuous
integration is not automating the build and running tests.

The classic paper on CI [Fowler06a] states:

Continuous Integration is a software development practice
where members of a team integrate their work frequently, usu-
ally each person integrates at least daily - leading to multiple
integrations per day. Each integration is verified by an auto-
mated build (including test) to detect integration errors as
quickly as possible.

https://less.works For Gene Gendel only, id:gene-gendel



352

10 — Continuous Integration

To expand: 

Each part is explained next.

DEVELOPER PRACTICE

Avoid…Believ-
ing CI is a tool

Discussions about CI all too often are about tools and automation.
Though important, CI in essence is a developer practice. Owen Rog-
ers, one of the original creators of CruiseControl.NET1 writes: 

Continuous integration is a practice—it is about what people
do, not about what tools they use. As a project starts to scale, it
is easy to be deceived into thinking that the team is practicing
continuous integration just because all of the tools are set up
and running. If developers do not have the discipline to inte-
grate their changes on a regular basis or to maintain the inte-
gration environment in a good working order they are not
practicing continuous integration. Full stop. [Rogers04] 

Splitting changes into small increments, integrating them at least
daily, and having the discipline to not break the build are all done by
the individual developer. He needs the skill to work in small incre-

Continuous Integration

! a developer practice… 

! to keep a working system

! by small changes

! growing the system

! by integrating at least daily

! on the mainline

! supported by a CI system

! with lots of automated tests

1.  CruiseControl.NET is a CI system server for Microsoft .NET. 

https://less.works For Gene Gendel only, id:gene-gendel



353

Keep a Working System

ments and keep his own copy of the system (or part of the system)
working all the time.

Adopting CI requires a change in human behavior. We worked with
several large products with an excellent automated build but where
developers did not integrate their code frequently. Even worse, the
message “thou shall not break the build” was strongly promoted, for
example, by shaming the people who broke the build. The predict-
able result? Developers would delay their integrations out of fear of
breaking the build. Despite their excellent always-green (always
passing) automated build, they are doing the opposite of CI.

see the Test chap-
ter

Test-driven development (TDD) with constant refactoring helps.
When a developer is unit-test-driving his code, he ensures that his
local copy is always working. All the tests pass all the time. In the-
ory, he is able to integrate code every TDD cycle (about ten min-
utes2); in practice, he integrates after a couple of cycles.

CI on large products is hard precisely because it is a developer prac-
tice. If it were only about tools and automation, you could simply
start a CI project or hire a company to “install CI.” But as a devel-
oper practice, CI requires a change to the daily habits of all develop-
ers. With many people, this is hard, takes time, and requires
coaching. 

With the right behavior, the developers will…

KEEP A WORKING SYSTEM

Similar to the lean concept of jidoka, CI means always having a sta-
ble system. When a test fails—run locally or on the CI system—the
developer fixes it immediately and therefore always keeps a working
and stable system.

Traditional sequential development has un-integrated work-in-
progress (WIP). Nobody knows if these parts work together or if they

2.  For Java, ten minutes is too long. For C++, about average. For C, 
probably too short. Ten minutes is an average language-inde-
pendent TDD cycle.

https://less.works For Gene Gendel only, id:gene-gendel



354

10 — Continuous Integration

are free of defects. WIP makes it hard to predict when, or if, the sys-
tem is deliverable. CI increases visibility by removing this WIP—
always having everything integrated—and with this comes more
control and predictability. 

This working system, evolved in small increments, is created by…

Note: CI and iterative and incremental development in Scrum
have the same strategy. However, CI is a more fine-grained level
than a Scrum iteration. Both reduce variability, uncertainty, and
risk by working in small batches—iteratively.

Rubber Chicken

Agile developer James Shore, author of
the Art of Agile Development [SW07],
stresses CI as a developer practice. In
his excellent article Continuous Inte-
gration on a Dollar a Day [Shore06], he
explains how to do CI with an old
development computer, a rubber
chicken, a desk bell, and an automated
build. The old development machine is
used as the integration machine. The
rubber chicken is the integration
token—only the person who has the
rubber chicken can integrate code. The

desk bell announces a successful integration. But the most important step in his
description of CI is to get the developers in one room and let them agree with each
other that “From now on, our code in revision control will always build success-
fully and pass its tests.” 

The rubber chicken does not scale to large products. That said, the story is a vivid
way of remembering that CI is a developer practice.

https://less.works For Gene Gendel only, id:gene-gendel



355

Small Changes

SMALL CHANGES

We once worked with a gateway product group in Finland who
needed to make a change to their protocol stack. They insisted it
could not be split into small changes. They made the large change
and spent three months trying to get the system to work again.
After that painful experience, they agreed to never make such large
changes in one big batch.

Large changes to a stable system will destabilize and break it in
large ways. The larger the change, the more time it takes to get the
system back to a stable state.

Avoid…Large 
batches of 
changes

Avoid large changes. Instead, break each change into small
changes—the lean concept small batches. Each change integrates in
the system easily. 

By small changes you will be…

GROWING THE SYSTEM

See “Try…Think 
‘gardening’ over 
‘architecting’—
Create a culture 
of living, growing 
design” on p. 282.

Growing versus building is an important mindset shift. Brooks, in
his famous article, No Silver Bullet, reflects on his experience:

The building metaphor has outlived its usefulness… If, as I
believe, the conceptual structures we construct today are too
complicated to be accurately specified in advance, and too com-
plex to be built faultlessly, then we must take a radically differ-
ent approach… The secret is that it is grown, not built… Harlan
Mills proposed that any software system should be grown by
incremental development… Nothing in the past decade has so
radically changed my own practice, or its effectiveness… The
morale effects are startling. Enthusiasm jumps when there is a
running system, even a simple one… One always has, at every
stage in the process, a running system. I find that teams can
grow much more complex entities in four months than they can
build. [Brooks87] 

Building a system implies building separate components and, when
they are finished, assembling them together. Growing a system

https://less.works For Gene Gendel only, id:gene-gendel



356

10 — Continuous Integration

implies nurturing it and evolving it into a larger system
(Figure 10.1).

Figure 10.1 grow-
ing versus building

Is this possible in big systems with legacy code? We get that ques-
tion frequently. In almost every case, the answer is yes. If your devel-
opers or architects cannot do this or claim it is not possible, take
that as a sign of lack of skill.

A developer continuously integrates his work while working on a
task. He does not wait for the task or the whole feature to be com-
plete and then “bolt it” on the system. Rather, whenever a small
amount of work can be integrated without breaking the system,
then he integrates it…

AT LEAST DAILY

How frequent is ‘continuous’? As frequently as possible! This is lim-
ited by

! the ability to split large changes

! speed of integration

! speed of feedback cycle

growing building

https://less.works For Gene Gendel only, id:gene-gendel



357

At Least Daily

See “Try…Split 
Product Backlog 
items (such as 
stories)” on 
p. 247.

Ability to split large changes—splitting large changes into
smaller ones, while keeping the old functionality working, is a skill
that must be learned. The better developers are at this splitting, the
more frequently they can integrate. TDD, in short ten-minute cycles,
is an excellent technique for this.

Avoid…Process 
preventing devel-
opers from check-
ing in

Speed of integration—the more time it takes to integrate changes
into the code repository, the less frequently developers will do so.
Changes are batched for the sake of efficiency. Integration effort is
impacted by the process overhead (the transaction cost), such as
approvals and reviews needed before developers are allowed to inte-
grate. Reduce this overhead or find creative ways to do things differ-
ently. For example, we worked with a 40-person product group
where the check-in message had to mention the person who had
reviewed the code. The result? Developers batched many changes to
make the code reviews more ‘effective’ and thus delayed integra-
tion—a local optimization. Solution? Code reviews can instead be
done on already integrated code—not delaying the integration.

Speed of feedback cycle—a developer should only integrate
changes that do not break existing tests. Ideally, he runs all the tests
before integrating. For this to be possible, the tests must run very
fast. If they are slow, the developer will delay the integration to
“work more efficiently.” However, running all the tests quickly is
hard for large systems. Therefore, developers only run a subset of
tests before checking in, and a CI system runs the remaining tests.
The CI system acts as a safety net by giving the developer feedback
about the tests he did not run. What happens when the CI system is
slow? First, there will be many changes during one cycle, increasing
the chance the build breaks. Second, developers do not integrate
their changes in the broken build; rather, they batch them. Finally,
when the build is fixed, all developers integrate their batched
changes, leading to a high chance of breaking the build again.
Therefore, the safety-net-feedback cycle has to be fast. This
decreases the chance the build will break and increases the ability to
check in more frequently.

Rule of thumb for large products moving to agile and lean develop-
ment: All developers integrate at least daily. Even though “daily
builds are for wimps” [Jeffries04], daily is a first step for large prod-
ucts. Recall the “lake and rocks” metaphor used in lean thinking—

https://less.works For Gene Gendel only, id:gene-gendel



358

10 — Continuous Integration

the big rock of just being able to build once a day with everyone’s
updates is hard enough on big old systems with 300 developers in
four countries. Eventually, that big rock is removed, and shorter
cycles are possible.

On large products, it will take time to learn to split changes, sim-
plify the integration process, and set up a fast CI system running…

ON THE MAINLINE

Avoid… Branch-
ing

Developers integrate on the mainline or trunk [BA03]. Making
changes on a separate branch means that the integration with the
main branch is delayed.3 The current status is not visible, so you do
not know if everything works together.

Branching during development breaks the purpose of CI and should
be avoided. There are exceptions: First, customers might not want to
upgrade their product to the latest release but still want patches.
Thus, release branches are needed.4 Second, when scaling up a CI
system, it can be useful to have very short-lived branches that are
automatically integrated in the mainline—more about that later.

See “Try…Con-
figurable design 
for customiza-
tion” on p. 315.

What about branching for customization? Bad idea! Instead, man-
age these through a configurable design or parameterized build
instead of using your Software Configuration Management (SCM)
system. We once worked on a network-optimizing product being
built by a co-located product group who insisted on branching for dif-
ferent configurations. Developers worked on these separate
branches for over a year. Afterwards, it took them an additional
half-year—and lots of fighting—to merge them in the trunk. 

Successful mainline development is…

3.  To be more precise, avoid branches that live longer than ‘hours’. 
Branching has gotten easier with modern distributed version 
control systems such as Git and Mercurial. Some short use of 
short branches can be useful…but it is a sharp-knife tool that 
can easily be misused [Fowler09].

4.  Tip: Create a release branch off the mainline just before release, not 
at the start of a release (a release line).

https://less.works For Gene Gendel only, id:gene-gendel



359

Supported by a CI System

SUPPORTED BY A CI SYSTEM

Lean emphasizes minimizing inventory—one type of waste. Inven-
tory acts as a buffer (another queue) in which mistakes are hidden.
Mistakes become painfully visible when these buffers are removed—
and that is a good thing. The same thing happens when all changes
are integrated directly to the mainline. All developers update their
local copy frequently; when someone checks in broken code, it is visi-
ble to everybody—they will be annoyed.

People make mistakes. That’s OK. A lean stop-the-line safety net is
needed to detect them early. Developers fix a mistake before it
affects others. This safety net, an andon-like system, in Toyota ter-
minology, is a CI system. 

Figure 10.2 CI 
system

A CI system (Figure 10.2) listens to the SCM system. When a devel-
oper checks in code, the CI system checks out all the code and com-
piles it, runs some tests, installs it, and runs more tests. All this
happens fast; Extreme Programming recommends within ten min-

Developer

checks in after 
running tests locally

compile

developer
test

install / 
deploy

customer-facing
tests

any step 
failed?

who broke
the build

2. send an 
e-mail/SMS

“Fix the build”

triggered on 
change in code

https://less.works For Gene Gendel only, id:gene-gendel



360

10 — Continuous Integration

utes. If a developer breaks the build, the CI system will query the
SCM system and find out who made the change. It sends him e-mail
saying: “You broke the build, fix it!” Fixing the broken build is the
number one priority because it affects everybody. 

For a small product, it is easy to have a fast, ten-minute build. For a
large product with legacy code and many people, it is quite a chal-
lenge. Later, this chapter examines several techniques for scaling up
a CI system…

WITH LOTS OF AUTOMATED TESTS

It is not very hard to have a CI system compile everything; it’s not
very useful either. You want to have as many tests as possible run-
ning in your CI system. The more automated tests, the better your
safety net and the more confidence your system is working.

For new products, creating automated tests is not hard. However,
many large products have legacy code without automated tests.
Developers need to add automated tests—which is a lot of work. The
chapter on legacy code covers this.

Synchronous or Asynchronous Integration?

In the Art of Agile Development, James and Shane caution against the use of a CI
system. They make the distinction between synchronous and asynchronous inte-
gration. Synchronous integration means a developer waits for his code to be inte-
grated successfully. Asynchronous integration means the developer is supported
by a CI system running tests while he moves on to work on something else.

Asynchronous integration seems more efficient but often leads to sloppiness and
broken builds. On the other hand, synchronous integration doesn’t work when the
build takes too long, as in large products. When setting up a multi-stage CI sys-
tem, you might consider using synchronous integration on the low level while
using asynchronous integration for running higher-level tests.

https://less.works For Gene Gendel only, id:gene-gendel



361

Scaling a CI System

SCALING A CI SYSTEM

First, the build and test need to be fully automated. Many large
products groups we worked with have manual steps in their build.
See the recommended readings for texts that are useful for automat-
ing the build.

The obstacles for scaling a CI system relate to more people produc-
ing more code and tests. First, the probability of breaking the build
increases with more people checking in code. Second, an increase in
code size leads to a slower build and thus a slower CI feedback loop.
These together can lead to continuous build failure (Figure 10.3).

Figure 10.3 the 
dynamics of broken 
builds

The solutions are simple:

! speed up the build

! implement a multi-stage CI system

TRY…SPEED UP THE BUILD

Job one: Speed up the build. If the whole product can be compiled
and tested within one second, then scaling techniques are not
needed. The one-second build is out of reach for large products, for
now. Though every improvement brings us closer, the one-second

# of check ins

# of build failures

lines of code

# of people

CI feedback 
loop time

# of mistakes

visibility
O

size of check in

https://less.works For Gene Gendel only, id:gene-gendel



362

10 — Continuous Integration

build helps. Giving general guidelines for speeding up builds is
hard—it’s often product specific. Some general solutions
[Rasmusson04]:

Try…Add new 
hardware to 
speed up the 
build

Add hardware—the easiest way to speed up the build is to buy
more hardware. Throw a couple of extra computers, extra memory,
or a faster network connection at the problem and it goes away.
Upgrading existing hardware takes investment and only minimum
effort, making it the easiest and best choice. The build of one telecom
product speeded up 50 percent by compilation on a RAM disk—and
this only required a memory upgrade.

Try…Parallelize 
the build

Parallelize—related to adding hardware is to parallelize and dis-
tribute the build. It often requires redesigning the build scripts,
changing tools, or even building new tools. Therefore, more effort is
needed compared with just adding new hardware. A large telecom
product speeded up their build by building every component on a
separate computer.

Avoid…Using 
ClearCase

Change tools—upgrading tools to the latest version or replacing a
slow tool with a fast one speeds up the build a lot. Simply by switch-
ing compilers we once made a 50 percent improvement in compile
time. The most common problematic, slow tool we see used is IBM
Rational ClearCase. Every time a product group switched from
ClearCase to Subversion—a good free open-source SCM system—
they… First, speeded up the build (our clients have seen 25%–50%
improvement); Second, saved the company significant money by
eliminating licenses; And third, improved the lives of the developers,
since ClearCase is often the most hated development tool in the
groups we work with. Some misinformed people incorrectly argue
that Subversion is not suitable for large-product development. But
we have seen it used successfully in product groups with four hun-
dred people located at multiple sites around the globe. Ironically, the
so-called large-scale features of ClearCase, such as multisite sup-
port, make real CI impossible because they force code ownership.

• add hardware
• parallelize
• change tools
• build incrementally

• deploy incrementally
• manage dependencies
• refactor tests

https://less.works For Gene Gendel only, id:gene-gendel



363

Scaling a CI System

Build incrementally—you only need to compile changed compo-
nents and run related tests. Easy in theory; hard in practice. Depen-
dencies between components, changes in interfaces, or incompatible
binaries are some of the things that make compiling only the change
a difficult proposition. For the same reasons, finding all tests related
to the changed component can be difficult. Incremental builds are
rarely 100 percent reliable, and to prevent corruption of the incre-
mental build, it’s a good idea to also keep a clean daily build.

Deploy incrementally—on large embedded products, it can take a
long time to deploy or install software; a radio network’s telecom
product we worked with took more than an hour to deploy. This is
not unusual. Testing speeds up when the deployment is done incre-
mentally—only the changed components are deployed. The changes
need to be loaded, and this can be done by rebooting the system.
However, starting a large system is time consuming, and therefore
some systems are upgraded dynamically—an important feature in
telecom and other industries where downtime is very expensive.
Incremental deployment—especially dynamic upgrading—requires
changes to the system, making this option difficult.

Manage dependencies—unmanaged dependencies are a common
reason for slow builds. Examples: Header files including many other
header files, or multiple link cycles to resolve cyclic link dependen-
cies. For a multimedia product, we spent several hours on re-order-
ing link dependencies—cutting link time in half. Reducing
dependencies speeds up your build and, as a side effect, improves
the structure of your product.

Note a key insight: Improving the build improves the structure
of your product. Why? Because bad structure becomes painfully
visible when you try to shorten the cycle time of the build. 

This is a lean insight discussed before: A powerful side effect of
shorter cycle times is the need to dramatically improve the pro-
cesses and the product to support short cycles and small batches.

https://less.works For Gene Gendel only, id:gene-gendel



364

10 — Continuous Integration

Avoid…Treating 
test code differ-
ently than pro-
duction code

Refactor tests—unfortunately, many developers care less about
test code than production code. The result? Badly structured test
code and slow tests. We once spent only half a day refactoring
tests—and speeded up the build by 60 percent! By profiling and
refactoring tests you can frequently make these kinds of quick gains.

TRY…MULTI-STAGE CI SYSTEMS

A multi-stage CI system splits the build and executes it in different
feedback cycles. At the lowest level, it has a very fast CI build con-
taining unit tests and some functional tests. When this CI build suc-
ceeds, it triggers a higher-level build, containing slower system-level
tests. Larger products have more stages.

A CI system is comparable to the “stop the line” culture at Toyota.
When a defect is detected, Toyota stops the line, and the first prior-
ity is to fix the defect and its root cause. Isn’t a multi-stage CI sys-
tem hiding defects and against this lean principle? No. A stop-the-
line attitude is absolutely needed, but this does not mean that you
should blindly stop all the work. Even Toyota does not do that
[LM06a].

Toyota has developed a system that allows problems to be iden-
tified and elevated without necessarily stopping the line. When
a problem is identified and the cord is pulled, the alarm sounds
and a yellow light is turned on. The line will continue to move
until the end of work zone—the “fixed position stop” point… the
line will stop when the fixed position is reached and the andon
will turn red.

A multi-stage CI system works the same way. You identify the prob-
lem early and act on it, but you do not want it to affect everyone.
Only if the problem turns out to be really serious do you “stop the
line.”

When building a multi-stage CI system, consider 

• a developer build
• component or feature focus
• automatic or manual promotion

• event or time triggers
• the number of stages

https://less.works For Gene Gendel only, id:gene-gendel



365

Scaling a CI System

A developer build—developers practicing CI need to verify their
changes before checking in. Therefore, they must be able to work
with a subset of the system, often a component, and be able to run
unit tests for it. Take this into account when automating your build.

Component of feature focus—a traditional multi-stage CI system
is structured around components. The lowest level builds one compo-
nent, the next level a subsystem, and the highest level builds the
whole product. With teams organized around components, the team
takes care of “their” CI system [AKB04]. But where to include
higher-level acceptance tests, and what about feature teams? An
alternative is to structure your CI system around features. When
someone checks in code, all the related feature-CI systems are trig-
gered. Tests are now run in parallel, but the same component is
compiled multiple times.

Try…A mix 
between feature 
and component 
CI systems

One distributed product group we worked with mixes the two
approaches. On a lower level, the CI system is organized around
components, and the output of this triggers multiple-feature CI sys-
tems running higher-level acceptance tests in parallel.

Avoid…Manual 
promotion

Automatic or manual promotion—letting all stages of a CI sys-
tem listen to the mainline creates a mess. When a developer makes
a mistake, all the stages fail. A higher-level CI system needs to be
triggered by an announcement that the component can be used.
Such announcement is called a promotion and is done by labeling (or
tagging) the component. Promoting a component can be done auto-
matically or manually [Poole08]. With automatic promotion the
lower-level CI system promotes a component after it passed. Avoid
manual promotion whereby the team decides when the component is
“good enough” and promotes it.

Event or time triggers—every CI system is triggered by either an
event or by time. The low-level CI systems are always triggered by
an event—a code check-in. For higher-level CI systems, the trigger is
either the promotion of a component or time. A trigger by promotion
is faster, but for slow builds it is not worth the extra effort in config-
uration and maintenance. A higher-level daily build might be good
enough [Vodde08]. For example, one distributed product group we
worked with had low-level, code-triggered CI systems, a higher-level
promotion-triggered CI system, and a daily build running tests that
lasted over eight hours.

https://less.works For Gene Gendel only, id:gene-gendel



366

10 — Continuous Integration

The number of stages—the size and ‘legacy-ness’ of the product
determine how many levels of CI systems are needed. Common
stages are

! fast component-level—a very fast low-level CI system for quick
feedback. It runs unit tests, code coverage, static analysis, and
complexity measurements.

! slow component-level—a slower low-level CI system. It runs
integration or slow component-level tests.

! product stability-level—a very fast product-level CI system for
quick feedback on the basic product stability. It runs fast func-
tional tests (smoke tests).

! feature-level—a slower high-level CI system. It runs functional
and acceptance tests.

! system-level—a slow high-level CI system. It runs system-level
tests, which often take hours.

! stability-performance-level—a very slow high-level CI system.
It continuously runs stability and performance tests, which
often take days, if not weeks.

We have yet to see all stages in one product. Most products select
stages most important for them and add more stages only when
needed. An unnecessarily complex CI system is a waste.

Example Staged-CI System

Figure 10.4 shows an example staged-CI system. In this example,
every component has a CI system executing unit tests, plus static
analysis and code coverage metrics. A successful build promotes the
component and triggers feature-level CI systems executing higher-
level tests. A daily build executes system-level tests such as perfor-
mance tests.

https://less.works For Gene Gendel only, id:gene-gendel



367

Scaling a CI System

Figure 10.4 scaled 
CI system

TRY…VISUAL MANAGEMENT WITH CI

A CI system can effectively include visual management—a lean
principle. When the build breaks, a visual signal indicates failure—
an andon system (Toyota terminology). The intent is not for manag-
ers to punish the developer who broke the build; it is for developers
to see the status of the build. What would they do with this informa-
tion? Investigate what is going on or delay their integration when
the build fails. If, after some time, the visual signal still indicates
failure, more people may explore why it is not fixed.

A popular early visual tool to plug into a CI system was a lava lamp.
A green bubbling lava lamp indicated a passing build. But when the
build failed, a red lava lamp started bubbling.

component
CI system

feature-level
CI system

low-level
component CI

systems

higher-level
feature CI
systems

system-level
daily build

feature teams

Team

Team

Team

Team

https://less.works For Gene Gendel only, id:gene-gendel



368

10 — Continuous Integration

Try…Add red-
green screens to 
your CI system

After lava lamps, people started attaching all
kinds of displays to the build, such as Christ-
mas lights, sirens, and moving skeletons that
screamed when the build broke. Though less
entertaining, a simple monitor showing a
Web page of a large red or green color blob (a
red-green screen) is more easily reproducible.
Red-green screens seem to have become ubiq-
uitous in large-scale CI. Some versions

include a yellow signal to indicate “the broken build is now being
fixed.” The simple large color blob—visible from a distance—is the
key element, but the display can also add text or chart data, such as
build duration or test coverage. The information does not need to be
limited to build information [Rogers08].

Figure 10.5 andon 
system for the build, 
in the hall by the 
coffee room

One warning related to visual management, well stated by Jeffrey
Liker [LH08]:

Just because there is visual presentation does not mean there is
visual management. It is relatively easy to set up nice display
areas that are for show. The challenging part is making them
“for go.” Many people who visit Toyota openly voice the differ-
ence of their approach. We often hear comments such as “Now I
see, the things that Toyota displays are actually driving action
on a daily basis.” This is indeed the difference, and Toyota
would suggest that if it is not driving daily action, get rid of it.

GREEN

RED

https://less.works For Gene Gendel only, id:gene-gendel



369

Scaling a CI System

AVOID…LARGE CHANGES

On large products it is even harder to split large changes into small
ones. Developers sometimes want to restructure or re-architect their
legacy system and are convinced that it must be done in one large
change. But we have yet to see a large refactoring that could not be
done gradually. Every time, after discussion with the developers, we
found ways of splitting the must-be-done-at-once large refactoring
[RL06].

Interface changes are a common problem in large systems. Many
components use the interface and need to be changed—making it
impossible to do gradually, right? Not so. In fact, an interface change
in APIs is common, and there is a well-known solution:

1. Create a new interface.

2. Gradually move all clients to the new interface.

3. Remove the old interface.

4. Rename the new interface to the old interface.

Avoid…Leaving 
obsolete inter-
faces in your code

Every step can be done independently and at different times. For
public APIs, it is impossible to find out if there are still users of the
old interface. This makes removing the old interface difficult. But
most interfaces are not part of a published API, so do not forget to
remove the obsolete one. We have seen many products with three or
four file system interfaces or logging interfaces because the old ones
were never removed.

CONCLUSION

How to start? Using CI requires 

! changing developer behavior

! setting up a CI system

Changing developer behavior—Because large products have
many people, this is the hardest task. Focus on TDD—a great way of
splitting a large change into smaller ones. Using TDD coaches, who
pair-program to teach, is an efficient way of learning TDD. But be

https://less.works For Gene Gendel only, id:gene-gendel



370

10 — Continuous Integration

patient. TDD is a hard change for most developers and learning
takes time.

Setting up a CI system—Most products we worked with set up a
separate project for building a CI system. This works, though a bet-
ter alternative is to add the work to the Product Backlog and let an
existing feature team work on it. This creates more visibility and a
sense of ownership—the developers are also users. 

Avoid…‘Solving’ 
organizational
problems with 
technical solu-
tions

Most problems implementing CI are organizational and not techni-
cal. In many products we worked with, CI became an organizational
mess. It involved many traditional functions and roles: developers,
managers, testers, test automation engineers, ScrumMasters, agile
coaches, SCM administrators, and the IT department. The result
was unclear responsibilities, blaming, and committees (aka “steer-
ing groups”) who were forever discussing without anybody doing
real work. The result? No progress. If this happens, do not try to
hide the organizational problems with technical solutions and do not
give up because “our product is too complex for CI.”

Why not give up? Because every product group we have worked with
who went through this “big rock removal” process toward CI has
unequivocally found it immensely useful.

RECOMMENDED READINGS

Original texts related to CI:

! Extreme Programming Explained, by Kent Beck. The term CI
was first coined in the Extreme Programming method.

! Continuous Integration, by Martin Fowler. Probably the best CI
description available.

Recommendations related to automating builds:

! Managing Projects with GNU Make, by Robert Mecklenburg.
When working with C/C++, you will probably use Make. This
book provides a great overview of Make and also talks about
Make in large-scale development.

https://less.works For Gene Gendel only, id:gene-gendel



371

Scaling a CI System

! Ant in Action, by Steve Loughran and Erik Hatcher. When
working with Java, you will probably use Ant. This book’s focus
is Ant, but it covers other topics. Maven—another popular
build automation tool—is also covered.

! Groovy in Action, by Dierk Koenig, Andrew Glover, Paul King,
Guillaume Laforge, Jon Skreet. Groovy is a recent JVM-based
dynamic programming language. It has some excellent build
automation support.

! Pragmatic Project Automation: How to Build, Deploy and Mon-
itor Java Apps, by Mike Clark. A small book that covers lots of
technology related to automating Java builds.

! Continuous Integration: Improving Software Quality and
Reducing Risk, by Paul Duvall, Steve Matyas, and Andrew
Glover. The focus of this book is on the automation of builds
more than on the practice of CI.

Very little is published on CI in large development. Martin Fowler’s
original article discusses staging. Also:

! “Scaling Continuous Integration,” by Owen Rogers in Extreme
Programming and Agile Processes in Software Engineering
2004 Conference Proceedings. Although a little dated, this is
among the best of the available material (other than this chap-
ter) related to scaling CI.

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Thinking about Adoption & Improvement 374

• Early Days: Team & Management Changes 391

• Early Days: Breaking Barriers & Habits 394

• Early Days: Gatherings 397

• Coaching & Community 399

• Continuous Improvement 402

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



373

Chapter

11
INSPECT & ADAPT

The taxpayers are sending congressmen on expensive trips
abroad. It might be worth it—except they keep coming back.

—Will Rogers

We have worked closely in a few enterprise-wide lean or agile adop-
tions over the years, and have collected experiments. Some, covered
later in the Continuous Improvement section, focus on scaling and
multiteam coordination (such as a Joint Retrospective); many others
focus on organizational design and culture. First, a story…

We were coaching in Europe and met with a manager who had been
assigned the agile transformation responsibility; he wanted to show
us his plan and ask for feedback. He presented a Gantt chart of his
planned transformation: many stages of precise duration all in
sequence, milestones, specific managers assigned to tasks along the
way, cost estimates, and more. According to the plan, in twenty-
seven months the group would have transformed to ‘agile.’ The
detail was impressive—it was also the wrong approach.

Our colleague had confused doing agile and being agile. And he was
applying command-and-control management thinking combined
with predictive planning—in essence, traditional management
‘agile’ adoption. Fortunately, within a few minutes of chatting, the
plan was jettisoned and his view shifted to serving the teams, using
a backlog, and adaptive planning.

This misunderstanding to agile or lean adoption is common in corpo-
rations that (1) mandate a top-down ‘transformation,’ (2) think this
is another change project with an end (“we have now finished chang-

https://less.works For Gene Gendel only, id:gene-gendel



374

11 — Inspect & Adapt

ing to lean—you get the bonus”), or (3) have a centralized group
responsible for pushing processes. 

THINKING ABOUT ADOPTION & IMPROVEMENT

Avoid…Adoption with top-down management support

At a time when all of us are struggling to implement lean pro-
duction and lean management, often with complex programs on
an organization-wide basis, it is helpful to learn that the cre-
ators of lean had no grand plan and no company-wide program
to install it. [SF09]

“Our agile adoption would be so much better if only we had manage-
ment support.” We have heard that many times, but be careful what
you wish for—you might get it! In one enterprise that got official
“everyone do agile” management support after an informal adoption
had been going on for several years, we hear the complaint, “I wish
we never had management support; now people are doing things for
the wrong reasons.”

Why? In some organizations the culture is

! management phones in their support but does not deeply learn
lean thinking or agile principles1

! management ‘drives’ change by setting targets and offering
bonuses; in this case, the agile adoption targets

! management directs a centralized process group to “push out
the new process”

Adopt lean and agile principles the same way as applying
them: With experiments, adaptation, self-organization, 
and a focus on the value-add work by applying Go See.

1.  At one of our clients a senior manager asked, “What is the total cost 
of ownership of adopting lean thinking?” 

https://less.works For Gene Gendel only, id:gene-gendel



375

Thinking about Adoption & Improvement

Then, what happens is a superficial cargo-cult agile and lean adop-
tion, with widespread game playing, resentment, hidden resistance,
and misunderstanding… another management fad that will pass
away if ignored long enough. Perhaps there is a target: “50% of the
teams have a ScrumMaster within the year,” and managers get a
bonus if that is ‘true.’ Then, existing project or line managers are
relabeled as ScrumMasters. Or, “Every product should have a Prod-
uct Backlog.” The existing work breakdown structure of tasks is cop-
ied into a spreadsheet called the backlog. Nothing has really
changed, and indeed things may be getting worse because of more
disruption and gaming.

Avoid forcing—When coaching we encourage: volunteering; do not
force any agile or lean approach onto people; people should be left the
choice to think and experiment. Create a culture of coaching for those
that want to experiment. 

Focus—Strive to achieve skill and demonstrate excellence in the
adopting groups, with concentrated long-term, high-quality support.
The best, most sticky adoptions we have seen had this approach.

Try…Adoption with top-down management support

In contrast to the prior case, we have also seen groups with a high-
quality management culture that cultivated genuine improvement. 

We recall one client (at a bank) where the leadership team quickly
dove deep into reading many books on agile principles, studied and
applied systems thinking, all attended a ScrumMaster training with
their team members, talked with hands-on experts, used agile
coaches, and applied Go See. Quickly after starting, this group had
made deep changes in organizational design and there was tangible
improvement in the flow of value to users. 

For ScrumMasters and other coaches the implication is: Only lobby
for top-down support when you think the leadership team is seri-
ously interested in learning and in organizational redesign. 

https://less.works For Gene Gendel only, id:gene-gendel



376

11 — Inspect & Adapt

Try…Individuals & interactions over processes & tools

One of our colleagues in an agile-coaching group observed, “This
company has tried to use processes to compensate for a lack of com-
petence of its employees.”

The first agile value, and the previous story about the effective agile
adoption at a bank, reminds us of its veracity—people, not processes,
are the first-order effect for success [Cockburn99].2 A group cannot
‘process’ its way out of a deep hole dug by problems with the individ-
uals in engineering and management—‘agile’ will solve nothing in
that case.

So, focus on cultivating and hiring extraordinarily talented people.

But, no false dichotomy… as object-pioneer Grady Booch wrote:

People are more important than any process. … Good people
with good process will outperform good people with no process
every time. [Booch96]

Try…Job and personal safety (not role safety)

It is difficult to get a man to understand something when his
job depends on not understanding it.—Upton Sinclair

We were in Norway, dining on lutefisk with a colleague. He said, “My
company has hired consultants for a lean initiative. They are identi-
fying redundant employees and firing them.”

This is a perversion of lean thinking. Lean has nothing to do with
terminating ‘redundant’ employees, nor with lean-by-consultants.
The English name ‘lean’ was not chosen to imply removing the fat
from an organization. Rather, it was chosen3 to contrast mass manu-

2.  An inefficient process with large batches, queues, and handoff is 
itself a major force for failure, but it comes from people and their 
mindsets. Toyota says, “build people, then build products.”

3.  By John Krafcik while working on a graduate degree at MIT; Mr. 
Krafcik was the first American engineer hired by NUMMI, the Toy-
ota-GM joint venture in California.

https://less.works For Gene Gendel only, id:gene-gendel



377

Thinking about Adoption & Improvement

facturing with lean manufacturing—working in small batches and
with less effort to produce goods.

Toyota strives to provide long-term job safety. This is part of the first
pillar of lean thinking: Respect for People. And it is also intimately
connected to the second pillar: Continuous Improvement. Who is
going to strive for continuous improvement in the organization when
the likely outcome is job termination? Yet, this does not imply role
safety—which inhibits improving the system. For example, project-
manager role disappears in Scrum; we have seen people then shift to
hands-on engineering or product management.

Personal safety—In Los Angeles one December morning we waited
in a room to meet with a team we had been invited (by higher-level
managers) to coach for a few weeks. Soon they showed up. We wel-
comed them and asked, “What are the problems you’d most like to
work on? Maybe we can help a little.” There was a long silence—peo-
ple were uncomfortable to openly discuss problems. So, below the
extreme case of job loss, there is the issue of personal safety and
improvement. In the Crystal Clear agile method, it is identified as
one of seven key properties set up by the best teams:

Personal Safety is important because with it, the team can
discover and repair their weaknesses. Without it, they won’t
speak up, and the weaknesses will continue to damage the team.
[Cockburn04]

A book we sometimes suggest to ScrumMasters (and others) is The
Five Dysfunctions of a Team [Lencioni02]. The first two of these dys-
functions are absence of trust and fear of conflict. An improving
Scrum team must resolve this. See the recommended readings for
material that might help.

Offshoring is another context that we regularly see personal safety
problems; a company terminates employees in higher-cost regions
and shifts more work offshore. This impacts motivation and collabo-
ration between people in different regions.

In a new large-scale Scrum adoption initiative, ScrumMasters and
others need to be mindful of these dynamics: Is Scrum or lean devel-
opment going to be viewed as a mechanism to ‘streamline’ and ter-
minate overhead? And whereas in little companies active opposition

https://less.works For Gene Gendel only, id:gene-gendel



378

11 — Inspect & Adapt

to the system is common, in large product companies there is often a
sense of disempowerment and reduced personal safety to challenge
the existing organization. Then, for instance, people complain that
Scrum Retrospectives are ritualistic, useless, or dead. Or perhaps
even worse, people develop a passive-aggressive attitude in response
to this ‘streamlining,’ with subtle negative consequences.

It takes active ongoing encouragement from the leadership to keep
kaizen mindset alive. As Toyota CEO Katsuaki Watanabe said:

The root of the Toyota Way is to be dissatisfied with the status
quo; you have to ask constantly, “Why are we doing this?”
[SR07]

Try…Patience

Toyota has taken decades to cultivate a lean culture; similar
patience is needed elsewhere. Further, Toyota rapidly expanded in
the 1990s and then experienced more difficulty in spreading and
sustaining a lean-thinking culture, especially in their satellite
plants. It is easy to start losing that culture without ongoing con-
stancy of purpose by lean-thinking manager-teachers [Womack09].

Daily stand-ups and visual management
can be installed in days. But it takes
years to a develop an enterprise of people
that know, teach, and apply agile and

lean thinking. It is worth it—there lies the great leverage for sus-
tained improvement. Hence the Toyota message, build people, then
build products.

Avoid…Adopting “do agile/lean”

Be agile rather than do agile was the theme of the Agile chapter in
the companion book. Agile is not a practice; it is a set of values and
principles. Some of the clients we work with misunderstand this and

https://less.works For Gene Gendel only, id:gene-gendel



379

Thinking about Adoption & Improvement

establish a large-scale transformation project that is measured in
terms of observed practices, such as, 

To be clear, we recommend trying these practices—indeed, the next
suggestion emphasizes that doing concrete agile or lean practices is
very important. But there is a big difference between a genuine
jelled self-managing team that wants to hold a daily stand-up so
that they can coordinate, and a group that has been told to have a
Daily Scrum—especially if that is on someone’s checklist of “prac-
tices in place that prove we are doing agile.”

It is common to find groups where all these practices are observed,
but where there is only superficial adoption or understanding and
little or no agility.

Similarly, we recently visited a large outsourcing client in India that
was “doing lean.” We asked what that meant. Answer: Using a soft-
ware tool to measure their WIP levels, and trying to reduce it.

Avoid…Being agile/lean without agile/lean practices/tools

“We understand the Agile Manifesto and lean thinking, and focus on
the big ideas—we understand that all practices are just context
dependent. And the standard tools don’t work in our context,
because we’re different. We have very lean analyst teams, compo-
nent teams, and test teams, each focusing on their flow.”

In addition to seeing shallow practice adoption, we have seen the
opposite: A claim to follow agile or lean thinking but no (or little)
application of any concrete tools and practices. This is associated
with relabeling existing ways of working as agile/lean, when in fact
very little has changed or improved.

What happens if there is genuine effort to adopt many agile or lean
practices or tools? For example, test-driven development, visual
management of WIP (perhaps combined with a limited-WIP policy),

having a Product 
Backlog

doing a daily stand-
up

working in time-
boxed iterations

having information 
radiators on walls

doing planning 
poker

writing user stories

https://less.works For Gene Gendel only, id:gene-gendel



380

11 — Inspect & Adapt

reduction in handoff, and more? This doing creates a concrete frame-
work for learning and kaizen, and a force for deep transformation.
Without that concreteness, it is easy to (1) miss subtle insights and
context-dependent lessons, (2) miss discovering benefits of these
tools, and (3) avoid really improving.

Walk before running

In Agile Software Development, Alistair Cockburn [Cockburn07] dis-
cussed the shu, ha, ri model of stages of skill development in Aikido
and its applicability to practices-versus-principles in agile adoption.
This parallels the apprentice, journeyman, master model. People
need to walk before they can run—they cannot become masters
without first spending time with tools, mastering them by the book,
and experiencing different contexts.

The kaizen cycle starts with learning and applying a standard prac-
tice4 for similar reasons and because improvement should be
against a baseline of insight gained by practice. And there is similar
advice in Scrum…

Rule changes should only be entertained if and only if the
ScrumMaster is convinced that the Team and everyone involved
understands how Scrum works in enough depth that they will
be skillful and mindful in changing the rules. [Schwaber04] 

Avoid…Agile/lean transformations or change projects

Framing the adoption of lean thinking or agile principles as a trans-
formation or change project leads to the notion

4.  Discussed in the Lean Thinking chapter of the companion book.

No false dichotomy—Principles without practices lead nowhere;
practices without principles, theory, and context lead to misappli-
cation and waste. Adopt principles and practices together: think-
ing tools and action tools are complementary.

https://less.works For Gene Gendel only, id:gene-gendel



381

Thinking about Adoption & Improvement

! it is a project, with an end

– rather than lifelong continuous improvement based on
experimentation and growing problem-solving skills

! it is something that people do

– rather than a change in mindset, culture, and paradigm

! it is something to define and direct by managers

So, rather than framing this as “the agile change project,” experi-
ment with framing it as…

Try…Agile/lean adoption forever

One of the pillars of lean thinking is continuous improvement; lean
adoption is not a project with an end. Similarly, a group has never
finished adopting Scrum; the framework implies inspect-and-adapt
every iteration, without stop. Therefore, do not establish an agile
change project; rather, build a permanent system for improvement.5

And rather than framing what managers do as managing “the agile
change project,” experiment with framing what they do as…

Try…Impediments service rather than change management

Sometimes, phrases are influential. Consider the difference between
manage the agile transformation and impediments service.

In the latter case, in the lifelong agile or lean journey (it is not a
project), the team members and Product Owner create an impedi-
ments backlog of their impediments—policies, structures, environ-
ment, tools, and more. The role of managers—in the context of agile
adoption—is to help the teams and Product Owner by never-ending
impediments service—working to remove impediments forever.

This change in behavior—and phrasing—is a shift from top-down or
command-and-control to bottom-up service. 

5.  There is an analogy here to the transition from project-mindset to 
continuous product development discussed in the Organization
chapter in the companion book.

https://less.works For Gene Gendel only, id:gene-gendel



382

11 — Inspect & Adapt

It leads to more Go See behavior by managers and the chance to
serve as teachers rather than controllers or planners. For example,
many team members will not even realize something is an organiza-
tional design impediment; lean-thinking manager-teachers have an
opportunity to help them learn to see this.

Iterative and adaptive; pull from the backlog—This is also a shift
from predictive to adaptive planning. In this model, agile adoption is
based on (1) a prioritized impediments backlog, (2) short impedi-
ment-service cycles6 executed by managers, and (3) adaptive itera-
tive planning based on a re-prioritized backlog each cycle. Who
knows what will be done in the next impediments-service cycle?—As
with Scrum, the impediments backlog is emergent and continually
re-prioritized.

Prioritization and impediments backlog owner?—An official backlog
owner is probably not needed. Instead, experiment with this: Every
team, when they add an impediment to the backlog, give it a prior-
ity. Then, prioritize based on (1) number of teams that raise the
same impediment, and (2) average priority of the impediment. 

Avoid ‘impediments’ added from quality and management areas—
Some years ago, in China, we were coaching a Scrum-adopting prod-
uct group that had an impediments backlog. All the original impedi-
ments came from hands-on workers. But after some time, quality
managers and department managers started to add their own
‘impediments.’ These were not impediments of flow of value to cus-
tomers, nor impediments from the value-worker viewpoint; rather,
they were ‘impediments’ such as “not conforming to centralized pro-

6.  As in Scrum-for-development, some management groups use time-
boxed cycles to improve cadence, to address the Student Syndrome 
problem, and to motivate splitting large impediments into smaller 
ones—with smaller incremental solutions. But do not assume all the 
practices of Scrum (such as timeboxing) will successfully apply in 
non-development contexts, such as this.

There is no predictive planning, schedule, milestones, targets, or Gantt
chart with the “agile adoption schedule.” Rather, Scrum and agile adop-
tion is iterative and adaptive, just as regular agile development. 

https://less.works For Gene Gendel only, id:gene-gendel



383

Thinking about Adoption & Improvement

cess practice <X>.” Avoid that; the important work is the value
stream of the teams and Product Owner, and removing their impedi-
ments. All that said, …

Avoid ‘impediments’ added from hands-on workers—If you ask a typ-
ical existing team of testers or a component team, “What is the best
team structure?” They will say, “Our current structure, of course!” It
is common that people—arguably even more so in non-management
positions—have not developed systems-thinking or lean-thinking
skills, nor have they studied organizational design, team, or prod-
uct-development research. Toyota (and management thought lead-
ers) have emphasized the vital role of managers who have this kind
of knowledge, educate others, and improve the system with insight.
Suppose there was a recent shift to feature teams and early testing,
and then ex-test-team members added an ‘impediment’ to the back-
log: “the testers should be in a separate group, and avoid testing
early so that it can be done efficiently at the end.” ScrumMasters
and manager-teachers have a responsibility to debug these local-
optimization thinking mistakes, and clarify problems that genuinely
impede the flow of value. It is easy to fall into the trap of local subop-
timization thinking—watching the runner rather than following the
baton, forgetting gemba and Go See. We make this mistake too. Test-
ing our ideas against people educated in systems thinking can help.

Managers add system impediments—Building on this last point,
there are system weaknesses to the value stream (usually in policies
and organizational structure) that team members are unlikely to
grasp or consider candidates for change. Managers have a pivotal
role in identifying and removing these. The Organization chapter in
the companion book centered on these weaknesses.

Add impediments from the Product Owner and product manage-
ment—The value stream is within the teams and in the work of the
Product Owner and product management. Invite product manage-
ment to impediments backlog workshops. 

Accept the priority given by the hands-on workers—At one of our cli-
ents in Greece, we facilitated an initial impediments backlog cre-
ation workshop with team members. After all the voting, what was
their number one impediment?—A slow network. For years that had
been the dominant issue (it inhibited integration, for instance), but
no one in management had done anything about it—the priority of

https://less.works For Gene Gendel only, id:gene-gendel



384

11 — Inspect & Adapt

this and other impediments had never been this clear. Now, with a
list of 50 prioritized impediments, the number one issue was unam-
biguous. To their credit, the management team—that had agreed to
move to the model of impediments service—accepted its priority and
within a few months, problem solved. This also built trust and coop-
eration because the teams saw managers genuinely helping solve
their key problems.

Create the initial impediments backlog in a workshop—We have
helped set up many impediment services for management teams,
and have found the following approach useful to start it off:

1.  Convene a workshop
with hands-on people
from teams, the Prod-
uct Owner, and other
product managers. In
other words, focus on gemba—where the value work is. Start
with brain-writing impediments on cards, in pairs.

2.  Next, form larger
groups from four or
five pairs. The groups
discuss, merge, and
refine the impedi-
ments into a new set of
cards. Use the floor.

3.  Combine the refined cards from all
groups into a central floor area. Do
affinity clustering to group them.
Remove duplicates. Then, do dot
voting by all participants. Finally,
lay out all the cards in (dot voted)
priority order. Discuss and refine—
final tweaking.

https://less.works For Gene Gendel only, id:gene-gendel



385

Thinking about Adoption & Improvement

4. Use visual management. Set up the
backlog on a wall outside the office of a
senior manager. (This photo shows a day-
one backlog with no ‘service’ yet). For
example, in Greece it was set up near the
office of the head of the development cen-
ter. During impediments-service Sprint
Planning, or at other times, managers
volunteer for an impediment, write their
name on the card, and move it to the mid-
dle WIP column. 

Try…Human infection

Thinking and acting outside the box is possible but hard when
everyone is inside it. Lean thinking, agile principles, self-organizing
teams, test-driven development, feature teams, manager-teachers…
these are mindset, culture, and behavior changes—and to be sticky
or meaningful, these kinds of changes require human infection from
experts through long-term face-to-face coaching. 

In the most successful adoptions we have seen, the organization
established internal coaches supplemented with external coaches
(both were important), and emphasized lots of hands-on mentoring
from these agents-of-change during the real work. 

Avoid…Agile/lean adoption targets or rewards

Rewards work. An economist wrote in his blog a story to prove this:
His son still wore diapers to bed each night. The economist told his
son, “If you don’t wet your diapers tonight, tomorrow I’ll buy you the
toy you want.” The next morning, the father went into his son’s
room. His son had successfully fulfilled the goal and was looking for-
ward to the reward. He had removed his diaper the previous night.
The bed was all wet, but his diaper was dry.

Rather than “manage agile transformation,” help agile-adopting 
teams and product management with impediments service.

https://less.works For Gene Gendel only, id:gene-gendel



386

11 — Inspect & Adapt

The Organization chapter of the companion book summarized the
hard facts that performance-based incentives lead to gaming, opac-
ity, and a weakening of the system. We have seen their deleterious
effect in promoting “fake agile” adoptions in several groups. Avoid
that—and avoid “agile adoption” target setting. The quality guru W.
Edward Deming, in his 14 points for management [Deming82], sum-
marized this in number…

11. Eliminate management by objective. Eliminate manage-
ment by numbers, numerical goals. Substitute leadership.

Avoid…Competitive ‘improvement’

At some clients we have worked with, the introduction of kaizen gets
mixed up with their prior management culture, such as competitive
incentives. Then, teams or individuals are offered rewards if they
improve more than others. This leads to a competitive rather than
cooperative culture, in which parties are less willing to share or help
others since they might ‘lose’ individually.

Avoid…Try…‘Easy’ agile or lean adoption

‘Easy’ agile adoption is an existing weak organizational design not
meaningfully changed, and a thin veneer of practices painted on:
managers relabeled as ScrumMasters, existing component/analyst/
testing teams get their own “Product Backlog” and hold a daily
stand-up meeting every week, and more. There is no significant
improvement, and people do not take continuous improvement seri-
ously—or worse, they think, “the agile adoption is finished.”

On the other hand, Scrum emphasizes the art of the possible. It may
be that minor modifications are the current limits of change because
of limits in mindset.7 These will not meaningfully enhance the value
flow to customers, but perhaps (1) adding prioritized backlogs, (2)
working in short timeboxes, (3) lowering WIP, (4) holding standups,

7.  Sometimes, people have invested years in sequential life cycle pro-
cesses and the existing team structures; they will not easily consider 
the possibility it was not ideal for flow of value.

https://less.works For Gene Gendel only, id:gene-gendel



387

Thinking about Adoption & Improvement

and (5) reducing multi-tasking will help fractionally. It is a first step
before deeper change and improvement. Then, we suggest…

If you’re going through hell, keep going.—Winston Churchill

Try…Experiment rather than improve

The mandate to improve is a lofty goal, and can scare off people from
experimenting. What if the improvement…doesn’t? Kaneyoshi
Kusunoki, a student of Taiichi Ohno and executive vice-president at
Toyota, said about kaizen and management support:

A defining characteristic of the corporate culture at Toyota is
that managers don’t scold you for taking initiative, for taking a
chance and screwing up. Rather, they’ll scold you for not trying
something new, for not taking a chance. Leaders aren’t there to
judge. They’re there to encourage people. That’s what I’ve always
tried to do. Trial and error is what it’s all about! [SF09] 

Developing problem-solving skills through many experiments is cen-
tral to lean thinking. The only bad experiment is the one not tried!

The real measure of success is the number of experiments that
can be crowded into 24 hours.—Thomas Edison

In this light, the Try… and Avoid… ideas in this and the companion
book are just experiments—and also because systems are too com-
plex and variable to assume prescriptive advice will work.

Avoid…Forcing 
adoption of prac-
tices

Try…Encourage experiments; offer coaching

The mandate “adopt agile development” is daunting and large. The
mandate “do continuous integration” reflects command-and-control,
forcing practices. An alternative to both these approaches is to foster
the kaizen mindset encouraged in lean thinking: People are encour-
aged to experiment and are supported with coaching and education.
For example, a ScrumMaster can explore with teams the problems
associated with delayed integration, describe continuous integration
as an alternative, and arrange coaching if the teams want to try it.

https://less.works For Gene Gendel only, id:gene-gendel



388

11 — Inspect & Adapt

Avoid…Adopting <X> because “agile didn’t work here”

Survey decades of management and product-development trends,
and some patterns emerge. Possibly the dominant one is

1. difficulties exist due to system weaknesses in organizational
design, poor engineering skill, and ineffective management

2. try new ‘thing’ to address a problem (insert: MDD, PMI certifi-
cation, Kanban, CMMI, Scrum, SOA, agile, next-generation
lean, …)

3. do not address the systemic issues; try ‘thing’ superficially

4. after two years, abandon ‘thing’ because “it doesn’t work here”

5. go to step 2

We see this in some groups trying Scrum. Scrum is a simple frame-
work that acts as a mirror: Rather than fixing problems, it increases
visibility of systemic weaknesses, inviting inspect-and-adapt with
experiments. In some groups, rather than fixing the system, it is
easier to try the next thing… “Let’s call in new consultants specializ-
ing in Scrum failure, and then adopt…next-generation lean.”

Avoid…IBM/Accenture/… agile adoption

This is not about IBM or Accenture per se; it is about 

! the misconception that agile is a process or practice

! shifting responsibility for agile/lean success to an external con-
sulting group

From this stems the notion it can be bought and installed—and
there are companies happy to take your money claiming so. Plus, it
is related to the misunderstandings summarized in the False Dichot-
omies chapter of the companion book: agile means iterative develop-
ment, Scrum means daily stand-ups, and so forth.

https://less.works For Gene Gendel only, id:gene-gendel



389

Thinking about Adoption & Improvement

Avoid…Adopting agile with “agile management” tools

“We’re starting to do agile. What tool should we buy for agile project
management?” This is a question we hear often; our suggestion is
always the same—and we mean this even for the very large-scale
cases: “Avoid any special agile tools until several years after starting
the adoption. Keep it simple. Use the wall or, in the most complex
solution, a simple spreadsheet and wiki.” Why?

Problems from system weakness cannot be solved with processes or
tools. Worse, attempting to quick fix systemic problems with tools
creates an illusion of control or change but no real improvement…
Executive: “What is the agile transformation progress?” Agile-
change manager: “We have installed <AgileToolX> and three of the
projects are using it. Come take a look at the burndown charts…”

Avoid the lure of “tools to do agile management” for at least several
years after starting to adopt agile or lean development, so that peo-
ple’s focus can be where it belongs: on the system. By removing all
crutches and quick-fix illusory solutions, people may—just possi-
bly—be prompted to squarely face the important but hard issues:
competent individuals, interactions, organizational design, the illu-
sion of command-and-control, and so on.

If you automate a mess, you will get an automated mess.—anon

We are not suggesting agile-management tools are poor—or good.
This is about focusing on important things first and avoiding the
dysfunctions that accompany management-reporting tools.

After <N> years? Prefer free tools so that the cost of experimenting
is low and there are fewer barriers to discarding tools. We have
heard the following several times: “We can’t stop using tool (or pro-
cess) X because we have invested so much in it.”

We have seen thousand-person multisite development groups suc-
cessfully apply large-scale Scrum with some Excel spreadsheets for
their Product Backlog and Release Burndown chart. Indeed, they
are almost certainly better off for doing so; it keeps their attention
more on fixing the system.

https://less.works For Gene Gendel only, id:gene-gendel



390

11 — Inspect & Adapt

Also, there is a more subtle, pernicious danger with agile-manage-
ment tools. These are the fifth and eleventh agile principles:

5. Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the
job done.

11. The best architectures, requirements, and designs emerge
from self-organizing teams. 

A theme in Scrum (and other agile methods) is self-managing teams,
as covered in the Teams chapter in the companion book. And the
fifth principle emphasizes trust and support, which is quite different
from monitoring people’s work. So what? 

The agile-management tools we have seen emphasize tracking and
displaying individual and team tasks and Sprint Backlogs to manag-
ers—almost the antithesis of these principles. In Scrum, the team’s
tasks (the Sprint Backlog) are created by the team to help them self-
manage, not to report their status to others. As the well-known team
researcher, Richard Hackman, explains, “In self-managing teams,
the responsibility of tracking the progress is delegated towards the
team” [Hackman02]. Since the team is self-managing, they are not
to be tracked or monitored; such tools are a slippery slope that may
reinforce a traditional command-and-control culture rather than a
culture of self-management.

We know a coach who works for an ‘agile’ tool vendor. He told us that
they had been joking about adding a “real Scrum” button to their
tool. This button would turn off all the non-Scrum and unnecessary
features that were requested by their traditional-management cli-
ents…and there would be almost nothing left in the tool.

There is a well-known case of a company where project managers
inspected daily the Sprint Burndown charts of teams, and “solved
the problem” when the charts did not go down. Ken Schwaber—the
Scrum co-creator—was visiting and noticed that all the burndown
charts had almost no deviation between the burndown and ideal
lines. Eventually he discovered that a team kept two charts: a fake
one for the managers so that they would stop interfering, and a real
one to support self-management.

https://less.works For Gene Gendel only, id:gene-gendel



391

Early Days: Team & Management Changes

Computerized management-reporting tools can also take people
away from gemba and the practice of Go See. Lean thinking empha-
sizes—to understand what is really happening—go with your feet
and see with your eyes at the real place of work, help solve problems
there, and build relationships with the workers there.

Finally, these tools are optimized for reporting—not for success,
improvement, or a better flow of value. What meaningful problem do
they solve?

EARLY DAYS: TEAM & MANAGEMENT CHANGES

Try…Transition from component to feature teams gradually

see the Feature 
Teams Primer 
chapter

“Try…Compo-
nent guardians 
for architectural 
integrity when 
shared code own-
ership” section on 
page 314

“Try…Compo-
nent mailing 
lists” section on 
page 314

Over the years that we have been involved in the transition to fea-
ture teams from component teams (in large groups involving hun-
dreds of people), we have seen several strategies—and not always
smooth. In Feature Teams in the companion book we shared two:

! big-bang reorganization

! gradual expansion of component teams’ responsibility 

The first strategy can work better than one might expect, but not
many organizations want to take that plunge because the change is
big and they consider it risky. Plus, it is a challenge in a 20-year-old
multisite product group with 100 long-established component teams.
The second strategy does not work that well, because it creates both
the drawbacks of feature and component teams.

Another strategy we have experimented with (not described in the
companion book) is the gradual introduction of feature teams,
applied only to the most important new customer features.

For instance, take the most important new feature, item-1. Form one
new cross-component and cross-functional feature team, Team Red
(Figure 11.1), by extracting only a few members out of existing com-
ponent and single-function teams (such as analysis and testing). The
old teams remain, slightly smaller, and Team Red is born: starting
life by working on item-1. In this way, new high-value work benefits

https://less.works For Gene Gendel only, id:gene-gendel



392

11 — Inspect & Adapt

from the speed and simplicity of feature teams, while change impact
is softened.

Figure 11.1 a 
gradual transition 
from component to 
feature teams, 
focusing on the 
most important 
features

stable teams: see 
the Feature 
Teams and 
Teams chapters 
in the compan-
ion book

Note!—Team Red is not a temporary project group formed only for
the purpose of feature-M. We are not suggesting the traditional
practice of resource management with resource pools for short-term
work groups. Rather, Team Red is a new stable team that will stay
together for years; feature-M is but the first of many features they
will eventually do.

Disadvantages—This approach also has drawbacks. The first,
broadly, is conflicts caused by having two ‘competing’ organizations
in place at the same time…

! feature teams change code that component teams own

! the analysis and architecture groups lose ‘control’ over deciding
how to implement a feature, and the test group over the testing

Item 1
Item 2

Item 3

Item 4

…

…

System

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

Product
Owner

Feature
Team
Red

tasks for A
tasks for B

tasks for A
tasks for B

tasks for A
tasks for C

contains ex-members 
from component 
teams A, B, and C, 
and from analysis, 
architecture, and 
testing groups

https://less.works For Gene Gendel only, id:gene-gendel



393

Early Days: Team & Management Changes

The second drawback is that this approach is slow—not a major
problem for big product groups that are around for a long time!

Avoid…Waiting for the organization chart

Official agreement on changes to the organization chart for a reorga-
nization to cross-component and cross-functional teams can take a
long time—especially in long-established large groups. In the groups
we work with, the successful strategy is to not wait for that, but to
immediately and informally create new cross-functional Scrum
teams by dispersing the old teams. The existing line managers (say,
a test manager) then have people ‘reporting’ to them from multiple
teams. Usually, after some months, the organization chart catches
up. 

What about the prior line managers, such as the test-group line
manager? They may become line managers of several new cross-
functional cross-component Scrum teams.8

Avoid…In-line ‘ScrumMaster’ line- or project managers

see “Avoid…Fake 
ScrumMasters” 
in the companion

“Avoid…Scrum-
Master coordi-
nates” section on 
page 197

Before adopting agile development, most groups had project manag-
ers or line managers. In some, during early days of agile adoption,
rather than supporting the emergence of self-managing teams (the
11th agile principle) with a real ScrumMaster, the managers relabel
themselves ScrumMasters of their in-line teams—often to meet a
top-down target to do Scrum. Avoid that, since a ScrumMaster is not
the team’s line or project manager and has no authority over the
team they serve; there would be a conflict between having authority
and no authority.

Try…Line man-
ager as Scrum-
Master of out-of-
line team 

On the other hand, some line managers can serve as excellent real
ScrumMasters—they may have the right skills and servant-oriented
character, they may have some influence in the organization, and
this role increases their focus on improving the system. How to

8.  This assumes that the new teams report to a line manager, which is 
not required by law nor in a self-managing organization; see the rec-
ommended readings in the Organization chapter of the companion 
book for companies that do not organize in a hierarchy.

https://less.works For Gene Gendel only, id:gene-gendel



394

11 — Inspect & Adapt

resolve? In some groups at Xerox, for example, a line manager of
team-A offers to serve as a ScrumMaster for out-of-line team-B;
team-B decides on the offer. The two points are (1) it is an out-of-line
team, and (2) ScrumMasters are chosen by the team, not imposed.

EARLY DAYS: BREAKING BARRIERS & HABITS

Try…Break the walls—team areas with whiteboards

ScrumMasters remove barriers for teams. At Valtech India, when
we saw the cube farm on the left, we arranged to gut the interior of
the building, and create team areas with plenty of whiteboards. 

Try…Two-week iterations to break waterfall habits

Although Scrum allows iterations of up to four weeks, this is seldom
advised or practiced. The Scrum Guide suggests:

Tip: When a Team begins Scrum, two-week Sprints allow it to
learn without wallowing in uncertainty. [Schwaber09a]

When we started coaching large-scale groups in Scrum, we assumed
that four-week iterations would be useful to gradually “lower the
waters in the lake.” What we discovered, however, was that four
weeks is just long enough to maintain old habits: sequential life
cycle practices, the existing single-function teams, and handoff
between groups. Consequently, there was no strong force for out-of-
the-box thinking or transformation to a profoundly different organi-
zational design with concurrent engineering, continuous integra-
tion, feature teams, and so on. 

afterbefore

https://less.works For Gene Gendel only, id:gene-gendel



395

Early Days: Breaking Barriers & Habits

But, two-week iterations—with the goal of getting items really done
according to done—do not readily allow for old habits. Things have
got to change—dramatically.

A similar suggestion, for other good reasons, is found in the first
book on scaling agile development: 

Although you may have heard otherwise, the larger the team is,
the more important short cycles are. The reason is simple—if a
large team takes a completely wrong course from the entirety of
its three-month development cycle, the cost of correcting the
course will be enormous. And even if the team took the correct
course, it wouldn’t benefit from the frequent feedback that is
possible with short development cycles. [Eckstein04]

Try…One flip chart for tasks of one Product Backlog item

Figure 11.2 shows a common-style Sprint Backlog, with one row of
task cards for each Product Backlog item, and three columns: to do,
underway (meaning, WIP), and complete (meaning, done). 

Figure 11.2 Sprint 
Backlog—rows for 
each item, columns 
for to do, underway
(meaning, WIP), 
and complete.

https://less.works For Gene Gendel only, id:gene-gendel



396

11 — Inspect & Adapt

In the early days of a big-group adoption, a coach will notice—by
looking at this display and in the behavior of the team—two symp-
toms of old habits:

! Many tasks cards at the same time are in the underway col-
umn—there is high WIP.

! Key point—task cards for multiple backlog items are in the
WIP column because people are thinking “I only do my special
tasks.”

For example, “I am an interaction designer. I have finished my inter-
action design tasks for item-1. Therefore, no more tasks for me in
item-1, so I will start on my interaction design tasks for item-2.”

Team members have primary specialities, and will do tasks in those
areas, but when those are finished, the idea is for team members to
take on other tasks of the current item in progress, in less familiar
areas—perhaps in an area of secondary speciality. This both reduces
WIP and increases multi-area learning.

A visual management technique to encourage this is illustrated in
Figure 11.3. Now, the Sprint Backlog is spread across a set of flip
chart posters. Each Product Backlog item has task cards on a sepa-
rate poster—and each poster has the three common columns: to do,
WIP, done. Now—key point—the team displays only one or two post-
ers on the wall at a time;9 the other posters (items) are out of sight.
Then, the whole team focuses on getting one item at a time done,
increasing learning and reducing WIP.

9.  Two items may be in progress either because each is so unusually 
small that the entire team cannot realistically work on one item 
together or because something is blocked.

https://less.works For Gene Gendel only, id:gene-gendel



397

Early Days: Gatherings

Figure 11.3 one flip 
chart for each item

EARLY DAYS: GATHERINGS

Try…Repeating large-audience introductions

When there are tens of thousands of people in a company, it is useful
to convey a consistent introductory message to everyone. One tech-
nique is written material, but that is low-impact—few read it, and
the nuance of “bringing Scrum to life” is lost. 

Frequent one-day large-audience seminar introductions (say, 200+
people at a time) make a bigger impact—due to immediacy, Q&A,
and especially the many ‘discussions’ that take place during coffee
and lunch breaks. These seminars break the ice and add some steam.

https://less.works For Gene Gendel only, id:gene-gendel



398

11 — Inspect & Adapt

Try…Open-Space Technology for early-days adoption

From India to Hungary to the USA,
we have seen the positive impact of
using Open Space Technology (OST)
[Owen97] during the early days of
large-scale Scrum adoption within
groups. We usually serve as facilita-
tor, starting by announcing the

theme of “agile adoption at companyX,” explaining the time-space
board, and briefly sharing the OST principles and laws. 

OST is a meeting technique that encourages emergence and self-
organization; it is highly complementary to agile principles and
Scrum, and we encourage groups to experiment with it in multiple
contexts: early days, Scrum-of-Scrum meetings, and more.

Figure 11.4 OST 
early-days agile 
adoption events: 
Budapest and 
Bangalore

Try…Big gatherings to share stories & experiments

During the first few years
of Scrum adoption at one of
our clients, we helped orga-
nize an annual internal
Scrum Gathering in which

hundreds of people from around the globe came together to share
stories and tips, listen to expert speakers, and so forth. This sus-
tained and added momentum to the adoption. 

https://less.works For Gene Gendel only, id:gene-gendel



399

Coaching & Community

COACHING & COMMUNITY

Try…Central coaching group

In some of the enterprise-wide adoptions that we have seen, an
internal agile or lean coaching group was established, consisting of
hands-on agile experts who go and work with directly with teams.
Try that.

Avoid…Central 
coaching group 
with formal 
authority

Form a cross-functional coaching group to learn the diversity of per-
spectives and issues and to build support for change in more diverse
areas. For example, include product management, software develop-
ment, hardware development, field service, sales, manufacturing,
marketing, and more. That said, in the early days of adoption, the
focus is typically within R&D and product management, so the orig-
inal scope of coaches is usually limited to these areas.

Caution—Avoid a group that has formal authority to mandate prac-
tices, policies, and processes. Rather, create a group that focuses on
coaching people interested in adopting agile or lean development.

Try…Concentrate the coaching on a few products

Genuine learning and change of behavior within a product group
takes a lot of coaching and time. Plus, misunderstandings are easily
created without sufficient coaching. We have seen product groups
flounder because they received only a smattering of occasional edu-
cation. It is better to concentrate the attention of the internal coach-
ing group—supplemented with external coaches—on a few products.
Only move on to new groups after solid mastery in old groups.

Try…External agile coaches

Good external agile or lean coaches are worthwhile because they
bring fresh perspectives and ideas, sometimes have more credibility
than internal coaches (even if not justified) and can therefore make
a quicker change-impact, and they can “speak the unspeakable.”
Also, …

https://less.works For Gene Gendel only, id:gene-gendel



400

11 — Inspect & Adapt

Try…Pair external agile coaches with internal ones

When external coaches visit, pair them with internal coaches. There
are several advantages, including

! learning from each other—for example, the external coach will
learn things about the enterprise—policies, politics, and so
forth—that would otherwise be difficult or slow to grasp

! increased learning in the broader coaching network—the two
coaches connect each other to broader networks (internal and
external) which share and learn from one another 

Avoid…Advisors/consultants who are not hands-on coaches

Big companies often have a centralized process or improvement
group. The people working in this area sometimes drift away from
doing hands-on development and become PowerPoint process con-
sultants. Avoid people like that in an agile or lean adoption initia-
tive. Similarly, watch out for consultants or coaches who may not
have read the foreword to the four agile values: 

We are uncovering better ways of developing software by doing
it and helping others do it. (emphasis added)

Some ‘agile’ consultants do not directly develop software with the
teams—coaching agility and lean thinking at gemba. Rather than
doing it with hands-on developers and practicing Go See, they sit in
rooms presenting or reviewing process diagrams that may have lit-
tle to do with what is really happening, or they write emails specu-
lating about problems and their solutions. Managers and
consultants may be pleased with the agile PowerPoint process, but
the reality on the ground is different.

Instead, develop a cadre of internal and external agile/lean coaches
who apply Go See and who are masters of the real value work (pro-
gramming, testing, …). These coaches and consultants spend most
time with engineers while coaching, and only occasionally leave
gemba to meet with senior management—bringing their insight of
what is really happening at gemba.

https://less.works For Gene Gendel only, id:gene-gendel



401

Coaching & Community

Try…Structured intensive curriculum for all teams

For example: At one of our clients the focus is on lean development
plus agile engineering practices. In collaboration with management,
we set up (and coached) the following curriculum for development
people (organized by team). There are intervals of several weeks to
several months between each step:

1. Short warm-up e-learning (web-based) courses that focus on
basic concepts and terminology related to lean thinking.

2. Lean development-1 (LD-1): Five days in classroom with class
projects, with an emphasis on hands-on doing.

3. LD-2: Five days in a structured workshop with teams, applying
the skills from LD-1 to their real products, and learning some
new skills. A coach mentors. The workshop is in a separate
location from their normal work environment.

4. LD-3: For five days, a coach visits the team at their normal
work area, reinforcing LD-1 and LD-2 skills in the context of
their day-to-day work, doing pair work, and facilitating work-
shops (such as Sprint Planning).

5. LD-4: Same as LD-3.

Thousands of people are involved in this multiyear coaching
endeavor, and the leadership’s commitment to in-depth meaningful
lean and agile coaching is an illustration of the foundation of the
Toyota Way: manager-teachers who have long-term constancy of
purpose with lean thinking.

Avoid…Internal agile/lean cookbooks

“Let’s write an internal agile cookbook so that all the people can bet-
ter adopt agile development in our company.” It sounds like a good
idea: more efficient, more harmonized, … But we have seen—
through Go See with the teams—the subtler dynamics at play… 

! It reduces critical thinking—people assume that if something
is written in a corporate-sanctioned guide, then it is good.

https://less.works For Gene Gendel only, id:gene-gendel



402

11 — Inspect & Adapt

! It reduces challenging the status quo—people assume that
what is written in corporate guides should be accepted or fol-
lowed, rather than challenged.

! It reduces learning, especially good agile/lean learning—high-
quality agile, lean, and Scrum teachings have been written in
books by founding thought leaders; but rather than study these
original sources for good learning, people assume that second-
ary corporate guides contain reliable insight.

! (Related to prior point) it increases misrepresentation—in the
interest of ‘harmonization,’ internal process writers revise
these systems… “let’s remove self-organizing teams from our
agile description—people won’t like that.”

! It reinforces the corporate illusion that system problems can be
solved with processes and process documentation.

! If there is an internal group that only writes documentation,
and the people in this group do not do hands-on agile coaching,
then (1) what is written is undesirable because it is not based
on experience, and (2) it perpetuates more overhead work away
from gemba.

A group at Toyota described their early documentation effort, and
what Taiichi Ohno thought of that:

So we went to work on preparing a systematic description of our
[Toyota] production methodology. … Ohno, of course, hated that
kind of deskwork. If he saw people poring over written work like
that, he’d tell them to get out onto the plant floor. So the team
couldn’t do its work within his sight… [SF09]

CONTINUOUS IMPROVEMENT

This section has two categories:

! multiteam coordination, such as a Joint Retrospective

! other general experiments

https://less.works For Gene Gendel only, id:gene-gendel



403

Continuous Improvement

Multiteam Coordination Experiments…

Try…Joint Sprint Retrospectives

An iteration ends with an individual team Sprint Retrospective,
where the focus is team-level improvement actions. In large-scale
Scrum there is the bigger system to inspect and adapt. For this,
experiment with Joint Retrospectives each iteration. 

When?—Since the iteration ends with a team retrospective, most of
our clients hold this early in the first week of the subsequent itera-
tion—when the issues of the previous iteration and recent team-
level retrospectives are still fresh in mind. 

Who?—In general, one or two representatives from each team. Since
ScrumMasters are closely involved in understanding and helping
improve the system, they are good candidates. However, avoid
ScrumMaster-only meetings; this gives the wrong impression that
ScrumMasters are solely responsible for improvement (rather than
other team members too), and it increases bias during the workshop.

Scope of teams?—This depends on the scale: If there is only one
small 10- or 20-team group at one site, one Joint Retrospective with
representatives from all teams suffices. If it is larger and there are
requirement areas, then each area is a good scope for a retrospective.
Because many issues are site specific, a site-level retrospective is
also useful: one in Curitiba, one in Chengdu, and so on. Finally, for
larger groups, experiment with a top-level Joint Retrospective
(above the site and requirement areas); in this case, it is most often
a multisite retrospective. 

team-level Sprint 
Retrospectives

iteration . . .

Joint Retrospective

https://less.works For Gene Gendel only, id:gene-gendel



404

11 — Inspect & Adapt

Where?—Use a big room,
with lots of whiteboards
since there may be doz-
ens of people in a Joint
Retrospective. See the
Multisite chapter for tips
in that case.

“Try…Require-
ments work-
shops for Product 
Backlog refine-
ment” section on 
page 243

How?—As with any retrospective, variety of workshop activities over
time is a guiding principle. Broad suggestions: 

! Try Open Space Technology [Owen97], World Café [BI05], and
Future Search [WJ00] for Joint Retrospectives.

! Apply the diverge-merge pattern—useful in any large work-
shop. 

“Try…Coordina-
tion working 
agreements” sec-
tion on page 212

What?—Too often, a retrospective focuses only on problems. Experi-
ment with sharing what is going well for a site or team, that others
may try. This is the yokoten—spread practices laterally—approach
used at Toyota. A joint retrospective is also a time to review and
change existing coordination working agreements.

Try…Joint Retrospective big improvements in Product Backlog

Major (expensive) improvement ideas are added to the Product
Backlog so that they are visible to—and prioritized by—the Product
Owner. This is even more important when there are intermediate
Joint Retrospectives below the overall product level. For example,
suppose there are 20 teams in Curitiba (Brazil) and 20 teams in
Chengdu (China). Each sub-group holds its own site-level retrospec-
tive and identifies the same major improvement goal. These need to
flow into a common list, the backlog, to prevent duplication and so
that the Product Owner sees cross-site problems. 

And who takes on this work? An existing feature team.

Note—This relates to other suggestions in this and the companion
book. If the improvement goal involves common software, this leads
to a feature team working on shared infrastructure (see Feature
Teams in the companion). If it involves creating common test-auto-

https://less.works For Gene Gendel only, id:gene-gendel



405

Continuous Improvement

mation testware, this leads to a feature team doing test automation
(see the Test chapter).

Try…Cross-team working agreements

“Try…Coordina-
tion working 
agreements” sec-
tion on page 212

External-to-team working agreements usually define how teams
agree to work together; for instance, holding a joint design work-
shop. They may or may not be product-wide; a subset of teams that
work together frequently can have their own agreement. They are
defined or evolved in Joint Retrospectives. 

Try…Joint Sprint Reviews

A Joint Retrospective is vital to inspect and adapt the system-level
ways of working. Similarly, a Joint Review is pivotal to focus on
inspect-and-adapt for the overall product. At one of our large-group
clients, the last day of the iteration runs as follows:

1. Product-level Joint Review—The overall Product Owner (PO)
and supporting PO representatives are in meeting rooms
around the world, all linked together with video conferencing
and shared desktop technology. There are also representatives
from various teams.10 What is presented? A subset of items
that are of special or overall interest to the entire product
group. What is discussed? Issues relevant to the overall prod-
uct.

2. Single-team Sprint Review or multiteam Joint Reviews—When
a supporting PO representative is served by only one team, a
standard Sprint Review occurs. When the PO representative is
served by several teams or the Area PO is involved, we have
seen clients either (1) stagger the Sprint Reviews so that the
PO representative or Area PO meets separately with each, and
(2) a Joint Review with several teams together. 

3. Single-team Sprint Retrospectives.

10. With the exception of Joint Retrospectives, we discourage Scrum-
Masters from acting as representatives, to avoid giving the wrong 
impression that they are the team representative or manager.

https://less.works For Gene Gendel only, id:gene-gendel



406

11 — Inspect & Adapt

A review bazaar—A Sprint Review involves conversation, not only a
demonstration of the product; nevertheless, showing the running
system is important. One technique applicable to a Joint Sprint
Review is a bazaar [Schatz05], analogous to a science fair: A large
room has multiple areas, each staffed by team representatives,
where the features developed by a team are shown and discussed.
Members of the Product Owner Team and Scrum teams visit areas
of interest. 

Avoid…Try…Individual team-level Sprint Review

If an individual team has its own separate Sprint Review, there is a
danger—one that we have seen in action—that the team focuses on
‘their’ result instead of the overall product created by all teams
together. This leads to a loss of systems focus and an increase in
local sub-optimization. Avoid that. However, a Joint Review does not
review all items developed during the iteration (since there are so
many), and the team that developed a feature might need detailed
feedback from their Product Owner. If separate reviews are held,
people need to watch out for a loss of product-level focus.

Other Experiments…

Try…Spend money on improving, instead of “adding capacity”

Very large product groups become large because their default
response to delivery-speed problems is to hire more people. Avoid
that, and in contrast, apply the lean-thinking strategy of removing
waste to improve the flow of value—reducing handoffs, WIP, and so
forth. Note that the approach is more subtractive than additive.
Often, this waste removal does not even incur additional capital
investment or operating expense. 

https://less.works For Gene Gendel only, id:gene-gendel



407

Continuous Improvement

And yet, spending more money
(“increasing cost”) can contribute to
improving—without using it to hire
more people. For example, when I
(Craig here) started working at
Valtech India, I noticed that people
had only one small monitor.
Research suggests improvements if

people have more than one [Atwood08], so we bought a second moni-
tor for everyone. 

Other common—and valuable—examples include hiring expert
coaches who mentor people, and classroom education with great
teachers.

Try…Lower the waters in the lake

One metaphor for continual improve-
ment—sometimes used in lean think-
ing—is the lake and rocks.11

How to work toward flow of value to
customers and continually improve? Do
this by gradually lowering the waters
in the lake. The water level symbolizes
the amount of inventory, WIP, batch

size, handoff, or cycle time.12 That is, gradually decrease their size.
As they grow smaller—as the water level lowers—new rocks hidden
below the surface of the water are revealed. These represent the
weaknesses and impediments in the system. 

For example, perhaps a group first moves from a long two-year
sequential life cycle to a four-week timeboxed iterative cycle. Some
outstanding weaknesses in the system—the biggest rocks—will
become painfully obvious; for instance, lack of automated tests and
efficient integration. The group works on these big visible rocks;
eventually they shrink in size. Then, as discussed in the “Try…Two-

11. This metaphor was also presented in Queuing Theory and Lean
Thinking in the companion book.

12. These are interrelated; for example, a big batch means more WIP.

https://less.works For Gene Gendel only, id:gene-gendel



408

11 — Inspect & Adapt

week iterations to break waterfall habits” section on page 394, the
cycle time is lowered to two weeks to confront deeper problems.

Especially in large traditional groups there is a massive pile of rocks.
The scale of improvement work can seem overwhelming. The strat-
egy behind this metaphor makes the work tractable, while also sig-
nifying that kaizen is never finished. 

Avoid…Rotating the ScrumMaster role quickly

It takes study and practice to become an effective ScrumMaster—at
the very least a year. And a ScrumMaster ought to focus on organi-
zational change—and that requires long-term constancy of purpose. 

If the role is rotated quickly within a team, that necessary period of
practice is missing and the organizational-improvement focus is
missing or diminished. Therefore, do not rotate the position quickly. 

On the other hand, a learning self-managing team should not be for-
ever reliant on one person for this skill, and different team members
should eventually have the opportunity or challenge to grow as
ScrumMaster. Rotate the role—very slowly.

Try…Reduce harm of policies that cannot yet be removed

“We know that performance appraisals and performance-based
incentives weaken the system, but we can’t do anything about
them—they’re mandated by HR.” We hear variations of this from
some people who then want to give up trying to improve the system.
But Scrum encourages the art of the possible. With creativity, the
harm from various policies can often be reduced. And possibly some-
time in the future, eliminated. 

For example, Bas used to work in an organization that mandated
performance reviews, targets, and bonuses. When he met with peo-
ple that reported to him, instead of focusing on performance in their
‘normal’ work, they set targets related to learning, such as reading
books and giving presentations. During the next review, they talked
about the learning and how it applied at work. One person told Bas

https://less.works For Gene Gendel only, id:gene-gendel



409

Continuous Improvement

that nobody believed it when he told friends that he got a bonus for
reading books. 

Similarly, if performance-based rewards are mandated, perhaps
they can be shifted to team-based goals so that there is a reduction
in competition and an increase in cooperation.

CONCLUSION

Gandhi (at least as reported by his grandson Arun) once said, “We
need to be the change we wish to see in the world.” This is equally
applicable to the world of work—an agile adoption needs agile adop-
tees. Scrum and lean development cannot be successfully adopted
with command-and-control management, predictive planning, or
process recipes or “best practices” coming from ivory towers. 

Even when those involved in an agile adoption have a conducive
mindset, a repeating problem we have seen is a lack of Go See
behavior, and therefore, a lack of insight into the real problems and
useful solutions. How many product leaders or process engineers
spend time regularly sitting with developers while doing the real
hands-on work? Without that experience, initiatives have little use-
ful impact; they can also focus in the wrong area—on management-
level ‘improvements’ rather than at gemba.

Scrum, lean, agile development: these are never finished being
adopted. Agile is not a change project. Rather, continuous improve-
ment is a pillar of lean thinking, coupled to the idea that the people
best suited to create improvement experiments are the workers.

Naturally, hands-on workers at gemba also have limitations. All peo-
ple—including us—get stuck in inside-the-box behaviors and beliefs
that inhibit challenging the status quo. So, in a lean enterprise,
manager-teachers who deeply understand lean thinking, who have
constancy of purpose, and who inspire kaizen mindset in others are
a key positive force to promote and sustain a culture of agility.

But meaningful change and improvement cannot rely on manager-
teachers; it relies on…us.

https://less.works For Gene Gendel only, id:gene-gendel



410

11 — Inspect & Adapt

RECOMMENDED READINGS

! The Birth of Lean, edited by Shimokawa and Fujimoto, offers a
glimpse into the evolution and adoption of lean production and
thinking at Toyota. For example: “At a time when all of us are
struggling to implement lean production and lean management,
often with complex programs on an organization-wide basis, it
is helpful to learn that the creators of lean had no grand plan
and no company-wide program to install it.”

! Fearless Change: Patterns for Introducing New Ideas by Mary
Lynn Manns and Linda Rising comes from authors with experi-
ence in change initiatives and knowledge of agile development;
they emphasize a bottom-up approach to change.

! The site www.solonline.org, from the Society for Organizational
Learning, contains many learning resources and recommended
readings related to organizational improvement.

! Taiichi Ohno, in his Workplace Management, conveys a sense of
the importance—for creating a lean culture—of leaders who
truly grasp lean thinking, and relentlessly coach others in this.

! There are several good (and more bad) books on team building;
some are of the better ones are recommended in the Teams
chapter of the companion book. Two mentioned in this chapter
include The Five Dysfunctions of a Team and Overcoming the
Five Dysfunctions of a Team by Patrick Lencioni. 

! Teamwork Is an Individual Skill: Getting Your Work Done
When Sharing Responsibility by Chris Avery emphasizes tak-
ing personal responsibility for creating an effective team, and
shares tips for how to do so.

! The Fifth Discipline: The Art & Practice of The Learning Orga-
nization by Peter Senge, is a classic in systems thinking, learn-
ing, and the qualities needed by effective leaders for
sustainable, high-impact organizational improvement.

! Agile Retrospectives: Making Good Teams Great by Esther
Derby and Diana Larsen covers core retrospective skills. And
Project Retrospectives by Norm Kerth explores how to do retro-
spectives with larger groups.

https://less.works For Gene Gendel only, id:gene-gendel

www.solonline.org


411

Continuous Improvement

! Agile Coaching by Rachel Davies and Liz Sedley captures
many practical tips for ScrumMasters and other agile coaches,
from two experienced coaches.

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Thinking about Multisite 414

• Team Structure and Sites 417

• Interaction & Coordination 423

• Multisite Culture & Norms 437

• Tools 438

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



413

Chapter

12
MULTISITE

Folk who don’t know why America is the Land of
Promise should be here during an election campaign.

—Milton Berle

In multisite work, all the usual Scrum events and practices apply.1

Large-scale distributed development has been done with Scrum for
years; we have seen and coached it at many clients. Others have also
reported success; see the Recommended Readings.

The following terms are used:

multisite development—One product group at two or more sites,
also known as distributed development.

dispersed team—One ‘team’ (for example, of seven people) with
members in different ‘sites’; also known as a distributed team,
although other meanings are also ascribed to this latter term. Differ-
ent sites exist along a continuum from “different rooms or cubicles”
to “different planets” and so likewise the dispersion of a group exists
along a continuum.

co-located team—A team together in a team room. Working in the
same city will not qualify as ‘co-located.’

Erran Carmel, a long-term researcher in multisite development,
does a good job of laying out the big-picture problems in Global Soft-
ware Teams [Carmel99]. He identified five centrifugal forces that

1.  Suggestions related to multisite agile development are occasionally 
explored in other chapters, especially Offshore.

https://less.works For Gene Gendel only, id:gene-gendel



414

12 — Multisite

pull people, teams, and a product group apart and inhibit perfor-
mance in distributed development: 

Carmel also discusses some practices that ameliorate the centrifugal
forces of multisite development, including: 

The following experiments (and Offshore chapter suggestions)
address the centrifugal forces and reiterate the successful solutions
summarized above—and more. 

THINKING ABOUT MULTISITE

Try…Fewer sites

We know of one product group that is spread across 13 cities. Ouch!
Challenge the status quo assumption that many sites are needed.
Since multisite development brings with it a host of complications,
reduce rather than increase the number of sites.

Sometimes, there is a silo between the group that decides site strat-
egy and the R&D division adopting large-scale Scrum; the former
may not be aware of the implications of agile development on team
structure and life cycle—and hence, on site strategy. Sometimes, two
products are merged or another product company is acquired. In all
these ways, the number of sites increases. As an agile coach, actively
communicate with stakeholders so they are clearly aware of the neg-
ative impact of an explosion of sites…and blowing up R&D. 

• geographic dispersion
• coordination breakdown
• loss of communication richness

• loss of teamness
• cultural differences

• collaboration technologies 
• common process framework—

shared concepts and vocabulary; 
a shared iterative life cycle is 
most effective

• building trust, communication, 
and personal bridges

https://less.works For Gene Gendel only, id:gene-gendel



415

Thinking about Multisite

Try…Think ‘multisite’ even when close

Do not assume that people need to start reckoning with multisite
agile development only when groups are far apart in two cities. 

The impact of distance does not start after hundreds of kilometers.
Multisite issues rear up as soon as teams are a short distance
apart—and short is short… We have seen people at opposite ends of
the same floor ‘review’ a design idea via email rather than moving
together to a whiteboard, because of the inertia related to distance.

Most of our work has involved introducing Scrum in multisite prod-
uct development spread over at least one continent, and more often,
several. Certainly the impact is clear across a continent, but what is
clear to us—when working at a single campus—is that ‘multisite’
issues start to be felt as soon as teams are in two separate buildings
or zones within a building, especially if walking between them takes
any meaningful time. 

Chair inertia is a strong force.

Avoid…Believing in multisite Daily Scrum magic or that multisite 
forces are inconsequential

Beware any report that suggests successful large-scale multisite
agile development does not take special attention. Some may claim
that distribution is no longer a significant factor in large-group
development thanks to improved telepresence and communication
technologies, especially when combined with the potential benefits
of agile practices. While it is true that technologies mitigate some
problems, still, the most comprehensive research on the subject con-
cludes that distance will always have some negative impacts
[OO00]. And a claim of easy “large group” multisite success may be
for a small 50-person group rather than a 500-person group. The
COCOMO data on productivity and systems development show that
multisite has a non-trivial impact [Boehm00a]. Another study indi-
cated that multisite development takes at least twice as long as co-
located development [HM03].

Anecdote: The product development expert Don Reinertsen told us
(and wrote) that he has informally polled thousands of development

https://less.works For Gene Gendel only, id:gene-gendel



416

12 — Multisite

people over the last decade and not once has he found a hands-on
group that, having had both the contrasting experience of co-located
versus distributed development, would choose the latter again
[Smith07]—and this result even in the Internet Age. 

Even with advances in virtual presence, time zone differences are a
hard constraint—there is the lost potential benefits of synchronous
communication to reduce the wastes of delay, misunderstanding,
and information scatter, and to help form real relationships… it is
never a good idea to marry based on email.

The upshot is this: Do not believe that multisite-specific issues are
inconsequential in large-scale development or magically resolved by
holding a distributed Daily Scrum—that will not solve the big prob-
lems. Centrifugal multisite forces are strong and require concerted
long-term attention. To quote:

…we have no record of companies which would indicate that it
is easier to do R&D on a global scale than in a geographically
centralized approach. Globalization of R&D is typically
accepted more with resignation than with pleasure [DM89].

Avoid…Thinking ‘distributed’ must mean ‘dispersed’

There is a misunderstanding about “distributed agile development.”
It is related to the Agile means small misconception: It is the incor-
rect belief that “distributed agile” must mean that one team is dis-
persed across multiple sites—one member in Dallas, two members
in London, and so forth. That understanding would indeed be true if
the total product group were seven people. But the context of large-
scale Scrum is more likely a 200-person product group with 25
teams—or at least a 14-person group with two teams. In this con-
text, there are a set of co-located feature teams at site-A, a set of
teams at site-B, and so forth. No one team needs to be dispersed
across sites, though dispersed teams are an option.

Avoid…Thinking distributed pair programming is required

This misunderstanding arises from the agile means XP and the dis-
tributed agile means dispersed team misconceptions. Pair program-

https://less.works For Gene Gendel only, id:gene-gendel



417

Team Structure and Sites

ming is only an XP practice; it is not required in Scrum. And with no
requirement for dispersed teams in multisite development, there is
no requirement for distributed pair work—including distributed
pair programming. 

“Try…Compo-
nent guardians 
for architectural 
integrity when 
shared code own-
ership” section on 
page 314

That said, distributed pair programming is useful when a dispersed
team cannot be avoided, or when some expert knowledge needs to be
shared. For example, a component guardian that is not part of a co-
located team and that is located at a different site may want to pair-
program with a member of the team. If so, this is trivially easy with
a shared desktop tool and Skype (for example2).

Try…One iteration (Sprint) for the product, not for the site

An iteration or Sprint in Scrum is for the entire product, with the
perfection challenge of creating a potentially shippable product
increment at the end of each two- or four-week timebox. There is no
separate and independent iteration unique to each site. If there are
200 people in Chengdu, 100 in Hyderabad, and 200 in Dallas for one
product, the implication is that at 17:00 on Friday Aug 1 (Dallas
time, for example) the one iteration for all 500 people ends, and the
product could be shipped. Likewise on Friday Aug 29. This of course
demands worldwide continuous integration, massive test automa-
tion, feature teams, and one repository.

TEAM STRUCTURE AND SITES

Avoid…Sites organized by components or functions

The weaknesses associated with component teams were explored in
the Feature Teams chapter of the companion book. These are com-
pounded when sites are organized by components (subsystem, mod-
ule, …) and component teams, because of degraded communication
and other impediments. Similarly—and as a corollary to avoiding
sequential life cycle development—avoid single-function groups

2.  Avoid commercial tools, because they inhibit widespread long-term 
use, especially in a multisite context with new or “low cost” sites.

https://less.works For Gene Gendel only, id:gene-gendel



418

12 — Multisite

(testing group in Bangalore, architecture group in Atlanta, …) dis-
tributed in different cities.

Rather…

Try…Allocate a whole feature to a co-located feature team 

Key management decisions (life cycle, task allocation, and team
structure) will make things much worse or better in multisite devel-
opment. For example, a sequential life cycle imposes a site/team/
task strategy that reflects the phases: requirements in Munich,
design in Boston, programming in Hanoi, testing in São Paulo. This
is of course fundamentally inconsistent with agile principles and
practices, is associated with dramatic inventory and handoff waste
from a lean perspective, is correlated with long delays and disas-
trous average cycle time as shown in queueing theory, and inhibits
valuable feedback from an information theory perspective. So that
model will not be discussed further.

On the other hand, suppose management believes they are doing
timeboxed iterative development. One possible team structure and
task allocation strategy is component teams and tasks organized by
components. The many weaknesses of this model were examined in
the Feature Teams chapter of the companion book. These are further
aggravated in distributed development, because a customer fea-
ture—the value-goal of lean and agile development—does not map
to one component, and so completing a feature involves delay and
coordination among many component teams that may now be half-
way around the world. Further, as was analyzed in the Feature
Teams chapter, component teams enforce the existence of sequential
life cycle development, with separate upstream requirements and
design groups, and separate downstream component/programming
and test groups. Back to the ‘waterfall’ or V-model. All of the prob-
lems of sequential development exist but are now compounded by
the centrifugal forces of distribution. For example, with component

Key point: The dominant problems in multisite develop-
ment arise precisely because of the organizational design
choices of poor life cycle, task allocation, and team structure.

https://less.works For Gene Gendel only, id:gene-gendel



419

Team Structure and Sites

teams there will be a separate testing group and they might not
even be on the same continent as the component teams.

The above apparent iterative life cycle model is simply a degenera-
tion into a series of slow mini-waterfalls because of the task alloca-
tion and team structure decisions—a far cry from the implication of
parallelism and speed in Scrum and other agile methods.

Co-located feature teams eliminate these problems and are one key
to multisite large-scale Scrum. When a complete customer-centric
feature is given to one cross-functional, cross-component, co-located,
self-organizing feature team (that is, a normal Scrum Team)—and
they do the planning, analysis, design, programming, and testing for
the feature—there is no need for management coordination with
other groups and no need for project management overhead. That
being so, the major multisite problems, 

are eliminated or ameliorated. One product group may have 10 fea-
ture teams in Singapore, 15 feature teams in Kuala Lumpur, and 20
feature teams in Athens, but since each feature team is self-con-
tained and does not require much or any coordination with any
other team to complete a feature—except at the level of code, as dis-
cussed in the Feature Team chapter—multisite development
becomes dramatically simpler.

Avoid…Dispersed groups or ‘teams’

Tom DeMarco was asked if a real jelled team can exist if people are
not together and seeing each other very frequently:

No. Teams have to be together. Remoteness makes the good
[community aspects] impossible. Too often we name a group
of people a team. They don’t acquire teamhood. They have it
ascribed to them. [DeMarco95] (emphasis added)

see Teams in the 
companion book

This hits the nail on the head. Very often a group of people is artifi-
cially labeled a team but they have none of the qualities of a real

• geographic dispersion
• coordination breakdown
• loss of communication richness

• loss of teamness
• cultural differences

https://less.works For Gene Gendel only, id:gene-gendel



420

12 — Multisite

team. On the other hand, a Scrum feature team has a common goal
to build one Product Backlog item. It is not seven people working on
their own, but seven people closely coordinating and collaborating
with a shared vision and goal. This is awkward and difficult to
achieve with a dispersed group; it is hard to say if one could ever call
a dispersed group working in different sites and time zones—per-
haps speaking different languages—a real jelled team. Therefore,
avoid dispersed ‘teams.’

Naturally, the impact of dispersion varies; see Figure 12.1.

Figure 12.1 varying 
impact of team 
dispersion

And yet, there can be motivations for a dispersed group…

Try…A dispersed feature ‘team’ only if it really hurts

“Try…Cross-pol-
lination” section 
on page 432

All things being equal, prefer co-located feature teams. But not all
things are equal. For example, there can be a variety of us-them
problems when a new site is added to an existing product group. Or,
knowledge and competency problems: People at the new site do not
know much about the product. Plan A is cross-pollination. Plan B
may be to create some dispersed feature groups or pseudo-teams,
intentionally accepting the productivity impact, coordination prob-
lems, and loss of teamness to address other weaknesses.

negative impact of team dispersion

lower higher

- 3 people in Munich, 3 in 
Berlin

- same language, culture, 
and time-zone

- previously co-located for 
one year; like and trust 
each other

- constant video chat 
connections

- 3 people in Boston, 3 in 
Beijing

- very different language, 
culture, and time-zone

- never met in person, low 
trust

- only communicate via 
email

https://less.works For Gene Gendel only, id:gene-gendel



421

Team Structure and Sites

If you must have a dispersed group, encourage teamness by empha-
sizing synchronous over asynchronous communication tools, such as
lots of video sessions (including a video-session multisite Daily
Scrum), instant messaging, shared desktop pair programming, and
so forth.3

Synchronous communication implies that a dispersed team should
have significantly overlapping work days, such as no more than
three or four time zones apart. It is improbable (impossible?) to form
a real team that does not participate regularly in synchronous com-
munication.

Try…Gradual transition to co-located Scrum feature teams

Some clients followed a ‘waterfall’ site strategy, thus their starting
point for adopting Scrum is…software architecture in Dublin, test-
ing in Budapest, and so on, with 500 people in six cities. Naturally,
the move is gradual to co-located Scrum feature teams at each site. 

What are some transition patterns our clients use? First, the over-
arching strategy is to focus the team-structure changes gradually
around the highest-priority Product Backlog items, where the
investment in change has the largest and most immediate benefit.
For more, start by reading the “Try…Transition from component to
feature teams gradually” section on page 391. 

So, new feature teams are slowly created around top-priority items.
Here are some experiments for creating these new teams (when
there are multiple sites) and for evolving the role of existing teams:

! Using the approach described on p. 391, a new Scrum feature
team, Team Blue, is formed of programmers from several same-
site—say, Bangalore—component teams, choosing people from
old component teams such that the new Team Blue has knowl-
edge of at least some of the components involved in the first
high-priority feature, feature-X, they will develop. The pro-
grammers also take on the responsibility for automated feature

3.  In fact, we broadly encourage a little more synchronous communica-
tion in large groups (rather than email), especially using simple 
video tools such as Skype. And Intel has tried “email-free Fridays.” 

https://less.works For Gene Gendel only, id:gene-gendel



422

12 — Multisite

testing, using acceptance TDD. Therefore, the existing testing
group in Budapest is no longer needed for testing feature-X.
Team Blue learns to work in unfamiliar components, perhaps
via distributed pair programming with experts from another
site (such as a component guardian) and/or with code reviews
from those experts. Team Blue also takes on the analysis and
design work for feature-X, collaborating with the Product
Owner to clarify the feature.

! If there is a separate software architecture group in one city,
there is a chance that among the group are people that—as in
the case of Team Blue above—can form a new feature team and
start doing hands-on programming and testing. 

! A variation of the Team Blue approach above is to create a dis-
persed team that includes the core feature team in Bangalore
and a few test experts from the Budapest testing site. These
test experts may participate in Budapest-based requirement
workshops, using video technology, and help distill the example
requirements into automated tests, as part of acceptance TDD.

! Meanwhile, at the Budapest testing site, other test experts
increasingly focus on writing fully-automated tests (using the
same technology used for acceptance TDD); these tests are
included in the multisite continuous integration system.

Try…Temporary co-location of a new dispersed team

If, unfortunately, a dispersed team is needed for some reason,4

experiment with first co-locating all the new team members at the
same site for several iterations, to build genuine relationships. 

Try…Learn at existing sites, rather than add ‘expert’ sites

Suppose that developing some new features involves expert knowl-
edge that John has, and John is in Houston—a location not (yet)
among the sites being used for development. Rather than assume it
necessary to add the Houston site (and John and his team), consider

4.  The context we see most often is when a large multisite group had 
sites organized by function, such as testing in China, and so on.

https://less.works For Gene Gendel only, id:gene-gendel



423

Interaction & Coordination

if one of the existing teams (Team Green) in the development can
learn what is necessary. Perhaps John can…

! fly in and work with Team Green for some time, coaching them

! participate in video sessions to talk or workshop, to help the
team learn and create

! review requirements, design, and code created by the team

! do distributed pair programming with Team Green people

Try…Prefer co-location of feature teams and Area Product 
Owner of one requirement area…but do not restrict this

see “Introduction 
to Requirement 
Areas” section on 
page 555 and the 
Requirement
Areas chapter of 
the companion

Just as it is awkward to create one dispersed feature team, it is awk-
ward to disperse the teams of one requirement area. Prefer co-locat-
ing related feature teams at a common site. It is also useful for the
Area Product Owner to co-locate with the teams, or at least to visit
frequently—especially to attend the Scrum events.

On the other hand, this suggestion could degenerate into the sub-
optimization (a very literal local optimization) of artificially freezing
the requirement areas and their teams by site. Do not do that. The
number of feature teams may slowly grow or shrink in a require-
ment area as it increases or decreases in market importance. A
requirement area is a customer perspective into the major feature
sets of a product; it has nothing to do with a product group’s sites or
architecture. Consequently, do not restrict a requirement area to one
site; simply prefer it.

INTERACTION & COORDINATION

Try…Treat all sites as equal partners

The maturation stages of multisite development involve moving
from Stage II in which the original headquarter site centrally
defines and coordinates the work of other sites, to Stage III (globally
integrated) in which all sites have essentially become equal partners
[Carmel99]. Motivation, trust, and the quality of interaction

https://less.works For Gene Gendel only, id:gene-gendel



424

12 — Multisite

increases when ‘child’ sites are treated like equal partners. Signs of
this are the physical relocation of the Product Owner or Area Prod-
uct Owner to the site, and the site participating in driving the vision
and architecture of the product.

Try…Continuous integration in “one repository” across sites

The scope of continuous integration (CI) is the product, not the site.
Fifty feature teams in four countries need to share one repository
and be continually integrating all code. For example, one radio-net-
work product group (several hundred people) adopting Scrum that
we coached has sites in China and Europe. They all share a common
Subversion (Svn—the free open-source de facto standard worldwide)
repository hosted in Europe that is accessed over a fat and fast pipe.
A write or update from anywhere is fast.

Although slow Internet connections are becoming a problem of the
past in most countries, there are still occasional sites where we see a
problem. One 150+ multisite group we coached with a center in Ban-
galore had this constraint. How to use Subversion (Svn) in this case?
Svn is based on a central (single) repository that could be slow to
access if hosted far from Bangalore. Their solution was the free
open-source Svn slave replication system Pushmi [Kao08]. With
Pushmi installed, normal Svn writes are transparently pushed
immediately to all replicated slave repositories (worldwide), and
normal Svn checkouts or updates are quickly obtained from the local
slave.

Locking—Do not use a blocking or locking version control system—
this is bad enough in co-located development with seven people, and
disastrous for multisite CI.

Git and other distributed revision control systems—The heading for
this experiment punctuates “one repository” in quotes to signify that
there are distributed systems that can create a similar consolidated
view. This family of tools—including Git, Mercurial, and Bazaar—
are also called decentralized version control systems, and are being
successfully used in large multisite developments, including Linux.

https://less.works For Gene Gendel only, id:gene-gendel



425

Interaction & Coordination

“Avoid…Using 
ClearCase” sec-
tion on page 362

ClearCase—As mentioned in the Continuous Integration chapter,
the most frequent tool tip we observe and hear related to CI and
multisite development is to not use IBM Rational ClearCase. The
multisite groups that we have worked with (or asked) who tried to
do multisite CI with ClearCase found it a challenge. Those that
switched to Svn—the usual choice when switching—or Svn with
Pushmi report that it is easier and faster to do multisite CI with Svn
than with ClearCase, and it saves the group significant money. 

The tool also slows down a build for multisite CI. One massive prod-
uct we worked with (with many tens of millions lines of code)
reduced their compile time immediately by over 25 percent simply
by replacing ClearCase with Svn, because of the slow performance of
this 1980s-based tool.5

Try…Seeing is believing—ubiquitous cheap video technology 
and video culture

“Try…Seeing is 
believing—video 
sessions” section 
on page 451

This revisits the tip made in the Offshore chapter, but here focuses
on general multisite video communication and Scrum events rather
than on the forces particular to offshore development.

The sixth agile principle boils down to… face-to-face conversation,
and the first agile value is Individuals and interactions over pro-
cesses and tools. To build meaningful relationships and improve
interaction richness in multisite development, people need to regu-
larly see each other.

The cheapest approach is high-quality webcams for the video chan-
nel, with a free tool such as Skype. For the audio channel, Skype
Audio may suffice, but it is imperative that the audio be perfect,
without delay or distortion. If it is not perfect, use a telephone call
and speakerphone for the audio channel to complement the video.

5.  ClearCase is a mid-1980s-architecture commercial tool still sold for 
multisite development, but it was designed for an old pre-Internet 
network model by Atria Software from 1989-1991, derived from the 
Apollo computer system the developers had previously made, called 
DSEE. It was designed for a 1980s manual and delayed-integration 
model that makes the agile practice of CI more difficult—and 
costly—than modern open-source alternatives. 

https://less.works For Gene Gendel only, id:gene-gendel



426

12 — Multisite

Cheap, simple, and ubiquitous (including in the team room) are
important qualities for sustainable videoconferencing with a team.
Using an expensive system in a distant room is not a very sticky
practice. It is also useful to have a large-screen projector in the team
room so that group meetings are possible (Figure 12.2). 

What about free three-way video conferencing? Some alternatives:

! Apple’s iChat supports three-way video.

! Use Skype for one two-way video call, and Google Talk for
another two-way video call. Then use Skype’s “share desktop”
feature to include the Google Talk session.6

In addition, individual webcams at workstations are useful, includ-
ing in private break-out or meeting rooms away from the team room,
so people have lots of options.

In other words, ubiquitous cheap video technology and video culture.
Try replacing audio multisite communication with audio-video com-
munication. These days, with webcams built into most computers,
high bandwidth networking, and free video tools, there is no excuse
to remain in the older-generation audio culture rather than an
audio-video culture.

All that said about cheap tools, you can still pay for more quality. For
example, one of our clients has Tandberg video systems for multisite
communication.7 Because of expense, these are in shared meeting
rooms rather than replicated in dedicated team rooms. This inhibits
a video culture, but the fidelity of video and audio is high. A group in
Los Angeles can control the direction and zoom of the camera in
New York, and vice versa. We have used these to hold multisite joint
Sprint Retrospectives and joint design workshops for product groups
of over 200 people adopting Scrum for embedded systems develop-
ment in North America. The systems are on wheels and can be
rolled in front of a whiteboard. The fidelity is high; the impression is
almost that the other group is in the same room. We can easily see
their whiteboard and the people. The picture in Figure 12.3 illus-

6.  Other simpler solutions will surely emerge.
7.  Coincidentally, some Tandberg product groups are also adopting 

agile and lean development.

https://less.works For Gene Gendel only, id:gene-gendel



427

Interaction & Coordination

trates the controllable camera, but does not clearly convey that the
display is very large and that it rolls on wheels. This latter feature is
excellent for joint design workshops at whiteboards.

Figure 12.2 team 
room with projector 
and web camera for 
multisite video 
sessions, Valtech 
India

Figure 12.3 joint 
Sprint Retrospective 
(multisite) with high-
end video 
technology, USA

In large-scale Scrum, within the constraints of time zone limits,
these video technologies can be used for joint Initial Product Backlog
Refinement, Sprint Planning Part One, Sprint Review, the joint
Sprint Retrospective, joint per-iteration Product Backlog Refine-
ment, and joint design workshops.

https://less.works For Gene Gendel only, id:gene-gendel



428

12 — Multisite

Try…Include diverge–converge cycles in large video meetings

Small multisite video meetings, such as two groups of five people at
two whiteboards (at two sites), can be held ‘synchronously’ in the
sense of all ten people participating as one group. On the other
hand, there are opportunities in large-scale Scrum for large multi-
site video meetings. For example, consider a joint Sprint Retrospec-
tive with representatives from 30 teams from three cities; perhaps a
total of 30 people in the workshop. It is not easy—with current tech-
nical limitations—to have a high-value, three-way ‘synchronous’
workshop with all 30 people collaborating as one big group at all
times. 

Therefore—and this is also true for co-located large workshops, since
the issue is not multiple sites but largeness of group—let each site
spend time alone on an activity, such as 5 Whys root-cause analysis
or causal loop modeling. This is a diverging period. 

Then, have all sites do show-and-tell, in which they present their
results (such as a whiteboard diagram or flip chart paper) over the
video channel to the other sites. This may be followed by whole-
group activities (all 30 people from three sites), such as open discus-
sion or more structured whole-group exercises. This is a converging
period. 

Include both converging and diverging periods in large video meet-
ings, and do cycles of these, so that feedback from the converging
periods informs the diverging periods.

Try…Start early multisite video meetings informally

We have been involved in many multisite meetings just starting to
increase communication by introducing a video tool. Initially, people
feel uncomfortable with this new way of interacting and may
respond to this by rushing into “business.” It feels stiff. Explore ways
to lighten things up, be informal, and form social relationships by
starting with non-business chats. Talk about the weather… or better
yet, point your webcam out the window and show them.

https://less.works For Gene Gendel only, id:gene-gendel



429

Interaction & Coordination

Try…Multisite planning poker (estimation poker)

We have coached and seen planning or estimation poker
[Grenning02] used effectively for multihundred-person product
groups, both for products with sites in Europe and Asia, and for
products with sites around the USA plus in Europe. First, as a
theme, consider avoiding specialized web-based ‘agile’ planning
tools, as these tend to focus people’s attention on the tool rather than
on each other, and because physical tangible tools such as cards tend
to energize and engage people better. If you try a specialized soft-
ware tool for multisite estimation, beware these weaknesses. 

Two simple multisite techniques have worked…

With both techniques, the Product Owner has a wiki page of the
items under estimation. When (verbal) questions and answers occur
for any item, the Product Owner answers verbally and also enters
the answer on the wiki page for all sites to quickly read.

Technique: Webcams and normal (physical) planning-poker cards—
This technique works well when there are only two or three sites.
People use big cards with big thick numbers on them, to increase the
chance of their being seen over a webcam. Each site has a webcam so
that people can see each group, which is arranged in front of the
camera. Note that a webcam may not provide the visual acuity to
read the physical planning-poker cards at another site. If so, then
each site has a facilitator that asks the local group to show their
cards when required. Each facilitator verbally reports the scores to
everyone in the multisite meeting if it is not easy to see the remote
cards. A shared Google Spreadsheet can show everyone the growing
estimate results (see Figure 12.4). 

The above is a simple and interactive technique—and therefore
worth trying.

Technique: Shared spreadsheet—This technique is useful when
there are people distributed at many sites involved in the estima-
tion, because five simultaneous webcam sessions with groups of
seven people at each of the five sites does not work so well with
today’s technologies. 

https://less.works For Gene Gendel only, id:gene-gendel



430

12 — Multisite

Google Spreadsheet allows dozens of people in different sites to
update a common spreadsheet concurrently. We have worked with
multisite product groups that hold multisite planning-poker ses-
sions with this and similar tools. Steps:

1. At all computers at all sites people are connected to a shared
Google Spreadsheet and they are talking on a common audio
channel, such as a conference call. 

2. There is one moderator. 

3. Each person is assigned a different spreadsheet cell for their
poker vote; for example, you might get ‘C20’ as your cell.

4. When it is time to “show your card” in planning poker for item-
X, the moderator says over the audio channel, “Type in your
number.” 

5. All numbers are typed into respective cells simultaneously, and
can appear essentially instantaneously on all browsers viewing
the spreadsheet.

6. The moderator (and everyone else) can see if there is conver-
gence on a common estimate, or if another round is necessary. 

7. Assuming there is convergence, she fills in a growing spread-
sheet table (at the top of the spreadsheet that all participants
can see) with the story point for item-X; see Figure 12.4.

Figure 12.4 Google 
Spreadsheet that 
shows the growing 
estimation results; it 
is shared with all 
participants

Try…Multisite Open Space to replace Scrum of Scrums

We coached at a client with about 30 teams spread across two sites
(and time zones) with some overlapping work hours; both sites had
many meeting rooms with either video support or speaker phones. 

They tried a multisite Scrum of Scrums (SoS) meeting with one
room in each site, and with speaker phones. They were dissatisfied. 

https://less.works For Gene Gendel only, id:gene-gendel



431

Interaction & Coordination

“Try…Open 
Space” section on 
page 204

We suggested mini-Open-Space meetings instead. The approach:

1. We used a shared Google Spreadsheet (which both sites could
update) for the space-time board. At both sites, the spreadsheet
was displayed via a projector.

2. Space—Different corners of the two big rooms, and also some
adjacent small rooms. Some areas had speaker phones or video
technology; these were the multisite spaces, which were paired
across the two sites.

3. Time—Twenty-minute session periods. A total of one hour. 

4. The session started with the same environment as the prior
multisite SoS: two rooms and a speakerphone.

5. Five minutes were used to fill the space-time board with burn-
ing issues. People called out their issues and their space-time
choice, and a typist at each site updated the spreadsheet.

6. A few minutes were spent moving the location of sessions that
needed to be at multisite spaces, based on people’s interest.

7. One hour for sessions, applying “the law of two feet.” 

Try…Experiment with multisite Scrum meeting formats and tech-
nologies

We considered offering prescriptive advice—based on our past
experiment—about how to hold multisite Scrum Reviews, Retro-
spectives, and so forth. There are some hints and concrete sugges-
tions, but we especially decided to suggest…keep experimenting.

Keep it simple, avoid fancy tools, and focus on tangible aids such as
physical poker cards. 

Anything prescriptive will either not apply or become outdated.
There are many context-dependent forces and a high variability.
Technologies improve every year, opening the way to new experi-
ments. It is possible within 30 years that excellent virtual presence
technology will exist so that it seems as though a group that is actu-
ally scattered around the world seems to be together in one room. Or
maybe that will happen next year… Daily Scrum with avatars.

https://less.works For Gene Gendel only, id:gene-gendel



432

12 — Multisite

Try…Cross-pollination

Many words have been written about
this practice over the years, and the
suggestions can be organized into sev-
eral fine-grained tips such as ambas-
sador, seeding visits, and so on (see
Recommended Readings). But it all
boils down to something basic: If you
are a multisite product group and not
visiting each other from the start—
especially at the start—then you are

in trouble. Send lots of people here. Send lots of people there. Cross-
pollinate. Not just management, but many hands-on developers as
well. Encourage visitors to visit for at least a few months, and have
them work very closely with the local group—group workshops, pair
work, pair programming, and so forth, rather than individual work.
Repeat forever.

“Introduction to 
Requirement 
Areas” section on 
page 555

In terms of large-scale Scrum, it is important for the Product Owner
and Area Product Owners to cross-pollinate and participate in
Scrum events at other sites. 

The Offshore chapter emphasizes that visitors should not be inter-
mediaries to the other site—bottlenecks and filters. Rather, encour-
age visitors to be matchmakers that help local people form direct
relationships with people at the other sites… “Oh yeah, you should
have a video chat with Yang in Shanghai about that; he knows a lot.
Here’s his Skype address. By the way, he likes to start work late in
the morning because he coaches an amateur swim team.”

“Try…Match-
makers rather 
than intermedi-
aries” section on 
page 453

At some point, them becomes us. This is both good and bad. It is
probably a good time for the visitor to return home. It is important
for visitors to absorb your ways of working and mental models and
to establish a shared vision, but you also want to absorb the perspec-
tives and contacts the visitors bring from their planet. Once they
start to lose a fresh and active connection with their home site, their
value in cross-pollination diminishes.

https://less.works For Gene Gendel only, id:gene-gendel



433

Interaction & Coordination

Try…Welcoming committees and buddies

I (Craig here) remember the first day that I arrived at Valtech Ban-
galore and walked into the reception area. There was a sign that
said, “Welcome, Craig.” The company does that for every arriving
visitor; a small gesture but appreciated. Imagine how it feels—when
you are a member of a multinational, multisite product group—to
travel 5000 kilometers to a foreign land for three months, show up
at the new office on the first day, and no one knows or has prepared
for your arrival? It is kind of depressing and does not build a feeling
of connection and trust.

At NSN, some sites organize a weekly “site news” email that sum-
marizes all known visitors for the week: arrival dates, a brief “who is
this person,” and explanation of why they are visiting.

Consider “welcoming committees” (probably a committee of one) at
each site that are well aware of who is coming and when. Prepare for
their smooth arrival—what team, what chair, network access, and so
on. Greet the visitor on the first day. Ask someone on the team to
serve as a ‘buddy’ responsible for the first week to help the visitor
connect and figure things out. 

Try…Multisite communities of practice (CoP), including a com-
munications CoP

“Try…Communi-
ties of Practice” 
section on 
page 207

This tip reiterates the general CoP suggestion, an organizational
practice of broad and general value. In the context of multisite CoPs,
asynchronous communication tools play a heightened role, such as
CoP wikis, mailing lists, blogs, web feeds, and so forth. 

Also in the context of multisite agile development, a formally recog-
nized communications CoP and some active communications CoP
coordinators can help. This was cited as particularly useful in the
large-scale agile product development discussed in [Eckstein04].

Try…Retrospectives at several levels

What is the most important group for a Scrum Team? Themselves,
of course. In multisite development the following is the typical pre-

https://less.works For Gene Gendel only, id:gene-gendel



434

12 — Multisite

cedence order of groups that people care about improving: (1) our
team, (2) our requirement area, (3) our site, and (4) our product.

In large-scale Scrum, there will be joint Sprint Retrospectives. Start
with a team-level retrospective. When the need is felt for higher-
level joint retrospectives to improve the system, try holding one sim-
ply at the level of the requirement area that the feature teams
belong to. Beyond that, consider a site-level retrospective. This is the
dominant physical and cultural domain that people work in and
want to improve… “We need more rooms with whiteboards.”

In short, do not only hold (1) single team retrospectives and (2) full-
blown multisite product-level retrospectives—there are intermedi-
ate levels that are also useful.

Avoid…ScrumMaster representing the team

“Try…Team is 
responsible for 
coordination” 
section on 
page 194

A ScrumMaster is not a project manager, team leader, or team repre-
sentative, although these are common misconceptions. A healthy
self-organizing Team, not a ScrumMaster, should be responsible for
managing their external communications. 

A confused ScrumMaster who inappropriately acts as the represen-
tative to other teams can be bypassed in a single-site group; the
team members can sooner or later take charge and walk over to the
other teams they need to interact with, bypassing the meddling
ScrumMaster. There are many informal effective lines of communi-
cation and relationship within a single site.

“Avoid…Scrum-
Master coordi-
nates” section on 
page 197

But the dynamics of correcting this mistake are more awkward in
multisite development because the informal effective lines of com-
munication and relationship are more difficult to form and main-
tain. For example, the ScrumMaster may attend some multisite
meeting or visit another site, and in these ways, the other sites may
view the ScrumMaster as the team representative and start favor-
ing communication with her. Another site’s team cannot walk over to
the team with the meddling ScrumMaster (and vice versa). The
ScrumMaster creates an impediment to the team managing their
own external relationships that is harder to resolve because of the
multisite context. 

https://less.works For Gene Gendel only, id:gene-gendel



435

Interaction & Coordination

Try…ScrumMasters acting as and encouraging matchmakers

“Try…Match-
makers rather 
than intermedi-
aries” section on 
page 450

This reiterates a tip from the Offshore chapter: Encourage some peo-
ple to act as connectors or matchmakers rather than as intermediar-
ies or representatives. This is an appropriate role for the
ScrumMasters to play, and to know and encourage in others… “Jose
on our team is very interested in that. Let me give you his Skype
address so you can connect with him.”

Try…Improve multisite design with Design chapter tips

The foundation of simplified multisite design is to prefer feature
teams over component teams, continuous integration across all sites,
and a common repository. In addition, many tips in the Design &
Architecture chapter can help in multisite design work. Here is a
small sample:

• See “Try...Design workshops with agile modeling” on p. 289.
• See “Try…Tiger team conquers then divides” on p. 308.
• See “Try…Technical leaders teach at workshops” on p. 299. This includes 

roaming to other sites.
• See “Try…Design/architecture community of practice” on p. 313.

Try…Basic practices for multisite meetings

Some of our instincts for how to speak and listen politely need to be
modified in a multisite meeting. Tips…

1. Prepare the environment—Don’t keep people waiting by
setting up the video technology or conference call after every-
one arrives.

2. Say your name every time—“This is Peter. I think you
said…” Mandatory for audio-only multisite meetings. Also use-
ful in video-session meetings in case each speaker is not visible
or in case not all participants are known to each other.

3. Speak up, and interrupt the speaker as soon as you can’t
hear—Keep the microphone close when you are speaking.
When listening, if the speaker becomes inaudible, tell her
immediately.

https://less.works For Gene Gendel only, id:gene-gendel



436

12 — Multisite

4. Speak in small batches of words in short cycle time—Do
not speak for a long time. Speak a small subset of what you
want to say, and then…

5. Ask if they heard and understood—After saying a small
amount, check if the other sites heard and understand.

6. Practice and teach active listening, especially para-
phrasing—A foundation of any good meeting is listening to
understand. You may not agree, but you should understand.
Active listening includes both mental and verbal habits to bet-
ter understand. Mental habits include willful concentration
or attention on the speaker (and willful neglect of internal men-
tal activity) so that the message is simply heard. Verbal hab-
its include checking or paraphrasing the message. In multisite
meetings this is doubly valuable because of transmission prob-
lems. “This is Raj. Let me check my understanding. I think you
said <X>. Is that correct?” This checking is directly useful, and
has the indirect benefit of cultivating an attitude of mutual
inquiry in addition to the more common competitive advocacy.
Both elements are useful in work meetings [APS85].

7. Move the camera—Do this if the speaker isn’t clearly visible.

8. Ask for repetition, again and again—If, for whatever rea-
son, the statement was not clear, ask for repetition. Don’t be
shy about asking repeatedly.

9. Ask for another speaker to make the statement if there
is an accent problem—Sometimes in multisite meetings the
reason for difficulty in understanding is related to the accent of
the speaker. Ask a colleague of the speaker to make the state-
ment.

10. Provide running commentary to other sites when some-
thing local and rapid happens—Sometimes the people in
one room start to have a local conversation rapidly. The other
sites cannot keep up with this local rapid discussion. Someone
at the local site can act as a commentator and share with the
other sites (in real time) what is going on.

https://less.works For Gene Gendel only, id:gene-gendel



437

Multisite Culture & Norms

MULTISITE CULTURE & NORMS

Try…Vigilance for shared agile vocabulary and concepts

“How long does the build take?” If they think you mean, “When will
the compile and link be finished?” rather than, “How long to run all
the tests?” there is a problem. 

“Do you have a ScrumMaster?” If they think you mean “A Scrum-
Master is the manager who went to a course and now calls himself a
ScrumMaster” rather than “Do you have a ScrumMaster?” there is a
problem.

“Does the team hold a Daily Scrum?” If they think you mean “Do we
stand up each day and report our status to the fake-ScrumMaster-
Manager who went on a course?” rather than “Does the team hold a
Daily Scrum?” there is a problem.

Creating some baseline common culture through shared vocabulary
and concepts is important in multisite development. It helps to
require sending many of the internal thought leaders, all Scrum-
Masters, and the leadership team (including the Product Owner
Team) to common process-oriented courses and to require reading
common process-oriented books. And to require this of new members
as they join. A core set of common education and readings is the
foundation for a common vocabulary. In Scrum, another mechanism
to help establish these goals is a set of well-educated true Scrum-
Masters who know Scrum by-the-book and beyond-the-book.

Try…Cultural education

“Agile Culture” 
section on 
page 468

What are the implications when they tell you that “next week is Chi-
nese New Year”? Why is that team not frank and open? Good com-
munication and relationships in multisite development involves
people understanding this topic. There are a few relevant tips in the
Offshore chapter.

There are also more studies than you might imagine that quantify
various average tendencies that are relevant to understanding cul-
ture in the work place, such as degree of individualism and degree of

https://less.works For Gene Gendel only, id:gene-gendel



438

12 — Multisite

risk taking. It is useful to study these to get a broad picture of the
culture at the site you are interacting with. Global Software Teams
summarizes some of this data [Carmel99]. The cultural studies of
Hofstede and of Hall are foundations of this area, and worth know-
ing in a work context [HH05, Hall76]. Some of the data in [HH05]
comes from extensive studies at IBM sites in many nations, which
provides a relevant ‘normalizing’ context for readers interested in
the intersection of engineering work and culture. Here are some
examples of what one can learn, that may be relevant to better
understanding that new site you are starting in Malaysia: 

! the amount of “power distance” people feel between managers
and subordinates, for 74 countries

! the amount of individualism, for 74 countries

! masculinity versus individualism, for 74 countries

Try…Vigilance about a common coding style

Common coding style is a basic Extreme Programming practice,
important when just seven people are working on shared code. In
large-scale Scrum with feature teams, we want all teams to be able
to work on all code without friction. When you are 60 teams in five
cities working on 20 million lines of shared code, it is endless friction
when every function in every file is laid out differently, and the only
common naming convention is that people use 26 letters.

TOOLS

Try…Multisite tool that records audio or video

For some multisite product developments Valtech (including Valtech
India) used a tool that allowed audio/video multisite sessions and
recorded these for playback later on. The playback feature turned
out to be surprisingly useful for reference and clarification. Unfortu-
nately, the tool was otherwise rather awful (for example, poor video
and audio) and so it was not a sticky practice, but everyone remem-
bers, “That playback feature was really useful.” We predict this fea-
ture will improve and be replicated over time. Worth trying.

https://less.works For Gene Gendel only, id:gene-gendel



439

Tools

Try…Tablets for shared sketching

“Try...Design 
workshops with 
agile modeling” 
section on 
page 289

This is a tip we have heard of but not seen for ourselves. The Design
chapter shared the value of design workshops and agile modeling.
Video technology in front of two whiteboards is one way to hold a
multisite design workshop with agile modeling. Another is to use
tablet computers that allow one to sketch free hand on a large vir-
tual space that is shared over a network with other people in other
locations, combined with video technology for face-to-face conversa-
tion.

Avoid…Commercial ‘agile’ tools for multisite collaboration

We have noticed, time and again, that software tools deaden the
energy of collaboration in a co-located or multisite workshop, such as
an estimation session or other Scrum event. And the fancier and
more specialized the ‘agile’ tool, the more it seems to depress the
spirit of real interaction between people. The focus is attracted
toward the tool rather than toward the interactions of people. 

It is common that agile coaches—us included—encourage simple
and physical (tangible) collaboration tools in a workshop, such as
cards and whiteboards. As described in the planning-poker example,
this is easy and effective for multisite workshops as well. You can go
a long way with ordinary webcams. When collaboration software
tools are needed, keep it very simple and use free tools; for example,
Google Spreadsheet.8

Beware the advertisements and sales pitches from companies trying
to take your money by telling you that you need their agile tool to
succeed with multisite collaboration—another silver bullet in which
the tool vendor gets your gold. The multisite challenge is not a tool;
it is people and mindset. 

8.  Due to intellectual property control, some organizations require all 
tools and data be hosted within the enterprise. There are a growing 
number of free and commercial simple web-based spreadsheet tools 
that can be locally installed if Google Spreadsheet is not an option.

https://less.works For Gene Gendel only, id:gene-gendel



440

12 — Multisite

Avoid…Commercial development tools; use free tools

This reiterates a tip in the Offshore chapter. Commercial tools can
slow down multisite development in several ways. They can create a
delay or impediment in opening a new site or in getting a newcomer
equipped because of actions required to obtain more licenses. Some-
times the tool needs to be connected to the corporate network to
access a license server—preventing off-network development work.
The delayed-purchase problem is especially true at “low cost” sites
where there are more budget constraints. The fifth agile principle
emphasizes giving people the environment they need. For-fee com-
mercial tools are an impediment. Fortunately, there is a vast selec-
tion of high-quality, free open-source tools for development, version
control, testing, and more. Prefer these at all sites. This is also an
easy way establish common tools across sites—in addition to saving
the group money.

Try…Wikis as your share point; employ a WikiGardener

“Try…Wiki for 
all require-
ments” section on 
page 462

Wikis are discussed further in the Offshore chapter. Focus all con-
tent in a shared wiki when doing multisite product development.
Move away from old-generation document-centric models (for exam-
ple, Microsoft Word, and document management tools such as
SharePoint) and toward a “Web 2.0” model where all content is in
something like wiki pages (or a Google Wave), and WikiWords are
exploited for hypertext. This reduces the lean wastes of delay and
information scatter. Note that using a wiki does not mean inserting
links to Word documents; it means to stop using documents, and
rather, put the content in wiki pages.

By the way, some resist wikis because, “You can’t create a nice docu-
ment.” Not true. Several wikis allow automated generation of nicely
formatted PDF files from a set of wiki pages; useful. 

At the risk of ethnic stereotyping, find a German WikiGardener to
keep it more-or-less organized! Seriously though, it is useful in a
large group with a large wiki to have a formal WikiGardener role
that spends at least a little time each week keeping the inherently
amorphous and flexible wiki semi-structured, creates template wiki
pages, participates in a wiki community of practice, and so forth.
Because a wiki is meant to encourage emergent bottom-up struc-

https://less.works For Gene Gendel only, id:gene-gendel



441

Tools

ture, this requires a light touch in which the WikiGardener acts as a
gardener who shapes the living wiki and prunes away the mess.

Avoid…ClearCase for multisite continuous integration

See “Try…Continuous integration in “one repository” across sites”
on p. 424.

CONCLUSION

The dominant problem in multisite development is…multisite devel-
opment—degraded communication and so forth. These knock-on
problems are greatly aggravated precisely because of the organiza-
tional design choices of poor life cycle, site strategy, task allocation,
and team structure. If a group uses serial development, with prod-
uct management and analysis in Boston, system engineering in
Taipei and Tel Aviv, programming by component teams in seven dif-
ferent countries, customer documentation in Prague, and testing in
Lisbon and Bangalore9…then multisite development is going to be
painful, slow, and explosive.

The most powerful solution is not to answer the question, “How can
we do agile development in this case?” The essential solution is to
change the organizational design and site strategy—an example of
the difference between point kaizen and system kaizen in lean think-
ing. Changes include

! fewer sites

! at each site, a small group of extraordinary people who work in
feature teams, rather than large groups of mediocre talent

! co-located feature teams rather than dispersed teams or single-
function teams

! fast and continuous integration across all sites

9.  This example may seem extreme; but in fact it is typical of how sev-
eral of our clients organized their work.

https://less.works For Gene Gendel only, id:gene-gendel



442

12 — Multisite

Also, seeing is believing—sight is important to form relationships
and for rich communication. Make video technology ubiquitous, but
avoid expensive systems in dedicated video rooms. Rather, focus on
cheap, widespread, in-the-team-rooms solutions such as Skype video
with regular computer projectors. And experiment with video tech-
nology for multisite active workshops (such as joint design work-
shops) using diverge-merge cycles. 

Multisite development often leads to some sites treated as second-
class citizens. Watch out for that—and watch out for the friction that
arises by the choice of tools that are not equally and easily available
at all sites for many years to come; free open-source tools tend to
reduce that friction.

RECOMMENDED READINGS

! Erran Carmel’s books, Global Software Teams and Offshoring
Information Technology, are two of the better high-level books
that explore multisite development.

! Jutta Eckstein’s Agile Software Development with Distributed
Teams is written by a consultant and coach with hands-on
experience in both agile and multisite development.

! Keith Braithwaite and Tim Joyce summarize key principles
and practices in their paper XP Expanded: Distributed Extreme
Programming. Although written in the context of Extreme Pro-
gramming, it applies to all agile development approaches.

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Expectations 446

• Interactions 450

• Requirements 458

• Test 463

• Teams 466

• Agile Culture 468

• Partnership 469

• Choosing an Agile Outsourcer 475

• Appraisals, Certifications, and CMMI 480

• Contracts 494

• Tools 495

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



445

Chapter

13
OFFSHORE

An intellectual is a person who has
discovered something more interesting than sex.

—Aldous Huxley

Many tips relevant to agile offshore development with Scrum are
covered in other chapters—Multisite, and so forth. In offshore, all
the usual Scrum events and practices apply. 

This chapter focuses on the intersection of agility with typical ‘off-
shore’ issues: 

Most of the experiments focus on offshore outsourcing companies
doing new short-term projects, where unfamiliarity (of the domain
and client) is a dominant problem; for example, a 6-month project for
a travel website, then a 12-month project for a retail chain point-of-
sale system, ad infinitum.

A smaller number of suggestions focus on offshore insourcing
(and outsourcing) companies doing long-term familiar products and
working with a familiar onshore partner, such as a dedicated devel-
opment center in China working on a telecommunications product.

Valtech1 has an offshore outsourcing center in Bangalore that
applies agile principles and Scrum to projects for clients in Europe

• different culture and language
• knowledge/requirements transfer
• short-term projects rather than 

long-term product development
• a heightened sense of us-them

• fixed price, fixed scope
• skill differentials
• super-/subordinate relationships
• CMMI

1.  Where Craig served as chief scientist, working at their India site to 
help create “agile offshore” development.

https://less.works For Gene Gendel only, id:gene-gendel



446

13 — Offshore

and the USA. Another example of real agile development in India is
at ThoughtWorks. Nokia Siemens Networks2 (NSN) has major off-
shore development centers applying large-scale Scrum in China,
among other locations. 

Over the years, we have spent a lot of time introducing Scrum, agile
principles and practices in these countries. We have also worked in
Brazil and Eastern Europe at offshore or “low cost” centers applying
agile methods, both for multisite product development and single-
site outsourced (usually fixed-price) projects. Craig has been visiting
or living in India since 1978 and speaks some Hindi, and Bas has
lived in China for many years and speaks Mandarin. 

The forces to reckon with vary by region. For example, Bangalore
averages 20 percent or higher annual attrition in IT companies.
Since agile and lean thinking focuses on values and principles, and
values are part of a culture built up through conversation and learn-
ing to work together, it is a challenge to sustain an agile culture in a
company located in the hot IT cities of India. 

Figure 13.1 Scrum 
team in their room, 
Valtech India 

EXPECTATIONS

Try…Educate that agile offshore is not just short iterations

The “agile offshore” literature—from misinformed journalists, ana-
lysts, and managers new to the subject—abounds with the miscon-

2.  Where Bas served as NSN-wide lead coach for large-scale agile 
adoption. He also lived in China, working in large multisite develop-
ment adopting Scrum.

https://less.works For Gene Gendel only, id:gene-gendel



447

Expectations

ception that ‘agile’ primarily means to deliver in short two- or four-
week timeboxed iterations. The “agile is anything that is not the
waterfall” and “agile is a practice” misunderstandings are broad
misconceptions worldwide, especially pronounced in offshore work. 

Figure 13.2 visual 
management in 
team room, Valtech 
India

In our experiences in India and elsewhere, the lack of engaged
stakeholders (customers, managers, …) who understood and applied
the agile values was the key weakness, and on the other hand, suc-
cessfully shifting a group to these insights and new behaviors was
the most positive win for all concerned.

Therefore, educate the onshore customer and management that
agile is a set of values and principles (rather than a specific practice
such as timeboxed iterations) and that these values imply a close
and ongoing collaboration with feedback loops between the real cus-
tomer and real developers. 

Step one to succeeding with real agile offshore development is for
the leadership spearheading this initiative to clearly and consis-
tently communicate this message, and emphasize that ‘agile’
involves a change of mindset and behavior among all stakeholders,
including the customer and management team. This tip is true for
all agile transformations, but even more so in the offshore world.

https://less.works For Gene Gendel only, id:gene-gendel



448

13 — Offshore

Figure 13.3 agile 
team in common 
room during Daily 
Stand-up, 
ThoughtWorks India

Figure 13.4 visual 
management — 
product goals, 
ThoughtWorks India

Try…Agile guide for sales people and prospects

Sales people are so positive. That’s great, but a common side effect is
that the new client is promised the moon and the stars, and none of
the behavior-changing implications of adopting Scrum are communi-
cated to them—such as participating actively as Product Owner
each iteration. Sales people are also not renowned as process geeks
who spend their weekends reading books about Scrum and lean
thinking. To avoid nasty surprises, better prepare a clear, short
guide that both the sales people and prospective client need to
read… Partnering with Your Agile Offshore Team.

Try…Kickoff agile workshop to educate customers

How to educate the customer (and management) in agile values and
in Scrum? A common situation with offshore outsourced projects is
that traditional-minded clients believe they can hand over the speci-

https://less.works For Gene Gendel only, id:gene-gendel



449

Expectations

fications, wait until the end, and receive a system. Plus, they usually
have old and ineffective project management ideas for tracking
progress, such as conformance to a speculative Gantt chart
(“Microsoft Project chart”) of sequential tasks with time estimates.
And, they will be unused to the idea of directly talking with the
hands-on developers (in India, for example) rather than talking with
an intermediate representative such as a project manager.

Therefore, try starting a project with a new customer with a one-day
“agile offshore” workshop. For example:

1. Share the essential ideas of agile development—not practices
such as timeboxed deliver, but the four values and twelve prin-
ciples and how they may creatively be expressed in the daily
work. Also, introduce at least the categories of waste (waiting,
handoff, information scatter, …) from lean thinking and
explore how they may be reduced. 

2. Introduce Scrum (and its key values of transparency and
empirical process control), explaining the events that the cus-
tomer needs to participate in the Sprint Planning Meeting and
Sprint Review, the Product Backlog, the Scrum rules, and so
forth.

3. Clarify especially for the customer the Product Owner role—
responsibilities and actions. 

4. Present a “what’s different?” list.

5. Simulate, for a few hours, a hands-on Scrum release cycle that
goes through a couple of mini-iterations (for example, two iter-
ations of two ‘days’ each 10 minutes long) in which all Scrum
events, rules, activities, and artifacts are created, and in which
the customer plays a proper Product Owner role. 

– We once coached a Scrum kickoff for a product group
through a Scrum simulation. Using their previous release
features, we created a Product Backlog in a short workshop.
Then, an imaginary Sprint Planning. The next day, we imag-
ined the first iteration was finished and held a Sprint Retro-
spective. The amazing thing is that they already knew the
problems they were likely to have. The action list created in
the ‘imaginary’ Retrospective was actually used.

https://less.works For Gene Gendel only, id:gene-gendel



450

13 — Offshore

The workshop is best held physically at the offshore site so that the
customers start to develop “Go See” mindset and form direct rela-
tionships with the programmers and testers, but onshore may be the
only option until the client develops more trust and engagement. At
Valtech, they encourage clients to come visit their teams in Banga-
lore as early as possible.

In addition to more obvious participants, include

! the sales person and account representatives who sold the
project and handle the ongoing commercial aspects

– this has a double benefit, as sales people understandably
often have vague understanding of agile details, and benefit
from deeper and regular education

! some programmers and testers from the teams that will serve
the customer

– emphasize removing project representatives and instead
increase direct contact of the true customer (rather than
onshore project managers) with the real developers and
testers (rather than offshore project managers)

INTERACTIONS

Try…Remove barriers between offshore team and onshore client

This tip generalizes several more specific tips in this section. On the
first offshore project we coached, on our arrival, there was an
onshore project manager who acted as an intermediary between the
hands-on workers and the real clients. This was the root cause of
several dysfunctions. It is critical to remove such barriers.

Try…Matchmakers rather than intermediaries

Avoid…Single 
point of contact

Traditional offshore development uses intermediate representatives
(sometimes, a single point of contact) between the team and real cus-
tomer, increasing the waste of handoff, among other weaknesses. On

https://less.works For Gene Gendel only, id:gene-gendel



451

Interactions

the other hand, consider a matchmaker whose job is to encourage
people to meet and, perhaps, fall in love.

When possible, this is what Valtech tries to do on their offshore agile
engagements. They, as with many outsourcers, usually have one or
more onshore consultants at the customer site. And as usual, there
is a Valtech customer-engagement leader at the Bangalore center.
But rather than these people acting as intermediaries to the team,
their job—in part—is to encourage the customer and the team to
meet regularly face-to-face, by applying the Video sessions and Cus-
tomer visits team tips.

Their goal is for the clients and whole team in India to feel that they
can have frequent, easy, face-to-face meetings, without the need for
intermediate representatives.

Figure 13.5 Daily 
Scrum at Sprint 
Backlog (with visual 
management), 
China

Try…Seeing is believing—video sessions

We once coached an offshore project (in Bangalore) and attended a
conference-call telephone meeting. The call included, in Bangalore,
the Valtech engagement manager and the technical lead. In France
were some onshore Valtech people and client representatives. 

The project was experiencing the usual assortment of complications,
surprises, and variation. What was immediately clear in the speak-
erphone-based discussion was the lack of human rapport, and a sub-
tle us-them quality in which it felt as though them was boss and us

https://less.works For Gene Gendel only, id:gene-gendel



452

13 — Offshore

was servant. Part of what was missing was the sixth agile principle:
The most efficient and effective method of conveying information to
and within a development team is face-to-face conversation.

So, we arranged for both sides to get web cameras. We set up a com-
puter projector in the client room in France where the onshore
Valtech people sat, and a projector in the team development room in
India. Note: The visualization was in the Indian team’s common
project room, not a special meeting room. 

Then, for the next meeting, we got most Indian team members in the
room to sit together facing their camera and the large-screen projec-
tion of the (free) Skype Video session of the other group in France,
and vice versa. 

Tip: It is critical that the audio channel be perfect (no delay, …). If
Skype Audio is not perfect, use a telephone call and speakerphone
for the audio channel to complement the video.

Now, both groups could see each other, face-to-face. The client was
able—for the first time—to relate to the Indian developers and
testers as real people rather than as disembodied voices on a phone,
and vice versa. And the client was not relating to just one or two
team representatives, but directly seeing and talking with a group of
ten people in Bangalore on a large screen projecting a Skype Video
session. 

Figure 13.6 team 
room with projector 
and web camera for 
offshore video 
sessions, Valtech 
India

https://less.works For Gene Gendel only, id:gene-gendel



453

Interactions

The difference in rapport was noticeable. And that is no small thing;
the first agile value is Individuals and interactions over processes
and tools. The quality of human relationships in development is so
important. Humans need human relationships. Plus, since the
entire team was present, there was no more handoff waste and mis-
communication between team members and the client. As well, face-
to-face video sessions increased the bandwidth of full non-verbal
communication between the groups.

In Scrum, these video sessions can be used for Sprint Planning
Meeting, Sprint Review, Sprint Retrospective, and offshore require-
ments workshops.

Cheap, simple, frequent, and located in the team room are impor-
tant qualities for sustainable videoconferencing with the team.
Using an expensive system in a distant room is not a sticky practice.

Reality check—A management report regarding status, morale,
and so forth does not reveal the truth. Simply seeing and talking
with the real workers might not, either. However, it is step one in
forming a relationship that might help.

Meaningful confirmation—A development team wants to do a
good job, and hear that their real customer (not a development man-
ager) appreciates the results. During regular video sessions—which
may include the Sprint Review at the end of each iteration—the real
customer has a chance to say, face-to-face, directly to the team,
“That was a great job, I appreciate your work and results.” Develop-
ment teams value that kind of feedback from a meaningful client.

ESL benefit—English was everybody’s second language. Because
everyone could see each other’s mouths while listening, it was easier
to disambiguate what was being said. Tip: Do not be shy to fre-
quently ask people to repeat things in an ESL situation.

Room-cam—On one project at Valtech India where us-them and
trust was an issue with the onshore European client, Valtech
installed a webcam in the team room that showed the entire room,
24x7. Onshore at the client site, Valtech set up a permanent monitor
that showed this image, refreshing every 10 seconds. The client
could see a group of 20 people working full-time for them. 

https://less.works For Gene Gendel only, id:gene-gendel



454

13 — Offshore

Time zone issues—Europe to India time zone differences are small
enough to support video sessions without complication. And fortu-
nately, in Bangalore, IT working hours are until 19:00 or later. So for
east-coast USA with a 9.5 hour difference to Bangalore, common
video time is easy. For west-coast USA, it is not too large a stretch
for the India team to occasionally stay another hour later or for the
onshore USA group to get together a little early.

This video session tip is reiterated in the multisite chapter, but bears
repeating here because of its use to deal with the strong offshore
forces of us-them feelings, unfamiliar people, different languages,
and super-/subordinate power relationships. 

Try…Remote Sprint Review

The Sprint Review will of course be done with the full Scrum Team
in Bangalore and the Product Owner in Boston. Valtech India exper-
iments with different practices to make this remote event effective:

! video session

! remote shared desktop of the running demo

! onshore Valtech representatives also present with client

Try…Seeing is believing—client visits team

To reiterate, humans need human relationships. At Valtech, they
encourage the client (ambassadors) to visit the Bangalore develop-
ment center and to meet with their team, at least during kickoff, so
that during the first iteration the client can spend part or all of the
iteration in the project room, helping with knowledge transfer and
building relationships with the team members. When the client
returns home and has video sessions with the team, there is better
rapport and ability to collaborate. Plan for several visits: At the
start, halfway through, and so forth.

https://less.works For Gene Gendel only, id:gene-gendel



455

Interactions

Try…Team members visit client

This is a traditional, and excellent, offshore practice. Team members
better understand the client business and build relationships. How-
ever, it suffers the disadvantages of being expensive for many mem-
bers to travel or if only one member travels, that one person
potentially falling into the unhealthy role of intermediary bottleneck
for the team. For long-term major projects, Valtech usually sends
one or two team members from India to visit the client.

Try…Rotating ambassadors

Ambassadors who travel to other sites are good, in both directions—
as long as they encourage matchmaking over acting as intermediar-
ies [Eckstein10]. But avoid long stays, rotate the ambassadors occa-
sionally. People may get unhappy if away from home too long, and
perhaps more importantly, different perspectives are important.

Offshore, there will always be a person called the engagement man-
ager or “project manager,” who spends most of their time offshore
with the team. Tip: Include this person among the ambassadors.

Try…Translator on team

In India, usually enough people in the Scrum teams speak enough
English to talk (in video sessions) with English clients. But some of
Valtech’s clients are in France and other countries where a common
language is a problem between the onshore and offshore teams. And
in China, any foreign language is problematic.

For projects where this may be a problem, Valtech usually hires a
translator to join the team, sitting in the team room.3 Likewise,
onshore at the client site, there is usually a translator. During video
session meetings, everyone still sees the others face-to-face, but if
there is trouble, the translators fill in the gaps. At other times, the
translator helps with translating documents from the onshore client
(for example, French to English) and in the spirit of multi-skilled
workers, may learn new skills such as testing.

3.  One can find good translators for many languages in Bangalore.

https://less.works For Gene Gendel only, id:gene-gendel



456

13 — Offshore

Figure 13.7 Scrum 
Release Planning 
Workshop, agile 
estimation, Brazil

Try…Offshore team speaks English

We speak some English, French, Dutch, Hindi, and Mandarin—all
lovely languages, but English is the de facto standard for interna-
tional communication, so it is important if most or all offshore
Scrum team members speak decent English, so that in the likely
case that the onshore clients speak English (at least as a second lan-
guage), they can directly talk during video sessions. To help this, for
example, NSN China offers English education for all employees.

Warning: Avoid the quick fix of channeling communication through
the one and only good English speaker. 

Try…Clients participate in a Sprint Retrospective

A common offshore outsourcing problem is that the true issues are
hidden from the onshore clients. So, if they are visiting offshore, it is
helpful to invite them to a Sprint Retrospective or to hold a multisite
video session retrospective. First, the team has to be comfortable
with this idea, perhaps having done a mini-retrospective by them-
selves first. For this to succeed, a good facilitator (often a Scrum-
Master) is needed to set the tone on learning rather than blaming,
and to create a sense of personal safety so that people can be frank.

https://less.works For Gene Gendel only, id:gene-gendel



457

Interactions

Figure 13.8 Sprint 
Retrospective, 
Valtech India

Try…Offshore group first does several iterations onshore

Among the most successful Valtech India projects are those in which
a subset (due to travel costs) of the offshore team executed the first
iteration (or more) onshore in close collaboration with client stake-
holders and subject matter experts, forming the core of a larger off-
shore group. A less successful—but still useful—variation is that a
Valtech onshore team (such as people from Valtech Germany) exe-
cuted the first iteration onshore, and then travelled to India to form
the core of the offshore team.

Try…Proactively find and educate an onshore Product Owner

New clients are not used to actively participating in and driving
development as real Product Owners. They have in mind the tradi-
tional view that the offshore site will decide priorities, and so on.
Also, they will usually provide their own project manager (often
from their IT department) to look after the ten-month project. Fur-
ther, this project manager may not have a sense of what the real cli-
ent users want from the system. 

If possible, use your onshore consultants at the client to quickly find
a better candidate for Product Owner, someone closer to the real
users, probably not someone in the client IT department. That per-
son needs to be part of the kickoff workshop and perhaps separately
educated, for example, being sent to a Scrum Product Owner course.

https://less.works For Gene Gendel only, id:gene-gendel



458

13 — Offshore

A less desirable alternative is for the client’s project manager to play
the role of Product Owner. Failing commitment for even that, an
onshore representative of the offshore company can act as a Proxy
Product Owner.

Avoid…Believing ‘yes’; ask open questions

Agile offshore development involves plenty of ongoing communica-
tion between parties, so be warned: In India and China, if you ask,
“Can you do X?” or “Do you understand?”, ‘yes’ means maybe, no, yes,
“I heard that,” or “I don’t know.” Also, watch out for “We can do that.”
Instead, ask open questions in a way that tests the understanding or
plan. Also, try reverse questions.

REQUIREMENTS

Try…Offshore requirement workshops each iteration

Situation: Thirty developers and testers in Bangalore. Suddenly,
they are asked to develop a customer rewards system for a mobile
telephony provider in Germany. It will probably take around six
months. No problem, except… what is a customer rewards system
for a mobile telephony provider? And the client is not going to be in
the team room to explain the domain; they are 3000 kilometers
away. This is the knowledge transfer problem (often just called ‘KT’
in India). All outsourcers have it, whether based in Germany or in
Bangalore. But it is exacerbated when you are very far away, and
the time zone, language, and culture is different, and you are an off-
shore outsourcing company doing an endless series of novel six- or
twelve-month projects rather than a dedicated offshore insourcing
center working on the same product for years.

A classic offshore response is to send some people to the client in
Germany to write up the requirements and become, relatively
speaking, subject matter experts (SMEs). Some may stay at the cli-
ent and some may return to India. Very reasonable. But the tradi-
tional model usually stops at that and these SMEs become
bottlenecks and points of weakness. Furthermore, as new written
detailed requirements are sent from Germany to India each itera-

https://less.works For Gene Gendel only, id:gene-gendel



459

Requirements

tion, the only serious readers of the requirements are the SMEs. In
other words, our project has a very low truck number4 and high
handoff waste.

In addition to having SMEs, try an offshore requirements workshop
each iteration. The following steps have worked:

1. About one week before the end of iteration N, the onshore
SMEs provide updated detailed requirements for iteration
N+1. Desirable if recorded in a set of Wiki pages.

2. Key practice: Shortly after receiving the requirements, the
entire offshore team in India holds a 4–8 hour offshore require-
ments workshop to learn and critique the detailed written
requirements created by the onshore group in Germany. They
use a projector to display the material on the wall for the team
to see and read together, and surround themselves with flip
charts and whiteboards to write down questions and clarifica-
tions as they consume this material—as a team. Lots of conver-
sation happens. Eventually, they start to write questions and
issues back into the Wiki pages for the German team to read.
See Figure 13.9.

3. Very shortly after the offshore requirements workshop,
onshore and offshore teams have a group video session to go
through the questions and issues raised by the offshore team.
Conversation happens; the Wiki is updated with answers.

In this way, there is a reduction in handoff waste and deeper knowl-
edge transfer to the entire team each iteration.

This offshore requirements workshop may be part of ongoing Scrum
Product Backlog refinement workshops each iteration. 

4.  Truck number: How many people on your project have to get hit by a 
truck before you are in trouble?

https://less.works For Gene Gendel only, id:gene-gendel



460

13 — Offshore

Figure 13.9 off-
shore requirements 
workshop by Scrum 
team, Valtech India

Try…Offshore domain and vision workshop

Offshore outsourcing teams have recently been asked to deliver a
bank regulatory monitoring system for a government in Africa. It
will probably take over a year. Now, the team bumps into the knowl-
edge transfer problem. A couple of team members know this
domain—which is why the company won the contract—but 90 per-
cent of the people do not. Before starting the first iteration, hold a
workshop (probably for several days) that first introduces the
domain to the entire team. It helps to establish common concepts
and vocabulary by agile modeling at whiteboards (actively involving
all participants) to create an object-oriented domain model and a set
of UML activity diagrams (see Figure 13.10). 

This “domain workshop” is followed by a “product vision workshop”
so that the entire team has a sense of the vision, big picture, and
major features of the upcoming product.

In contrast to single-specialization and handoff, the goal is to
encourage the Scrum goal of “whole team working on whole fea-
tures.” For that, the teams need the big picture.

https://less.works For Gene Gendel only, id:gene-gendel



461

Requirements

Figure 13.10 joint 
design workshop, 
during a diverge 
cycle, Valtech India

Try…Requirements documentation adaptively ‘simple’

A common misconception is that detailed written requirements are
inappropriate in all agile methods.5 Yet, in Scrum, people can create
elaborate, detailed requirements if the Scrum teams find them use-
ful. And some written detail is useful when the teams are in Shang-
hai and the requirements donors are in London. 

What is the correct level of detail to prepare onshore and send to the
offshore team? Relax—you don’t have to make a final decision. In
Scrum, inspect and adapt of the practices occurs each iteration, dur-
ing the Scrum Retrospective. 

Start simple. Can you succeed with only the short user story format,
combined with video session conversation with onshore require-
ments donors? If that does not work, increase the detail. And per-
haps later on, it will be possible to simplify again—there is no final
answer in empirical process control with Scrum. 

However, beware the local optimization mistake of increasing writ-
ten documentation simply to avoid face-to-face video sessions.

Try…Frequent onshore UI prototypes

A great user interface (UI) is key to user satisfaction. As part of pro-
viding more requirements details to the offshore team, do UI proto-
types (paper mock-ups, digital mock-ups, …) early and often (each
iteration) onshore with the customer and onshore UI designers, to
maximize the bandwidth of conversation and feedback. If onshore

5.  Usually due to the old “agile means XP” misunderstanding.

https://less.works For Gene Gendel only, id:gene-gendel



462

13 — Offshore

UI designers are not an option, do real-time screen-sharing sessions
between offshore designers and onshore clients, to creatively and
collaboratively evolve UIs together. Small batches, short cycles, and
feedback are critical for the UI.

Try…Semi-detailed requirements documentation for iteration

Techniques for writing more detailed requirement documentation
are explored in the Requirements chapter. In all cases, this elabora-
tion is done onshore directly with the requirement donors. An
onshore consultant is also involved.

Try…Detailed requirements with A-TDD

“Try…Accep-
tance test-driven 
development” 
section on 
page 42

This tip is appropriate to all kinds of development, but is reiterated
here because of the special value of getting Acceptance Test-Driven
Development (A-TDD) in place from the very first iteration when
doing short unfamiliar outsourcing projects with a new client far
away. It rapidly exposes misunderstandings and drives down ambi-
guity in requirements.

These requirements-as-tests, along with any natural language
requirements, are reviewed each iteration at the offshore require-
ments workshop.

Try…Wiki for all requirements

Most Valtech agile offshore projects swear by using a wiki (they use
Confluence Wiki) for all requirements (and other project informa-
tion), rather than an old-generation document-centric tool (for
example, Microsoft Word). Wikis reduce the lean wastes of waiting
(to see, modify, and share) and information scatter (with the magic
of WikiWord hypertext). Further, tools such as Confluence Wiki sup-
port threaded discussions attached to each wiki page. Detailed
requirements can be written up in London and immediately seen
and commented on in Bangalore, by multiple teams. The wiki-cen-
tric model consolidates all discussion and clarification of a require-
ment in an easy, fast, “Web 2.0”-centric tool that encourages
participation.6

https://less.works For Gene Gendel only, id:gene-gendel



463

Test

As a corollary, do not use email for any project discussions. That’s a
recipe for communication disasters. Use the centralized, persistent,
and shared communication tool for all project discussions—the wiki.

This tip is repeated elsewhere, but reiterated here because of its
importance in offshore development.

TEST

Try…A-TDD for UAT

This suggestion is appropriate to all kinds of development, but is
reiterated here because of the special value to putting in place A-
TDD for user acceptance testing (UAT) from the very first iteration
for short, unfamiliar outsourcing projects with a new client far away.

Try…Manual (if you must) UAT each iteration

The Definition of Done ideally includes UAT, but that would only be
possible if fully automated A-TDD was used for UAT, with no man-
ual testing. That would be great, but fully automated A-TDD for
UAT is not always possible; clients unfamiliar with the idea might
want to do manual UAT.

In traditional (sequential) offshore outsourcing, manual UAT is done
once, after all implementation is finished, followed by a high-stress
rework and negotiation phase on what to do with all the problems.
In agile offshore development, if manual UAT is necessary, it is best
done each iteration. If the client is new to Scrum, this will be a chal-
lenging recommendation, requiring careful education. It helps to
share stories or quotes from other clients. 

If you are really lucky, you can convince the client to do manual UAT
after each user story (small feature) during the iteration, reducing
the batch size even further. Good luck.

6.  Other free “Web 2.0”-centric options include Google Wave.

https://less.works For Gene Gendel only, id:gene-gendel



464

13 — Offshore

What happens if failures are discovered by the client during manual
iteration-UAT? Typical scenario:

1. Manual UAT for iteration N starts in iteration N+1.

2. UAT results are typically known half way in iteration N+1. 

3. The Scrum teams plan for slack to handle iteration-N UAT
small defects within iteration N+1. 

4. On the other hand, big bugs are put on the backlog and han-
dled in iteration N+2.

Try…Manual pre-UAT after each feature

Assume there is (unfortunately) manual UAT and/or old-fashioned
‘automated’ test scripts for testing through the GUI7 that the client
will do each iteration. Fact: Offshore outsourcers will do an offshore
execution of these manual UAT tests before delivering the iteration
to the onshore client for real UAT. This is pre-UAT. Advice: Do not
create a queue of features to test and then do pre-UAT near the end
of the iteration. Avoid a mini-waterfall. Rather, do this pre-UAT in
smaller batches, keeping the queues smaller, after each feature is
implemented. See Figure 13.11.

Figure 13.11 pre-
UAT after each 
feature

7.  Acceptance TDD is done with table-based keyword-driven tools that 
do not require testing through a GUI.

A

iteration (2 weeks)

B C
pre-UAT for 

A, B, C

A B CA B C

WORSE: bigger 
batch and queue

versus ...

https://less.works For Gene Gendel only, id:gene-gendel



465

Test

Try…Iterative requirements onshore to offshore

“Try…Offshore 
requirement 
workshops each 
iteration” section 
on page 458

In Scrum, the Product Backlog items offered to the team during the
Sprint Planning Meeting must already be well analyzed before the
meeting starts. So, before the end of iteration N, some group needs
to prepare the detailed natural language requirements and (ideally)
automated acceptance tests for iteration N+1. They must be ready
perhaps one week before the end of iteration N, so that they can be
handed off (unfortunately—the waste of handoff) to the offshore
team for their offshore requirements workshop. See Figure 13.12.

Who does this detailed requirements preparation before the offshore
requirements workshop? It is usually led by people onshore—typi-
cally, consultants co-located with the Product Owner and other
users—because it involves long (for example, five days of work) and
close discussion and review with the client. Try to include a few off-
shore team members in some video sessions during this period, to
reduce the pain of handoff from onshore to offshore.

If the offshore team must be deeply involved in the requirements
analysis for the next iteration (because there are no consultants
from the offshore company visiting the client), then the offshore
Scrum team will have to reduce the scope of their implementation
work and allocate significant time to play the role of the onshore
people shown in Figure 13.12. There are several options for how
they work:

! The entire offshore team holds relatively long offshore require-
ments workshops (in preparation for the next iteration) and
holds video sessions with the Product Owner and users.

! A few members of the offshore team do this work while the
remaining members do the usual work of implementing fea-
tures; then, during the offshore requirements workshop, the
whole offshore team digests the wiki pages and the tests cre-
ated by the two or three offshore team members.

https://less.works For Gene Gendel only, id:gene-gendel



466

13 — Offshore

Figure 13.12 itera-
tive requirements 
onshore to offshore

TEAMS

Try…Stable offshore Scrum teams

Long-lived stable teams are a proven desirable goal. The cross-func-
tional Scrum team (feature team) of 7 ± 2 people is ideally stable,
going through the slow social process towards improved jelling. 

stable teams: see 
the Feature 
Teams and 
Teams chapters 
in the companion

So what? At India and China outsourcers, it is especially common to
observe a very mechanistic mindset about people and teams, and lit-
tle awareness of research into effective team structures. One fre-
quently hears the term ‘resource’ rather than ‘person,’ and old-
fashioned resource-pool and temporary project group or virtual team
thinking is widespread. Single-function teams (developers, testers,
…) are common. People are shuffled into new groups frequently. In
short, poor ideas.

It does not have to be that way. Virtually every outsourcing project
requires at least one team of seven people. So, an agile offshore out-
sourcing organization gradually develops more stable Scrum teams
who stay together for a couple of years. This is easy if the project
lasts a few years; on the other hand, if the projects are short, then
management needs to recognize the value of trying to keep the
teams together across several short projects.

sometimes (unfortunately), an onshore group must write most of 
the detailed requirements and automated acceptance tests

these flow to the offshore team in small sets, 
with a milestone that the details for the next iteration need 

to be clear before the offshore requirements workshop

offshore requirements 
workshop for next iteration

iteration 1 (2 weeks) iteration 2

repeatoffshore

onshore

https://less.works For Gene Gendel only, id:gene-gendel



467

Teams

Trade-off between learning, stability, and delivery—Stable
learning teams are desirable, but there is the “art of the possible” to
consider. Suppose

! The outsourcer has initiated a four-month project for upgrad-
ing an air travel website written in JavaServer Faces with a
Hibernate backend.

! No existing stable team knows most of this.

! The learning curve is non-trivial.

It could be faster—in the short term—to form a new group based on
competency if different experts in these areas exist scattered around
the company. 

On the other hand, this is a local optimization that avoids long-term
improvement of existing stable teams. If possible, stop and fix: pre-
fer to find a stable team that already knows the most, that can be
supplemented with other temporary experts who act as coaches.

Try…Simple titles map to special titles

In developing economies such as India and China, moving up is
understandably critical to people. On the other hand, Scrum teams
de-emphasize titles and hierarchy, encouraging multi-skilled work-
ers. It is not very impressive to tell your mother-in-law, or next pro-
spective employer, that your official job title is… team member. So,
one approach considered at Valtech is to have both an internal and
external title. For example, internally, engineer levels 1 to 20, or
coach levels 1 to 10. Simple, flexible. When a person leaves, some-
thing more special may be provided, such as senior architect or
senior project manager.

Try…Encouraging the teams to say ‘no’

‘Yes’ means nothing and anything in some places. One reason is cul-
ture—deference to seniority, and so on. Another is a willingness to
be flexible in an asymmetrical power relationship where us has the
money and them does not. One of the wastes in lean is wishful think-
ing, and it is fascinating (to us) to examine all the ways saying ‘yes’

https://less.works For Gene Gendel only, id:gene-gendel



468

13 — Offshore

without fail generate problems. Fact: A Scrum Team (not a man-
ager) has the authority to decide how much to take on each itera-
tion, and to descope the goals if necessary. So, it is important for the
team to feel they have the personal safety to say ‘no’ and break out of
wishful thinking and over-commitment behaviors. This supports the
eleventh agile principle of self-organizing teams, plus empower-
ment.

As a ScrumMaster or client, it is helpful to reinforce to the offshore
teams—hesitant to appear inflexible—that they can say no. One of
the Scrum rules is that work cannot be pushed onto a team; the
Product Owner offers items for the iteration, and the team pulls as
many as they decide they can do at a sustainable pace with good
quality. The team needs to know this, and not be made to feel bad
when they say ‘no.’ We know of one client who went out of their way
to regularly thank the team when they said ‘no’—as this client had
suffered the effects of wishful thinking all too often. See also the
impact of over-commitment on the creation of bad legacy code in the
“How to Write New Legacy Code” section on page 334.

Try…A ScrumMaster intent on self-organizing teams

Self-organizing teams, the eleventh agile principle, is a big change
for most organizations worldwide. It is even more challenging in
countries where deference to seniority is strong. One antidote is to
ensure you find ScrumMasters who are crystal clear on the impor-
tance of self-organizing teams and working actively for them.

AGILE CULTURE

Try…Long-term agile coaching group if high attrition

Every enterprise agile-transformation initiative benefits from a ded-
icated central group of expert coaches who go sit with teams and
coach them. This is doubly important in offshore cities with high
attrition due to a robust job market. Lean and agile principles only
work if embedded in the culture and mindset—this ideally comes
from stable employees (a goal in Toyota) and conversation. That is
hard to achieve in cities such as Bangalore or Shanghai. Compen-

https://less.works For Gene Gendel only, id:gene-gendel



469

Partnership

sate with a permanent central agile-coaching group that continually
re-infects teams with agile and lean viruses.

Try…Outside-the-site agile coaches

Every organization benefits by bringing in outside agile coaching
experts to act as viral agents. This is doubly true for offshore organi-
zations steeped in traditional command-and-control management
and process culture. If the offshore organization is multinational,
start by looking for in-company coaches from other nations.

Try…Buddy system if high attrition

When USA Navy members join a new ship, they are assigned a Sea-
Daddy—an old-timer who, over several months, shows the new peo-
ple around and helps them understand the culture of the ship. The
USA military recognizes the criticality of cohesive culture and the
need to quickly socialize people to the local culture. This buddy sys-
tem is a cornerstone practice that can also apply to offshore sites
with high attrition.

PARTNERSHIP

Avoid…Onshore management, offshore development

We sometimes work in countries where a vision widely promoted is,
organize so that the management is done by expensive onshore Euro-
pean managers, and all the “messy work” of actual software develop-
ment is done offshore. Taylorism at its worst. Besides that, do people
not know it is possible—and inevitable—to outsource the manage-
ment? Fast-forward thirty years into the future to a ‘developed’ coun-
try with lots of overhead where few people can do the concrete
customer-valued work (such as hands-on design and development)
and talented competitive people in “developing nations” are doing
the management and development of new products. Who will win
that competitive battle? 

https://less.works For Gene Gendel only, id:gene-gendel



470

13 — Offshore

Of course, more broadly, “onshore management, offshore develop-
ment” breaks just about every practice and goal in lean and agile
development if one wishes to sustainably deliver value faster and
faster with high quality and morale.

We once worked with a multisite product group trying to adopt
Scrum where a manager decided that the ScrumMasters for the off-
shore teams (in Asia) should be onshore (in Europe). The ScrumMas-
ters asked us what they should do…

Try…Offshoring features, not disciplines or components

If you want to be agile, do not outsource a discipline, such as testing.
That approach is for a sequential life cycle with single-discipline
teams and handoff—fundamentally inconsistent with agile and lean
thinking.

Rather, outsource a set of complete customer-centric features to off-
shore feature teams that do most of the work (design, implement,
test) to complete the features. As mentioned in the “Try…Iterative
requirements onshore to offshore” section on page 465, a common
exception is an onshore group that helps do detailed requirements
analysis in close proximity to the real customer.

Similarly, do not outsource a component or subsystem. If one sends
offshore a subsystem of a large product, then all the delays and
problems examined in Feature Teams (in the companion) and in
Continuous Integration will be even more painfully felt than usual,
due to the physical and social remoteness of a separate outsourcing
company.

Try…Treating the offshore organization as internal partners

An important Toyota (lean) principle is to help partners become lean
and to essentially ignore organizational boundaries. Toyota coaches
work inside partner sites to help partners apply lean thinking. Plus,
when there is a problem, Toyota coaches visit the partner and help
find the root cause, rather than blaming the supplier [ISV09]. The
attitude is partners are more ‘inside’ and less ‘outside.’ Also, Toyota
wants long-term sustainable partnerships in which all parties thrive

https://less.works For Gene Gendel only, id:gene-gendel



471

Partnership

and support each other instead of looking for temporary lowest-price
suppliers.

Rather than superficially evaluating partners based on manage-
ment reports and measurements, Toyota people practice Go See—
master engineers spend time inside the partner site and grasp with
direct insight the nature of their existing or potential partner.

A story: We once coached at CompanyX that offshore insourced and
offshore outsourced some of their product development. Both
insourcer and outsourcer worked on the same product and were
located in the same city. A joint inter-company “spread knowledge”
group (the lean yokoten practice) was formed between insourcer and
outsourcer and met weekly to share useful practices applicable in
both companies. It successfully led to improvement at both partners.
There was complete transparency and cooperation on a very con-
crete level, and the boundaries between the companies were not
inhibiting the real work of making the product. Healthy situation.
Then, one day, a “partnering manager” from CompanyX came to
visit the insourcer site to assess the cooperation with outsourcer. He
asked for the contracts, reviewed them, and asked us why we did not
establish “quality criteria” for the outsourcer to conform to. We sus-
pect he had recently been to a PMI or CMMI course and was now
putting his ‘education’ into practice. The insourcer team was puz-
zled. Why would they establish quality criteria? They had worked
together with the outsourcer in a transparent and very detailed way
to make sure that what was delivered was the best possible and that
both parties were improving and learning together. How was estab-
lishing conforming “quality criteria” going to improve anything? If
the outsourcer or insourcer knew how to do any better, then they
would have done so already and shared with the other group. It
made no sense. This is typical of traditional management education
that promotes reporting and conforming, rather than the Toyota
Way values of Go See, transparency, and coaching with partners.

Offshore development with lean thinking applies these principles,
especially for multisite product development that includes an off-
shore site (insourced or outsourced). For example, if you are evaluat-
ing an offshore partner, spend time sitting with random developers
at their site and look at their code while they are working on it—get
direct insight into the work and workers.

https://less.works For Gene Gendel only, id:gene-gendel



472

13 — Offshore

Tip: An early point for removing boundaries is to ensure that the off-
shore teams share the same code repository as the onshore (or other
site) teams. For example, NSN has multisite development with cen-
ters in Europe and China; all sites share the same Subversion code
repository. Removing technical barriers reduces basic us-them
issues. 

Try…Dispersed feature team if us-them is a problem

A dispersed feature team is one whose members are in several
locations. A co-located team is correlated with higher productivity
than a dispersed team, is simpler to coordinate (especially with time
zone variance), and more likely to jell as a real team. Although there
have been anecdotal case studies and speculation that dispersed
teams can be productive, arguably the most thorough research on
this subject concludes that a dispersed team will never be as poten-
tially productive as a co-located team [OO00]. 

So, all things being equal, prefer co-located feature teams. But not
all things are equal. For example, in offshore insourcing where a
product group originally had only one site in Europe and then adds a
second center in China, there can be a variety of us-them problems.
Creating dispersed feature teams—intentionally accepting the pro-
ductivity impact to address other system problems—is one mecha-
nism to address this.

If you must have a dispersed team, encourage a “real team” by
emphasizing synchronous over asynchronous communication tools,
such as Skype Video and instant messaging. Seeing is believing.

Avoid…Unbalanced onshore favoritism or bias

A sure way to increase us-them problems is to consistently favor the
convenience or cultural bias of onshore stakeholders. For example:

! Multisite meetings are always held at times convenient for
onshore but inconvenient for offshore.

! Offshore holidays are ignored.

https://less.works For Gene Gendel only, id:gene-gendel



473

Partnership

These situations can be exacerbated in Scrum because of the short
iterations, timeboxing, and regular short meetings. When planning
the timing of future iterations, ask, “What are the local holidays?”

Avoid…“four-year programmer” partners

“Avoid…Believ-
ing CMMI 
appraisal or cer-
tification means 
much in creative 
R&D work” sec-
tion on page 489

At one time, Valtech considered buying an outsourcing company in
India that had a “CMM level-4 certification” (their words). Valtech
first contracted with the prospective company to develop a system.
After it was done, they looked in detail at the source code. Garbage!
Clearly done by people who were not good programmers. Leaving
aside the observation that ‘certification’ was virtually meaningless,
the experience opened eyes to another offshoring problem…

Worldwide, there is a problem with the quality of programmers.
They do not usually learn much useful about good programming/
design at university, because computer science professors—though
brilliant and gifted in their specialties—know little of the craftsman-
ship of great code for real-world product development, and they cer-
tainly don’t spend time pair-programming and coaching students in
any meaningful way. The professional-programming skill of profes-
sors in India and China is arguably even worse. 

So, in these countries especially, the average person first joins an
outsourcing company with very low programming skill. It gets
worse: The four-year programmer problem. After about that
duration, a person expects to stop being a programmer and become a
manager. Motivation is understandable—more money and status.

So there is a pool—on average—of programmers of low skill who
leave the value work after just starting to achieve a modicum of skill
and productivity.

This is very different from the lean product development principle of
long-term great engineers. In Toyota, an engineer remains a working
engineer for a significant time.

If you are a client looking for a partner that can demonstrate lean
principles in development, investigate the average term and skill of
the programmers. By the way, it is not useful to do this by asking the
company—you will not learn the truth. If you really want to know,

https://less.works For Gene Gendel only, id:gene-gendel



474

13 — Offshore

the lean Go See principle is needed: Visit the site and randomly sam-
ple the people around the building, sitting with programmers and
looking in depth at their code.

If you are an offshore organization wanting to become truly agile
and lean, an improvement in culture and incentive is needed so that
a person feels valued, and is paid appropriately, to want to remain
working as a hands-on software engineer for many years.

Try…Experts coach/review rather than dictate design

See
“Avoid…Archi-
tects hand off to 
‘coders’” on 
p. 308.

See “Avoid…Cre-
ate ‘designs’ and 
then send them 
for offshore 
implementation” 
on p. 316.

Programmers in India and China are typically young, especially ill-
prepared by their universities for great code craftsmanship, and suf-
fer the four-year programmer problem.8 One quick-fix and unskillful
response to this problem is that onshore people (for example, in the
USA or Europe) or very experienced offshore ‘designers’ will do
detailed design diagrams and specifications (such as UML dia-
grams) and then dictate that the offshore ‘coders’ implement them.
More sequential life cycle mindset, more big batch transfers, more
handoff waste, and more design specification that tends to ironically
lead to more bad code. Naturally, this is de-motivating for offshore
developers who want to grow, demonstrates the lean waste of
underutilizing people, and is inconsistent with the lean culture of
coaching others to improve.

Instead, try the experienced onshore or offshore ‘designers’ in a dif-
ferent role: coach and reviewer. Let the offshore developers take
their own small steps in creatively coding/designing something. Do
more pair-programming by juniors sitting with seniors, pair-pro-
gramming by networked shared desktops and Skype Audio or Video
with onshore experts, and more code review in short cycles. Move
from a design-dictating role to a design-educating role.

8.  This problem exists, in varying degrees, in all countries.

https://less.works For Gene Gendel only, id:gene-gendel



475

Choosing an Agile Outsourcer

Figure 13.13 start 
of a design 
workshop, Valtech 
India

CHOOSING AN AGILE OUTSOURCER

Avoid…Outsourcers saying “Leave it to us, we do agile for you”

The large Indian and multinational outsourcers will quickly and
easily adopt genuine agile development, lean thinking, and Scrum
because they will gladly embrace 

Oh… sorry, that was another universe!

As ‘agile’ goes through the predictable fad phase, these outsourcers
will likely mutate it into something they can redefine, control, and
sell to appear up to date. “IBM Agile,” “Accenture Agile,” “Infosys
Agile” or such like—better than mere regular Scrum, able to scale

• giving up management com-
mand-and-control

• encouraging and supporting peo-
ple to serve as hands-on master 
programmers for 15+ years

• close engagement between the 
hands-on developers and cus-
tomer, without intermediaries

• simple, free tools
• managers and architects who are 

pair-programming coaches

• real transparency—of delays, 
what’s going wrong each day, …

• the candor to say “we don’t know” 
• reducing the overhead manage-

ment roles they charge to clients
• stopping sequential life cycle 

practices and mindset 
• empirical process control
• replacing cube farms with team 

rooms and visual management

https://less.works For Gene Gendel only, id:gene-gendel



476

13 — Offshore

with special IBM knowledge, requiring special managers, a private
recipe or cookbook requiring expert consultants and customizing…
for a fee. And of course, for-fee commercial tools from the vendor.
Such companies will demonstrate the “agile means iterative,” “secret
sauce illusion,” and “do agile” mistakes rather than being agile,
transparent, and adaptive with empirical process control.

For example, one “agile offshore” book written by a manager at an
Indian outsourcing company is rife with un-agile practices and mis-
understandings, even mutating the eleventh agile principle, the best
architectures, requirements, and designs emerge from self-organizing
teams. Apparently, self-organizing teams are not acceptable at his
company, because the author decided to rewrite the principle for his
audience: Realize that the best requirements, architecture, design,
development and testing come only from an organized and motivated
team [Venkatesh08]. Well, there’s hardly any difference between a
self-organizing team and an organized team!

Avoid…Outsourcers with top-heavy management

In India and China, becoming a manager is an important goal—your
mother-in-law expects it and it pays better. Combined with the four-
year programmer problem, traditional outsourcing companies are
top-heavy with management. Naturally these people, typically with
the best of intentions, are expected to manage—plan, measure,
direct, report, set targets, reward, and so forth.

In a top-heavy outsourcing organization, this creates a tension that
inhibits the adoption of real Scrum and agile principles because so
many people are actively participating in and reinforcing traditional
management ‘control.’ This effectively prevents the goal of self-orga-
nizing teams, empirical process control, and so forth. This large pop-
ulation acts—unwittingly perhaps—as an organizational antibody
to agility. In such offshore outsourcing companies one typically sees
fake agile—‘agile’ is trivially misrepresented as working in time-
boxed iterations, while all the other traditional structures remain—
project and program managers directing teams, sequential mindset,
single-function teams, handoff, command-and-control, and so on. 

Such companies are unlikely to have the structural ability to be
truly agile or lean—the cards are stacked against them.

https://less.works For Gene Gendel only, id:gene-gendel



477

Choosing an Agile Outsourcer

Figure 13.14 Daily 
Scrum, Valtech 
India

Avoid…“four-year programmer” outsourcers

This reiterates a general tip applicable to all kinds of partners:
Beware outsourcers with weak programmers. Go See the code and
the programmers-while-programming with your own eyes, and do
not pay attention to reports about the quality of people.

Avoid…Outsourcers whose environment does not “walk the 
agile talk”

OK, it is a mixed-up metaphor, but the point is that lean principles
and agile methods encourage a co-located team in a team room with-
out communication barriers between members. The leadership has
to make a non-trivial investment in a supportive physical environ-
ment, one sign of their long-term, meaningful support for a serious
agile transformation. If you visit a potential “agile outsourcer” and
people are working in a traditional cube-farm-from-Dilbert-Hell, it’s
one sign of fake agile.9

Years ago, when we first visited the just-acquired Valtech Bangalore
site, it had a typical Indian cube-farm layout. With the full support
of the CEO, we basically ripped out the interior of the building and
created team room environments for about 500 people (see

9.  Beware also “cargo cult agile adoption” in which the organization 
has the superficial trappings in place, such as a team room and a 
daily stand-up, but there is no culture of lean and agile principles.

https://less.works For Gene Gendel only, id:gene-gendel



478

13 — Offshore

Figure 13.15 and Figure 13.16). Because offshore outsourcing
involves many quickly shifting project sizes, we created a flexible-
wall solution out of hundreds of tall rolling whiteboards, which also
serve as tools for creativity and visual management surrounding
each team. Some team rooms have fixed walls, but most are flexible.

Figure 13.15 site 
when first acquired; 
note lack of 
interaction, Valtech 
India

Figure 13.16 team 
rooms after change, 
Valtech India

Avoid…Outsourcers with analysis, coding, or testing ‘factories’

The domain of manufacturing factories is profoundly different than
product development—a domain of learning, inherently high vari-
ability, and creative endeavor. So, any outsourcing company—and
there are several in India and China—that promotes the factory
metaphor for software development is on the wrong track, and
clearly does not understand feedback loops. And in the case of a test-
ing factory it is promoting the lean wastes of handoff, test-at-the-
end, high WIP, and over-processing with manual testing that should
instead have been automated with acceptance TDD. This reinforces
big batches of work on long queues, and single-specialist teams
transferring partially done work to other teams. 

https://less.works For Gene Gendel only, id:gene-gendel



479

Choosing an Agile Outsourcer

That is inconsistent with lean or agile development, and the cross-
functional Scrum team. Such outsourcers are far from being good
candidates for understanding and promoting real agile development.

Avoid…Try…Large outsourcers

Avoid—With rare exceptions, there seems to be an inverse relation-
ship between the size of the company and the quality of the engi-
neers. Also, in big organizations the management is often far away
from the real work, out of touch with how to do it skillfully, and does
not coach others—in contrast to the Toyota Way and Toyota as a big
company. Small technology-focused companies tend to be better.
Agile offshore needs the ninth agile principle: Continuous attention
to technical excellence and good design enhances agility. And lean
principles emphasize the need for “towering technical excellence.”

Try—On the other hand, big offshore outsourcers are federations of
many smaller business units, organized around domains such bank-
ing, insurance, and so on. It may be possible to find really high-qual-
ity programmers in one of these smaller units, but don’t count on it. 

And don’t believe it by claims; rather…

Try…Interview outsourcer-programmers by programming

“Are you a good programmer?” “Oh, yes!” “Great! You’re hired.”

Not good enough. The only way to really evaluate a programmer’s
programming skill is to look at their code; talking, questions, project
histories, and resumes are not enough. And in the case of countries
that especially suffer from the “four-year programmer problem” this
direct visit to gemba—the source code itself—is doubly important. 

Therefore, take the time, when selecting a team offered by an out-
sourcer, to give a programming challenge for each candidate. Then
observe the quality of the code they create—while they are creating
it. Either sit with them while they are programming the solution, or
if they are in a remote location, use a shared desktop technology,
combined with a Skype video live session. 

Of course, this test applies to candidate ‘architects’ as well.

https://less.works For Gene Gendel only, id:gene-gendel



480

13 — Offshore

Try…The great programmers forever

Once you have gone to the trouble of finding great programmers (as
discussed in the prior suggestion) ask to keep these same people
with you…forever.

Try…Improve together with your outsourcer

Toyota emphasizes building partners with stable relationships,
trust, and coaching in lean thinking. Once you have chosen an out-
sourcing partner, encourage them to participate in a lean and agile
adoption with you. For example, (1) create (at the outsourcer site)
offshore team rooms (rather than cubes) with support for visual
management, (2) install Skype or similar video technology in the
onshore and offshore team rooms, (3) remove intermediary out-
sourcer project managers, and (4) educate the offshore teams in
Scrum—for example, through courses, books, and coaching. 

APPRAISALS, CERTIFICATIONS, AND CMMI

CMMI is not necessarily related to offshore development; it is also
adopted by companies hoping for USA Department of Defense (DoD)
contracts, among others. However, offshore development is a very
common context in which one is likely to see CMMI because of its
widespread adoption among India offshore outsourcers in the 1990s.
Hence, the topic is covered in this Offshore chapter, although the
tips are relevant to any CMMI adoption.

This issue deserves careful analysis, and so is examined in some
depth. To start, it is useful to know there are misconceptions.

CMMI Misconceptions

CMMI is based on a sequential life cycle and requires heavy
documentation—Not true. The CMMI process improvement
framework is life cycle neutral; there is nothing in it that requires
the use of a sequential (for example, ‘waterfall’ or V-model) model.

https://less.works For Gene Gendel only, id:gene-gendel



481

Appraisals, Certifications, and CMMI

The CMMI does not mandate heavy documentation—it is relatively
free of prescriptive advice on how to perform a practice or process. 

Why did that misconception arise? First, the original CMM—rooted
in 1970s traditional development experience at IBM and in the USA
defense industry (at MITRE and other companies)—did have a sub-
tle bias toward sequential models, coming largely from people with a
background in serial phase-based development. Second, many of the
early (and current) CMM/CMMI consultants and appraisers had a
background in sequential processes and documentation-driven
development, since the group has been weighted toward people from
the USA defense industry and from traditional organizations. 

In the evolution from CMM to CMMI, the SEI has been careful to be
life cycle neutral and not prescriptive in how a particular practice
should be done. But some leaders in the CMM/CMMI movement
have complained that it has been distorted by misinformed consult-
ants and appraisers. For example, Mark Paulk, the lead author of
the Software CMM, wrote about distortion of both agile methods and
CMM:

We have had the same problem [distortion and lack of under-
standing] in the [CMM] software process world, and I must
admit to some amusement at watching the agile methodologists
struggle with the abuses of their methods. just as I have strug-
gled with those who abuse the Software CMM. [Paulk05]

This distortion seems to exist in all new movements because it
attracts novice consultants, including in lean development, Scrum,
and Extreme Programming.

CMMI and agile methods or lean thinking are fundamentally
incompatible—Not true. CMMI emphasizes process improvement,
not a specific method. Mark Paulk, a key CMM leader, has written
in favor of Extreme Programming and other agile practices
[Paulk01]. And there are now experience reports on applying Scrum
and other agile practices in an organization that is required to apply
CMMI (usually because of USA defense contract requirements). 

Craig has led Valtech India’s (which was a SW-CMM adopter) adop-
tion of large-scale Scrum and agile and lean principles, and helped

https://less.works For Gene Gendel only, id:gene-gendel



482

13 — Offshore

agile adoption at several other CMM and CMMI-adopting compa-
nies in the USA and Asia.

However, all that said, there are non-trivial differences in the para-
digm of process improvement in CMMI versus agile or lean models.
It seems rare that a group adopting agile methods will voluntarily
also adopt the CMMI framework, unless required to participate in
the DoD or offshore contracting world.

Barry Boehm gave one of the keynote speeches at the Extreme Pro-
gramming and Agile Processes 2006 conference in Finland. He posed
the question, “What does a traditional auditor or appraiser look for?”
His conclusion [Boehm06]: 

The left-hand column typifies themes in traditional process
improvement advice and audits. It is possible to integrate CMMI
with Scrum and agility, but without careful attention, it will be
inconsistent with agile values.

CMMI prescribes how to do a practice or process—Not true.
The CMMI is essentially silent on how to do any particular practice.
This misconception is demonstrated by CMMI consultants who con-
fuse means with ends and lead companies to incorrectly believe that
“doing CMMI” implies writing documents, developing in serial
phases, and observing other specific practices.

CMMI promotes a staged approach with maturity levels—Not
true. It is true that the original CMM was based on a broad-based
staged approach of moving up the ‘maturity’ levels. However, the
CMMI introduced the continuous representation that moves away
from broad organizational stages and maturity levels, and instead

Traditional Auditor
• processes & tools over

individuals & interactions 
• comprehensive documentation

over working software
• contract negotiation over

customer collaboration
• following a plan over

responding to change

Agile Manifesto
• individuals & interactions over

processes & tools
• working software over 

comprehensive documentation
• customer collaboration over 

contract negotiation
• responding to change over 

following a plan

https://less.works For Gene Gendel only, id:gene-gendel



483

Appraisals, Certifications, and CMMI

focuses on improving only a few processes of interest to the organi-
zation, each of which may improve at different rates.

A good certification implies good code—Not true, and this may
be the most practically important issue, because the key output you
are paying for is the code. You may recall the Valtech story
(“Avoid…“four-year programmer” outsourcers” section on page 477)
of evaluating a “CMM level-4 certified company” that created
extraordinarily bad source code. This is an often-repeated pattern—
the illusion of good-quality software at companies making CMM and
CMMI claims. See [Cone08] for more stories of poor code from highly
certified companies.

The SEI certifies company appraisals and levels—Not true.
Contrary to popular myth, the SEI does not certify the CMMI matu-
rity levels given to an organization. Quotes from the SEI [SEI08]:

Does the SEI monitor or certify appraisals? No.

How does my organization receive CMMI certification?
The SEI does not certify the results of any appraisal nor is there
an official accreditation body for CMMI. True certification of
appraisal results would involve the ongoing monitoring of orga-
nizations’ capabilities, a shelf life for appraisal results, and
other administrative elements. The SEI does not have a defined
requirement for periodic follow-up after appraisals, nor does it
accept legal responsibility for the performance of appraised
organizations.

CMMI lead appraisers go through an SEI education and certifica-
tion process. But there is no SEI guarantee regarding the validity or
veracity of an assessment.

CMM/CMMI appraisals are reliable and the ‘number’ is
meaningful—Not true. Here’s the bottom line: 

Do not believe that an appraisal, rating, or certification in any
process improvement model—including Scrum, agile methods

and ISO certification—means much of anything, other than the 
ability to somehow pass an appraisal at least once. 

https://less.works For Gene Gendel only, id:gene-gendel



484

13 — Offshore

“Bursting the CMM Hype” in CIO Magazine [Koch04] explores the
myth of CMM and CMMI ‘certifications’—mythical because fraudu-
lent. “When you talk about something simple like a number and lots
of money is involved, someone’s going to cheat,” said Watts Hum-
phrey, a CMM founder. The article examines the problem of false
claims, bribery, assessing a tiny group and then suggesting com-
pany-wide assessment, and other dysfunctions in the CMM and
CMMI industry. 

Note also that CMM and SW-CMM were retired by the SEI on Dec.
31, 2007, and any claimed assessment in that model is no longer rec-
ognized. Yet one may still find companies (usually offshore outsourc-
ers) that promote themselves ‘certified’ despite outdated
assessments.

Pay special attention to the common case in which one small depart-
ment was assessed, but the offshore outsourcer generically adver-
tises “company X was assessed at maturity level 5.”

How meaningful is a numeric CMMI capability/maturity level
‘score’?… We suggest that something as complex and subtle as the
process capability of a development organization can not be mean-
ingfully summarized by something as superficial as a number
between 0 and 5. Even a quality as “one dimensional” as the finan-
cial performance of a company—contrasted with the rich and subtle
multi-dimensional complexity of analyzing process capability—
involves a slew of numbers: earnings per share, EBITA, operating
income, and dozens more. 

How many give the appraisal, and how is it done?… Is it from a team
of 100 up-to-date master engineers who all spend many months
within the company sitting at the place of value work with hundreds
or thousands of developers, inspecting their code and pair-program-
ming for thousands of total hours so that they can see with their
own eyes what is really going on, through in-depth long-term direct
experience?

Or is it a few appraisers who visit for a few weeks (after the organi-
zation has spent weeks in careful trial runs and preparation to pass
the inspection), interview only 50 people for a couple of hours each,
and look at documents? What kind of insight into the true nature of

https://less.works For Gene Gendel only, id:gene-gendel



485

Appraisals, Certifications, and CMMI

a development organization and of the code/design quality (the
essential output) does that provide?

Contrast this with the Toyota practice where master engineers
spend a long time working closely inside their potential and existing
partner sites to see with their own eyes what is really going on. 

These two alternative approaches to evaluation reflect an absence or
presence of the lean Go See behavior—go see at the real place of
value work. In software development, the most common real place of
work is at the source code.

Does a good assessment indicate effectiveness or reality? Examples…

! We were once invited to a company assessed at CMM “maturity
level 5” to kick off an agile adoption initiative. While admitting
they had not derived enough benefit from CMM (which is why
we had been invited), nevertheless, the managers who had
invested so much in CMM explained how they applied it. How-
ever, during a break, a developer and first-level line manager
who were listening to the presentation came and said privately,
“Don’t believe a word of that! If we had to follow our CMM rules
we’d never get anything useful done. We ignore it and fake the
reports so that senior management is happy.”

! A client with CMMI “high maturity levels” has poured many
millions of dollars and long effort into achieving that goal. They
sent us a proposal (for coaching) because—after years of try-
ing—they have finally decided to move away from CMMI to
agile development (their next silver bullet?). Why? They now
say that their CMMI-based processes and improvement strate-
gies do not work well, and have created, to quote, “high man-
agement costs, long delivery period, and low enthusiasm and
creativity of project members.”

– Attempts to adopt Scrum or agile development can also be
ineffective and superficial if people do not focus on improv-
ing the underlying system. However, that said, we have not
heard of even a bad agile adoption that was characterized
creating “high management costs, long delivery period, and
low enthusiasm and creativity of project members.” (Though
it is perhaps possible). 

https://less.works For Gene Gendel only, id:gene-gendel



486

13 — Offshore

What is measured?… An appraisal may focus on adherence to
repeatedly following defined practices rather than on the question of
their inherent skillfulness. For example, defining that a group fol-
lows a sequential life cycle with large batch transfers, and then
repeatedly doing so, may not be skillful but may pass an appraisal.
This issue reflects the common anti-pattern measure what is easy
rather than measure what is useful. Such appraisals lead to a focus
on conformance and overhead rather than innovation, removing
waste, and delivering value quickly to the client.

What is reported?… If a group spends three million euros on a
CMMI program, what will they report to their sponsoring group?
Data reported about process improvements often reflects what peo-
ple get rewarded for and what attracts money [Austin96]. If people
are rewarded for a successful ‘agile’ adoption, the ‘data’ will reflect
success. Likewise with CMMI and other initiatives. 

Conclusion… Consider the quotes below from several offshore out-
sourcing company websites. The following claims will be attractive
to people following the superficial advice to find an offshore out-
sourcer with favorable CMMI ‘certification’ or a high number, but in
fact it is something of a mirage. 

All large non-SEI studies show that process improvement
with CMMI significantly helps productivity—Not true. The
COCOMO II model [Boehm00a] is based on large and longitudinal
studies of effort and productivity10 in systems development—includ-
ing many groups applying CMM and CMMI for process improve-
ment. The COCOMO II research data shows that “process maturity”
(based on a key CMMI goal) is among the least important factors for
productivity. What is the top factor, far more influential than CMMI-

[Accenture India] CMMI Level 5 
certified for IT Application Devel-
opment [Accenture08]

[IBM India] … certified at CMMI 
Level 5 [IBM08]

[Wipro India] Wipro is the World’s 
first CMMI Level 5 certified soft-
ware services company [Wipro08]

[HP India] … centers in Asia are 
CMMI Level 5 certified. [HP08]

10. Note that the definition of productivity in creative knowledge work 
is problematic—the definitions are questionable or debatable. This 
large can of worms will remain unopened—for now.

https://less.works For Gene Gendel only, id:gene-gendel



487

Appraisals, Certifications, and CMMI

oriented process maturity? The capability of the people on the devel-
opment teams—reflecting the Toyota lean perspective and the agile
value of “people over process.”11

Many roots of CMM and CMMI are in the USA defense industry; it
is sponsored by the DoD. And the defense industry was its only
meaningful area of adoption before interest from Indian offshore
outsourcers. In addition to the COCOMO II data, other large soft-
ware ‘productivity’ studies show that the defense industry—with
many years of CMM and CMMI application—has the worst produc-
tivity of any sector [Jones08]. And the CMMI leaders (authors, SEI
managers, appraisers, …) continue to be dominantly people from the
defense industry.

CMM/CMMI is strongly associated with successful improve-
ment—Not true. For example, in a report in IEEE Transactions on
Engineering Management the researchers summarize:

While some organizations have achieved various levels of suc-
cess with the CMM, the vast majority have failed… The most
recent report from [SEI] puts the rate of failure at around 70%.
[NN03] 

There are “Scrum plus CMMI is important for success” sto-
ries—Maybe. One oft-cited story of success with Scrum and CMMI
is the story of Systematic, a company that works in the defense
industry (among others) [SJJ07]. The paper is meant to suggest the
combination is important and desirable. A key point is that the arti-
cle focus is on the CMMI generic practices:

11. Interestingly, according to the COCOMO research, the second-most 
important productivity factor is “low product complexity.” Note that 
sequential development with big batches increases product complex-
ity (harming productivity), but that Scrum encourages small 
batches that support low product complexity.

Leaving aside statistics, do you believe that the defense industry 
is a great place to look for value generation and efficiency?

https://less.works For Gene Gendel only, id:gene-gendel



488

13 — Offshore

For the purposes of our discussion, we will look at the 12 generic
practices associated with maturity levels 2 and 3 in the CMMI
and how they might help an organization use Agile Methods.

What are these CMMI generic practices? They include train people,
provide resources, manage configurations, correct root causes of prob-
lems, identify and involve relevant stakeholders, plus some others. 

We are not convinced that CMMI is needed to do well in these essen-
tial basic areas. In essence, the article makes the point that having
organizational focus and improvement in training people, providing
resources, and so on, is important. It is not a necessary conclusion
that CMMI is an important ingredient in a Scrum-adopting organi-
zation to achieve skill in these generic areas.

Critically, the paper does not explore the key controversial elements
of CMMI, such as the Specific Goals, Specific Practices, and the
appraisal and rating framework—that are central to the contentious
questions of value and waste in this model.

One final quote from the paper is noteworthy:

Scrum now reduces every category of work (defects, rework, total
work required, and process overhead) by almost 50% compared
to our previous CMMI Level 5 implementation… 

In other words, after spending major efforts moving from one CMMI
level to the next, finally the group reached level 5. Given CMMI
claims, it is reasonable to then expect a high degree of efficiency—
that most waste and inefficiency was driven out from the operations. 

But when this group adopted Scrum, it cut “every category of work”
by half. What does that tell you about the efficiency in the CMMI
Level 5 implementation? 

Because of these misconceptions, the first tip in this section is…

https://less.works For Gene Gendel only, id:gene-gendel



489

Appraisals, Certifications, and CMMI

Avoid…Believing CMMI appraisal or certification means much in 
creative R&D work

And that goes for Scrum certification, ISO certification, and all oth-
ers as well. Certification or appraisal does not imply good things will
happen—especially in the variable and creative work of systems
research and development.

There are practical concerns about choosing an offshore outsourcer
based on a CMMI appraisal, as was covered in the previous Miscon-
ceptions section:

! Perhaps most important, a good appraisal does not imply good
code, and code is essentially what you are paying for.

! Appraisals are not reliable, and a ‘number’ is not meaningful.

! CMMI process improvement is not a key factor for productivity.

! CMMI is not strongly correlated with successful improvement.

And other concerns have been raised…

Concerns with the CMMI Framework

Not needed by successful development companies—Thought-
Works India—arguably one of the most talented offshore outsourc-
ing development group in Asia, successfully producing difficult
systems with solid code—has no CMMI program. Also true of Goo-
gle, Nokia, Adobe, Apple, Microsoft,12 Activision, Oracle, eBay,
Xerox, MySpace, Nintendo, Yahoo!, … and almost every other really
successful software-intensive company in the world. If the approach
and goals of CMMI are critical to successful and sustainable quality
development and improvement, why is it virtually ignored by almost
every great product-development company of the world? On the
other hand, many of these companies have adopted agile develop-
ment, usually based on Scrum.

12. Ironically (but predictably), Microsoft offers the “MSF for CMMI” 
process guidance (for customers buying their tools) but does not fol-
low a CMMI program themselves.

https://less.works For Gene Gendel only, id:gene-gendel



490

13 — Offshore

In “The Immaturity of CMM” in American Programmer [Bach94] the
author questions assumptions of the model. On its lack of use at
leading software-intensive product companies, he writes:

At worst, the CMM is a whitewash that obscures the true
dynamics of software engineering, suppresses alternative mod-
els. If an organization follows it for its own sake, rather than
simply as a requirement mandated by a particular government
contract, it may very well lead to the collapse of that company’s
competitive potential. For these reasons, the CMM is unpopular
among many of the highly competitive and innovative compa-
nies producing commercial shrink-wrap software. 

Commenting on “silver bullet” mentality with any process model (a
mistake also repeated in the adoption of agile methods), Bach
writes:

Still, it has become a lot clearer to me why the CMM philosophy
is so much more popular than it deserves to be. It gives hope,
and an illusion of control, to management. Faced with the
depressing reality that software development success is contin-
gent upon so many subtle and dynamic factors and judgments,
the CMM provides a step-by-step plan to do something unsubtle
and create something solid. The sad part is that this step-by-
step plan usually becomes a substitute for genuine education in
engineering management, and genuine process improvement.

Manufacturing and mechanistic mindset mistake—The USA
DoD has been driven by good intentions in their promotion of the
CMMI—to make sure that taxpayers’ money is spent wisely when
the DoD acquires systems. Unfortunately, the solutions devised are
not a clean fit to the creative, highly variable, innovative and learn-
ing-oriented work of systems research and development; it is as
though there is a belief that the model for growing software can be
similar to the model for acquiring buildings or manufacturing hard-
ware—the mistake of thinking development is not development.

CMMI emphasizes repeatable deterministic processes, for a domain
(creative product development) that is inherently non-repetitive and
stochastic—domains where empirical process control is appropriate.

https://less.works For Gene Gendel only, id:gene-gendel



491

Appraisals, Certifications, and CMMI

The analysis in “Competing Values in Software Process Improve-
ment: An Assumption Analysis of CMM from an Organizational Cul-
ture Perspective” was published (in the IEEE Transactions on
Engineering Management) by researchers not involved with agile
methods or otherwise biased to one model. It reiterates the point
that CMM is but one viewpoint from a subset of process people with
a shared value system—rather than the universally accepted
model—and that this group emphasizes a mechanistic view:

CMM espouses an organizational culture form in which people
and processes are treated mechanistically like a machine, for
which the operation and performance can be quantified, mea-
sured, and controlled. [NN03] 

The analysis posits that the CMMI and SEI value system is that
process is the most important factor.

For example, on the opening page of CMMI, “…three critical dimen-
sions… people, procedures and methods, and tools and equipment.
But what holds everything together? It is the processes used in your
organization” [CKS07]. 

And in a popular SEI text Software Process Improvement the author
(from IBM) writes, “An interesting view is to look at organizations as
a set of permanent processes, while management and employees are
transient phenomena that pass through these processes to serve and
enable them, and then leave to be replaced by others” [Zahran98]. 

This mechanistic view extolling process over people is the polar oppo-
site of the first agile value: Individuals and interactions over pro-
cesses and tools. Toyota says the critical dimension is primarily their
people and kaizen culture. Within the company they say, “Build peo-
ple, then products.”

…experienced leaders within Toyota kept telling me that these
tools and techniques were not the key to [Toyota Way]. Rather
the power behind [it] is a company’s management commitment
to continuously invest in its people and promote a culture of
continuous improvement. [Liker04]

No formal theoretical basis—CMMI has no formal theoretical
basis and is not widely accepted by all process experts.13 It is based

https://less.works For Gene Gendel only, id:gene-gendel



492

13 — Offshore

on the values and conclusions of only one subset of people—many
with a background in military software or working at IBM with tra-
ditional development in the 1970s and 1980s. On the basis of some
subset of “expert opinion,” any alternative model from another sub-
set of process experts with different views is equally justifiable. 

‘Taylorist’ assumptions and unsound promotion of “best
practices”—To quote from the SEI on the benefits of CMMI:

The CMMI Product Suite is at the forefront of process improve-
ment because it provides the latest best practices for product
and service development and maintenance. [SEI09] (emphasis
added)

One assumption in the CMMI model is that there are the “best prac-
tices.” This is related to Taylorism, the model of Frederick Taylor
and “Scientific Management” in which “the one best way” is identi-
fied by managers or process experts, and then workers are trained to
follow this one best way [Kanigel97]. 

“No Best Prac-
tices—and no 
Fractal Prac-
tices” section on 
page 4

The assumption of “one best way” or “best practice” is arguable in
creative work with inherent variability—even more so in young
fields with changing technologies. A related Taylorist assumption is
emphasis on following procedures over individual innovative think-
ing and experimentation in processes; this is a corollary of “best
practice”—if people have been shown the best way, then why change
or challenge the status quo?

We guess that no CMMI educator promotes overt Taylorism, and
CMMI books do not. Indeed, the goal of process improvement is part
of the model. However, having visited many CMM and CMMI-adopt-
ing organizations over the years, it seems there is something in the
model or the way it is applied that creates a stultifying effect. When
working in such groups we hear, “No, we can’t do that, it’s not
allowed.” Or, “We have to do it this way, it’s part of the process.” 

We also see these responses in groups adopting Scrum or lean prin-
ciples—they have missed the central idea of empirical process con-

13. Nor are agile methods, although as explored in the companion book, 
queuing theory, control theory, social psychology, and information 
theory have connections to supporting agile and lean practices. 

https://less.works For Gene Gendel only, id:gene-gendel



493

Appraisals, Certifications, and CMMI

trol and kaizen. The key, as emphasized by Toyota, is a culture of
lean-thinking manager-teachers who encourage kaizen mindset.

Conclusion

Some problems suggested above apply equally to any process
improvement framework, including Scrum, because people trump
process [CH01] and people will game the system to get rewards. The
first agile value reminds us what is going on: Individuals and inter-
actions over processes and tools.

Toyota people understand this. What leads to meaningful improve-
ment and superb execution is not rules and appraisals, but a work-
force of great long-term engineers encouraged to be systems
thinkers, free to change to remove waste and increase value
throughput, guided by experienced-in-the-real-work managers who
are also systems thinkers. Hence the internal Toyota motto: 

Bottom line advice: If a process improvement approach, including
CMMI, is useful for the hands-on value workers doing the real
work—which has nothing to do with what appears in a report—keep
doing and improving it. Otherwise, don’t. 

Avoid…Believing ‘agile’—or any—certification means much

Just as CMMI certification means little in terms of great product
development, value generation, or great code, likewise with any
agile—or other kind of—certification because process is only a sec-
ond-order effect and Individuals and interactions over processes and
tools. The following is worth repeating: Data reported about process
improvements often reflects what people are rewarded for and what
attracts money. If managers are rewarded for an ‘agile’ adoption, the
data will reflect success. This measurement dysfunction is deep; the
antidote is Go see with your own eyes at the real place of work.

https://less.works For Gene Gendel only, id:gene-gendel



494

13 — Offshore

Both of us are Certified Scrum Trainers who sometimes teach a
“Certified ScrumMaster” (CSM) course. We think education is valu-
able, especially if the teacher is a master of the subject and a skilled
educator. The most successful large-scale Scrum product group tran-
sitions we have coached are those in which all of the management
team joined us in a CSM. But ‘certified’ is not going to make any dif-
ference in the ability to transform mindset or culture; it is merely
something HR departments want to hear. If someone hopes that
sending people to a two- or three-day course will create ‘agile,’ that is
just quick-fix wishful thinking. How can you certify that someone is
a systems thinker with meaningful insight, cares to foster self-orga-
nizing teams and empirical process control, and has kaizen and a Go
See attitude? In Toyota this is not done by certification but is
encouraged by a stable culture of trusted manager-teachers who
mentor others in these qualities.

Avoid…Toxic CMMI consultants and appraisers

The CMMI is life cycle and practice neutral—it does not say to use a
sequential life cycle. Beware an industry filled with toxic CMMI con-
sultants who promote sequential development, big batch transfers,
single-function teams, cargo-cult ritualistic conformance to check
lists and process recipes, and heavy document-driven practices
under the mistaken belief that such are required in the CMMI.
Avoid those people, and seek out the rare few consultants and
appraisers with deeper insight and agile mindset.

If you must adopt the CMMI model to win a government contract,
explore simple practices. For example, an appraisal in CMMI must
provide evidence that certain things happen. A traditional response
is textual documentation. Try alternatives, such as using a digital
time-stamped photo or digital recording of a meeting.

CONTRACTS

Try…Alternative contract models

See the Contracts chapter for alternatives to the traditional fixed-
price, fixed-scope contract common in offshore outsourcing. In addi-

https://less.works For Gene Gendel only, id:gene-gendel



495

Tools

tion, a clear understanding of the Scrum Product Backlog, pull ver-
sus push, and adaptive iterative planning in Scrum is important for
working with this issue.

The alternative contract models have an impact on how one plans an
iteration and a release. Again, the Contracts chapter is the focal
point for the related topics; it also points to relevant material in
other chapters, such as Planning and Product Management.

Try…Fixed price and fixed scope with agility

If you must do fixed-price and fixed-scope projects, look into the Con-
tracts, Planning, and Product Management chapters for tips on this.

TOOLS

Avoid…Commercial tools

Some offshore projects are initiated by onshore decision makers in
which commercial (paid) software products are needed for develop-
ment or version control, servers, testing tools, and so forth. Onshore,
the costs of these licenses is not considered an issue. But in “low
cost” sites, these licenses are an impediment because they are rela-
tively expensive. If the offshore site does buy a set of licenses, it is
reluctant to buy more later because of the additional expense or
because it needs to ask for approval from an onshore group.

The fifth agile principle emphasizes giving people the environment
they need. Lean emphasizes eliminating delay. For-fee commercial
tools are an impediment. Fortunately, there is now a vast selection
of high-quality, free, open-source tools for development, version con-
trol, testing, and more. Prefer these both onshore and offshore. 

https://less.works For Gene Gendel only, id:gene-gendel



496

13 — Offshore

CONCLUSION

“Avoid…Product 
management 
negotiating a 
“release con-
tract” (scope & 
date) with R&D” 
section on 
page 106

Those who have tried it—and seen in-depth with their own eyes
what is really going on—know that offshore development, especially
outsourcing, can be frustrating and wasteful. As so often, it boils
down to the first agile value: individuals and interactions over pro-
cesses and tools; plus, setting aside the easy-sounding chimera that
the solution can be ordered like a meal in a restaurant (in this case,
a restaurant very far away), rather than collaborating with the off-
shore team to create a new recipe. Because agile offshore develop-
ment does not just imply that the offshore teams adopt Scrum, but
also a change in the relationship between those teams and the
onshore customers.

Part of that change is forming a direct and more personal connection
between the onshore customers and offshore Scrum teams. Remove
intermediaries such as project managers and other “single points of
contact,” and frequently use video technology so that the true cus-
tomers and real team members can relate to each other.

Bridging the communication gap is hard enough with co-located cus-
tomers and development teams—and made worse with offshoring.
This makes the practice of acceptance TDD even more valuable
when doing offshore outsourcing with onshore customers. Also,
bridging that gap takes lots of time and travel; bring offshore team
members onshore for some time, and spend time offshore with them.

The lean principle of Go See is vital when choosing an offshore out-
sourcer or team. Do not take on faith a potential outsourcers’ claims
regarding the skill or agility of the people. Rather, (1) spend time
pair programming and doing other pair work with potential team
members, (2) look with your own eyes at the quality of the code they
are creating, (3) see if the offshore teams have team rooms with
visual management, and (4) observe if they are directed by a project
manager or are truly self-managing. Similarly, do not assume that
any certification or assessment—including CMMI, ISO, or Scrum—
has any value or reality. Rather, Go See the code and the team.

That direct observation is what Toyota people do; they spend time
inside of a potential partner site to see the reality at gemba. Then,
once they find a good partner, both parties enter a long-term stable

https://less.works For Gene Gendel only, id:gene-gendel



497

Tools

relationship based on trust, transparency, and mutual support to
learn and improve together.

RECOMMENDED READINGS

There is not much material to recommend on agile offshore develop-
ment; some is awful, and some is essentially traditional offshore
development combined with iterations—with no fundamental
change in the relationship between the team and customer—
rebranded as ‘agile.’

! All the recommendations in the Multisite chapter are relevant,
such as Offshoring Information Technology and Agile Software
Development with Distributed Teams.

! Two of the largest agile-offshore outsourcers in India are
Valtech and ThoughtWorks. In Martin Fowler’s online article
Using an Agile Software Process with Offshore Development (at
martinfowler.com) he describes lessons learned at Thought-
Works, which parallel those at Valtech. 

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Part 1: Thinking about Contracts 500

• Part 2: Common Topics of Agile Contracts 518

• Part 3: Contract Models 531

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



499

Chapter

14
CONTRACTS

with Tom Arbogast

History will be kind to me, for I intend to write it.
—Winston Churchill

Companies have been successfully writing and using “agile con-
tracts” for many years. For example, at Valtech (where Craig
worked), they apply Scrum in the outsourced projects they take on—
both in their Bangalore development center and elsewhere—and
write contracts that support this. Other agile outsourcers, such as
ThoughtWorks, have done likewise. 

This chapter is written with two audiences in mind: non-lawyers
and (contract) lawyers. We encourage sharing this chapter with
legal professionals since some of the material is written for them1—
because most of the work in creating contracts that support agile
values and practices is not in the language of the contract, but in
educating legal professionals about these values. This involves
understanding and appreciating traditional legal concerns, address-
ing those, and helping lawyers grasp the implications of agility and
systems thinking. So the early suggestions focus on understanding.
Later topics focus on a few concrete agile-contract suggestions.

Our co-author of this chapter, Tom Arbogast2, is a lawyer with many
years of experience in IT projects and contracts, combined with in-
depth knowledge of agile principles, systems thinking, and lean
thinking. He has worked three sides of the fence: (1) as a contract
lawyer for customers of outsourced IT services, (2) as a legal profes-

1.  This chapter summarizes core agile concepts already familiar to the 
expert agile reader, assuming legal professionals new to the subject 
are an important audience.

2.  thomas.arbogast@gmail.com

https://less.works For Gene Gendel only, id:gene-gendel



500

14 — Contracts

sional for IT outsourcers (‘suppliers’), and (3) in business develop-
ment for suppliers (sales agreements influence contract content).

Caution…

For every complex problem, there is a solution that is simple,
neat and wrong.—H.L. Mencken

Do not assume that contract negotiations are much less complex or
vigorous for legal professionals who grasp the implications of agile
principles. It is important to recognize that contracting is an inher-
ently complicated process, even more so in a domain of high com-
plexity and uncertainty such as software development. And lawyers,
by training and duty, must continue to pay close attention to the
frameworks necessary to deal with a breakdown of trust and collab-
oration between parties.

PART 1: THINKING ABOUT CONTRACTS

Try…Share these key insights with contract lawyers

The following points are central; they need to be clearly explored
with legal professionals:

! The structural and legal aspects of agile-project contracts are
the same as for contracts of more traditional development
styles. The key difference is the approach to and understanding
of operational process and delivery and how this is captured in
or intersects with contracts.

! An understanding of agile and lean principles and systems
thinking is necessary for contract lawyers. Why? Because
applying these thinking tools leads to less risk and exposure,
and that needs to be expressed in the contract. An agile
approach enables rapid incrementally deployable deliverables
and collaborative decision-making between the parties, and so
relieves pressure on liability, warranty, and similar issues. 

! Contracts reflect people’s hopes and, especially, fears. Success-
ful projects are not ultimately born from contracts, but from

https://less.works For Gene Gendel only, id:gene-gendel



501

Part 1: Thinking about Contracts

relationships based on collaboration, transparency, and trust.
‘Successful’ contracts contain mechanisms that support the
building of collaboration, transparency, and trust. As trust
builds between a customer and supplier, the commercial and
contract model should ‘relax’ to support increasing “customer
collaboration over contract negotiation.”

Overriding fundamental insight

Everyone’s number one priority is to deliver a successful project (in
other words, to realize the business case), and each member of the
organization, including legal professionals, must strive to reduce
local optimizations, silo mentality, and wastes.3 Other (legal) con-
cerns are important, but subordinate to the goal of project success.
This is a shift in mindset because many lawyers see their discrete
function as the priority—that is, to deliver a ‘successful’ contract.

Try…Lawyers study agile, iterative, & systems-thinking concepts

A lawyer writing a contract for an agile project (most commonly,
done with Scrum) needs to grasp the key ideas before she can articu-
late an agile contract. We suggest that legal professionals study
introductory material in these subjects. For example:

! in the book Agile & Iterative Development [Larman03], chapter
two, Iterative & Evolutionary, and chapter three, Agile

! The Scrum Primer (www.scrumprimer.com)

! the section on Continuous Improvement in The Lean Primer
(www.leanprimer.com) 

! articles on systems thinking; www.thinking.net has both arti-
cles and many links

! in the companion book Scaling Lean & Agile Development
[LV08] chapter two, Systems Thinking

3.  Wastes: 1. Overproduction of features; 2. Waiting and delay; 3. 
Handoff; 4. Relearning; 5. Partially done work; 6. Task switching; 7. 
Defects; 8. Underutilizing people; 9. Knowledge loss and scatter; 10. 
Wishful thinking. 

https://less.works For Gene Gendel only, id:gene-gendel

www.scrumprimer.com
www.leanprimer.com
www.thinking.net


502

14 — Contracts

! this chapter 

Try…Appreciate a traditional lawyer’s point of view

Legal professionals are wired differently. This rewiring starts from
the moment the student enters law school. The concepts of Profes-
sional Responsibility and Advocacy become ingrained into a lawyer’s
way of thinking. Legal professionals are trained to act, under legal
duty, to advance their client’s interests and protect them against all
pitfalls, seen or unseen. How do you define a client’s interests? A cli-
ent would probably say simply the successful delivery of the project.
A legal professional will say she is successful if she protects her cli-
ent to the greatest degree possible against exposure and risk, while
at the same time advancing the end goal of the contract/project.

One has only to look so far as statutory definitions of a lawyer’s duty
to see how a lawyer perceives her role:

(5) A lawyer should endeavour by all fair and honourable
means to obtain for a client the benefit of any and every remedy
and defence which is authorized by law. The lawyer must, how-
ever, steadfastly bear in mind that this great trust is to be per-
formed within and not without the bounds of the law.4

So lawyers view their role as being there to protect clients from
things they may not even know about. A lawyer is ostensibly trained
to be distrustful—not necessarily of other people—but of unrealistic
expectations and outcomes (the waste of wishful thinking), particu-
larly at the start of a project.

It is important to appreciate this dynamic in the context of a con-
tract negotiation. When a lawyer states that part of her role is to
address—contractually—the point where trust deteriorates, it does
not imply that the lawyer does not trust the other party. Rather, it
means that she does not necessarily trust the expectations of the
anticipated outcome and is mandated to deal with most anticipated
outcomes—good and bad. 

4.  The Law Society of British Columbia; Rules of Professional Conduct.

https://less.works For Gene Gendel only, id:gene-gendel



503

Part 1: Thinking about Contracts

The third value of the Agile Manifesto is customer collaboration over
contract negotiation. Naturally, when first reading this, a contract
lawyer will take note, react, and perhaps think, “That’s nice, but I
am here to ensure that my client is properly protected. She can think
anything she wants, but I bet she wouldn’t say she values collabora-
tion over contract negotiation when everything goes south and a law-
suit is filed.” It is the lawyer’s duty to consider the ‘unthinkable’ in
contractual relationships and provide a framework—expressed in
the language of the contract—for dealing with unpleasant outcomes.
Lawyers are educated in, and all-too-experienced in, dealing with
what happens when relationships deteriorate and trust fractures.

Stare Decisis5

Lawyers are creatures of habit. This comes from how the law has
developed. 

The life of the law has not been logic; it has been experience.—
Oliver Wendell Holmes

It is often said that law is behind the curve and not ahead of it. This
is because of the very nature of how law develops. Cases are brought
before courts and analyzed in the context of prevailing legal princi-
ples. This idea applies to all areas of law, including accepted con-
tracting principles. 

Once an issue has been reviewed and analyzed ad nauseam, includ-
ing in legal academic circles, it will then be accepted into common
practice. This process could take a decade or more.

Lawyers therefore look to past models that are tried and true, dust-
ing off old precedents and looking to accepted law as a guide. Any-
thing that is perceived as new or a sea change (for example, agile
methods) is seen with skepticism and distrust. And this dusting off
applies to contract models—it is easier to reuse an existing model
than to create something new. 

5.  Stare decisis implies that precedent rules and will not be altered 
until an alternative is accepted by the courts; it applies principally 
to countries with a common law system.

https://less.works For Gene Gendel only, id:gene-gendel



504

14 — Contracts

Traditional project assumptions: Impact on contracts

What do lawyers assume is the nature of software projects? First, it
is common that they view it as similar to a construction project—rel-
atively predictable—rather than the highly uncertain and variable
research and development that it usually is. Second, that in the
project (1) there is a long delay before something can be delivered
that is well done, with (2) late and weak feedback, (3) long payment
cycles, and (4) great problems for the customer if the project is
stopped at any arbitrary point in time. These assumptions are inval-
idated in agile development.

Naturally, these assumptions are expressed in the language of the
contract, and in the time and attention lawyers give to concepts such
as risk and liability for delay, termination, indemnification, accep-
tance testing, payment criteria, and warranty, amongst others. 

Try…Debug common misunderstandings when lawyers are 
introduced to the third agile value

As mentioned, legal professionals new to agile values will react to
first reading customer collaboration over contract negotiation. It is
useful for non-lawyers to be aware of likely reactions and help
address misunderstandings through discussion. And lawyers can
correct these misunderstandings by studying these:

False dichotomies—The first and perhaps most common misun-
derstanding is to misinterpret the agile values in terms of a false
dichotomy; that is, “customer collaboration is good and contract
negotiation is bad” rather than, to quote the Agile Manifesto,
…while there is value in the items on the right, we value the items on
the left more. Legal professionals need to appreciate that this value
does not mean that the contract is subrogated to the collaborative
effort, but rather that collaboration is dominant for successful deliv-
ery of a project. 

Not only should this collaboration be expressed in the behavior of
the parties during project development, it can and should be
expressed in the contract language—and behavior of lawyers. The
contract can define a framework to encourage collaborative prac-

https://less.works For Gene Gendel only, id:gene-gendel



505

Part 1: Thinking about Contracts

tices, and in this way the legal professionals can support their cli-
ents’ goals of agility, and, most importantly, enhance project success.

“Avoid…Product 
management
negotiating a 
“release con-
tract” (scope & 
date) with R&D” 
section on 
page 106

Non-legal ‘contracts’—Another common misunderstanding is
assuming that the third value is solely for legal contracts. But “con-
tract negotiation” does not exclusively refer to business or legal con-
tracts. It is meant to include the broader notion of agreements or
specifications between parties in product development, and whether
the emphasis is on nailing down these agreements or on ongoing col-
laboration, learning, and evolution. For instance, a traditional
approach includes an early detailed specification of requirements
and then “signing off” on these, which are then passed on to develop-
ment teams for realization—a ‘contract’ of requirements. 

Legal professionals may exacerbate or ameliorate, by the language
of the legal contract, an unhealthy focus on these non-legal ‘con-
tracts’ during project execution. For example, if they draft a contract
that contains a clause requiring the definition of and the signing-off
on the specification of all or most requirements before starting
implementation, there is a lack of agility in the project and an unde-
sirable emphasis on (non-legal) ‘contract’ negotiation. 

Try…Lawyers study problems arising from silo mentality and 
lack of systems thinking

Figure 14.1 (from the International Association for Contract and
Commercial Management, IACCM) depicts the top ten (of thirty)
contractual terms corporate lawyers were concerned with from 2002
to 2007. It is difficult to imagine that delivery personnel are con-
cerned on a day-to-day basis with most of the issues listed. And it is
striking that a description of the object of the contract is not men-
tioned.6 That is an astounding observation. The very thing the con-
tract is ultimately about, the expectation of a deliverable (for
example, software that will accelerate bills to be processed), is not in
the top ten issues. 

6.  Delivery/Acceptance is referenced in item-9. However, this refer-
ences the concept of delivery meeting a specified acceptance regime, 
and is not concerned with the underlying object of the delivery. 

https://less.works For Gene Gendel only, id:gene-gendel



506

14 — Contracts

Figure 14.1 top ten 
(of thirty) 
contractual 
concerns of 
corporate lawyers

Consider this scenario: A lawyer at a large company is asked to
“measure the success” of contracts the legal department has entered
into. The lawyer answers, “We entered into over six billion dollars
worth of obligations over the past year encompassing over 400 dif-
ferent contracts, and we have only been sued, or had to sue, on two
of those contracts. This is consistent with our year-to-year perfor-
mance, amounting in my estimation to a 99%+ success rate.”

In the traditional lawyer’s world this is their definition of success, a
‘best’ or ‘optimal’ situation. But of course it is only locally optimal.
The lawyer did not address if the business case behind the project
was realized, if the consumers of the new software were delighted, if
the project was delivered, or if too much had been paid over the life
of any particular contract. 

How do lawyers measure success with respect to a contract negotia-
tion? There is a traditional saying regarding contract hardball that,
“you know you have a good contract when both parties are unhappy”
because neither party got what it wanted. An agile mindset argues
the opposite for both parties, and that a “win-win” approach is really
what is mutually optimal.

But regardless of how one measures the ‘goodness’ of a contract, one
thing will be constant, and it goes to the heart of a lawyer’s fear in
drafting a contract: If something goes wrong, the client will look to
the contract (and therefore the lawyer) to ensure that the issue is
covered in the client’s favor. This fear, as well as expectation from
the client, leads a lawyer to locally optimize strictly from the client’s
point of view with respect to legal problem scenarios.

https://less.works For Gene Gendel only, id:gene-gendel



507

Part 1: Thinking about Contracts

This then comes down to the concept of local optimization, or the
tendency of actors within a complex system to do the ‘best’ thing in
the confines of their own duties and roles, without understanding
the larger impact of their choices and actions or ignoring higher-
level goals of the system.

The lawyer’s response to the query about contract success was
cogent in a local context but does not appreciate the larger systems
issues. And why is this? There is…

! a wide gulf between the legal and delivery groups

! endemic silo mentality among contract lawyers

! a lack of systems thinking and resulting local optimizations

! measurement and incentives based on legal concerns

On this last point: Measurement and incentives not only inject dys-
function and locally optimizing behavior into project delivery, they
do likewise in contract writing. If professionals in a legal depart-
ment are rewarded on the basis of legal outcomes, there may be
fewer legal issues—but not greater project success.

Form versus function

We have all been in buildings that, whilst beautiful and aestheti-
cally pleasing from a distance, are dysfunctional and confusing
internally. This is the difference between form and function. Any
legal professional will tell you that, when a contract is finished and
dusted, with the ink just drying in the signature boxes, the gleaming
end product—which could be a meter-thick stack of document and
appendices—is a beauty to behold. 

But of course the real test of a contract is in the execution stage of
the project, when the people on the ground are working together.
During this stage, any need to refer to the contract is arguably a
sign of failure—not only of collaboration but also of the legal profes-
sionals’ ability to foster a framework for collaboration and success. 

That said, if reference to the contract is needed, this is where it
takes on a life of its own, much like a building. It is thus critical to

https://less.works For Gene Gendel only, id:gene-gendel



508

14 — Contracts

envision what the contract will be like in everyday use. This view
goes hand-in-hand with a systems-thinking approach. 

All this then begs the question: How much time is spent negotiating
different areas of the contract? Are legal professionals locally opti-
mizing the concerns and language of the contract (reflecting their
silo mentality) on necessary but secondary issues, and as a conse-
quence actually increasing the risk project failure?

Many lawyers spend an inordinate amount of time and concern on
‘legalistic’ areas of a contract (for example, spending bone-numbing
hours on areas such as force majeure and liability). These areas are
certainly important to consider, but how important are they in the
larger picture of ensuring the success of the underlying focus of the
contract—the project?

There is an amusing story [Parkinson57] told by the British civil
servant, C. Northcote Parkinson, illustrating his Law of Triviality:
Time spent on any item of an agenda is inversely proportional to the
cost of the item. He shares the story of a government steering com-
mittee with two items on the agenda: 1) the choice of technology for
a nuclear power plant, and 2) the choice of coffee for the meetings.
The government mandarins, overwhelmed by the technical complex-
ities and science, quickly pass the technology recommendation of the
advising engineer, but everybody has an opinion on the coffee—and
wants to discuss it at length.

A similar dynamic plays out amongst lawyers writing project con-
tracts: There is an inverse relationship between time spent on the
terms that are being negotiated and what is being dealt with on a
day-to-day level during execution of the project. 

But there is good news with respect to negotiating issues: An agile
and iterative approach can—by design—decrease risk. Therefore,
pressure on negotiating “big issue” terms (such as liability) is allevi-
ated because agile methods imply early and frequent incremental
delivery of done slices of the system. The early feedback and delivery
of a working system every two weeks (for example) fundamentally
changes the dynamics behind negotiating some terms, whose excru-
ciating negotiation in traditional ‘waterfall’ projects is driven by the
assumption (and fear) of a long delay before delivery.

https://less.works For Gene Gendel only, id:gene-gendel



509

Part 1: Thinking about Contracts

One can understand how extreme pressure comes to bear on articu-
lating terms, when viewed in the light of a big “all or nothing” deliv-
ery model. Because of the small, iterative nature of deliverables in
an agile approach and the ability to stop the project at any two-week
boundary (since each incrementally small slice of the system is done
and potentially deployable or ‘shippable’), there should be less pres-
sure on concepts such as liability multiples and indemnity.

In The Fifth Discipline, Peter Senge states that systems thinking
and a learning organization are ultimately aimed at building
“…organizations where people continually expand their capacity to
create results they truly desire, where new and expansive patterns of
thinking are nurtured, where collective aspiration is set free, and
where people are continually learning how to learn together.” In this
context, it is critical for legal professionals to acknowledge that the
project contract is secondary, though admittedly necessary, to
expanding that capacity. So it is critical for the Legal department to
acknowledge that the contracts they craft can all too often degrade
project success and degrade organizational learning because of a
lack of systems thinking, a silo mentality, and local optimization on
secondary issues—and this point holds true also for Finance and
Human Resources, amongst other departments. 

Try…Lawyers study the impact of potentially deployable two-
week increments on assumptions and contracts

The Lexus LS versus the Lexus IS

Traditional non-agile projects envision an
end product that is akin to buying a top-end
Lexus LS. The final delivered solution has
all the fine features, nicely polished. And—
consistent with the car metaphor—lawyers
probably envision an implementation

approach in which one first builds the chassis, then drops in the
engine, then the body and electronics, then the interior and paint. So
you do not get to see how the final product all fits together until the
very end, when all the components are assembled. 

https://less.works For Gene Gendel only, id:gene-gendel



510

14 — Contracts

The corresponding pressure that this puts on contractual mecha-
nisms designed to protect exposure is enormous. For a customer, it
means that there is a delayed, complex, end-user acceptance regime
that must occur after final delivery. And it means the customer can-
not ascertain the quality of the ‘car’ until it is finally delivered. In
software projects, this means that a customer will want to have
maximum protection for the overall scope of the project—usually a
liability multiple of the overall cost of the project. This means that a
supplier cannot fully be comfortable with the deliverable until the
end of the project, and may not therefore be able to recognize total
order value until the final deliverable.

An agile project addresses both sets of concerns. It aims to build not
partial components of a project iteratively, but rather to build a
deployable working model of value to the customer that can be
accepted and used at each two-week iteration. This is a critical point
that legal professionals new to agile concepts do not always grasp;
they may misinterpret agile development as incrementally deliver-
ing undeployable components rather than the agile model of deliver-
ing a useful deployable system after each short iteration, with
gradually more functionality.

After the first iteration, the deployable solu-
tion or model may be characterized as a
Lexus IS—a simpler entry-class vehicle. As
each iterative solution is delivered, the level
of the working model goes up in functionality

and stature. In a sense, it is like a trade-in of the previous model
every two weeks.7

The implications for this approach are critical for concepts such as
liability and exposure. The customer has something of value that
she has paid for and accepted. The supplier can be confident that it
has delivered something from which it can recognize revenue and
value. If there were, heaven forbid, a breakdown in the relationship
and the project went to hell, each party will be nearly whole in terms
of its relative exposure.8 The customer will not be left having paid

7.  This analogy is imperfect: Unlike trading in cars, software—and 
contracts—can evolve into something grander each refinement cycle.

8.  This simplified analogy does not address the issue of expectation 
costs, consequential damages, lost profits, and other damages.

https://less.works For Gene Gendel only, id:gene-gendel



511

Part 1: Thinking about Contracts

for a partial project that is now nothing more than shelfware, and
the supplier will not be left with having expended effort on some-
thing that it will not get paid for. Granted, the ultimate expectations
for either party may not have been met, and the partial system may
not have enough functionality to usefully deploy,9 but from a pure
business and exposure perspective, the relative concerns of the par-
ties are not nearly as extenuated as they may be in a traditional
‘waterfall’ project scenario. It is vital for contract lawyers to appreci-
ate the implications of this point in how they contemplate, negotiate,
and draft project contracts!

Try…Lawyers study how agility reduces risk and exposure

There are three general areas to be concerned with when drafting a
contract:10

! risk and exposure (liability)

! flexibility to allow for change

! clarity regarding obligations, deliverables, and expectations

An agile-project contract may articulate the same limitations of lia-
bility (and related terms) as a traditional-project contract, but the
agile contract will better support avoiding the very problems that a
lawyer is worried about. That is, a contractual approach that
embraces agile methods will actually decrease risk and advance a
client’s relative interests. A contract that does not address agile
methods may actually do the opposite of what is intended and
increase risk and inhibit a client’s interests. 

An example of this is in the area of requirements gathering and test-
ing of the software that is developed to meet those requirements. In
a sequential-development project, the lawyer will enforce (via the
contract language) the client’s wishes to articulate every possible
case and attendant testing to meet the anticipated requirement. 

9.  The well-done quality of the partial system makes it easier for 
another development group to pick it up and continue.

10. There are clearly many different aspects of a contract, but they can 
generally be subsumed into these three categories.

https://less.works For Gene Gendel only, id:gene-gendel



512

14 — Contracts

An agile approach contemplates that requirements will be articu-
lated in an iterative and evolutionary manner so that time and
money is not wasted in developing software for requirements that
are not ultimately needed. It also recognizes that money may be bet-
ter spent for requirements that were not recognized at the begin-
ning. Requirements identified and developed in a sequential-
development project may never be used, because they were ill-con-
ceived or lacked effective engagement with real users. And after
delivery of a system that “conforms to the contract,” requirements
still need to be added to meet the true needs. From a contractual
perspective, this means that a contract based on a sequential
approach will actually increase the risk that the client pays more
and gets less than she expects, and that the reverse will occur when
the agile approach is understood and addressed in a contract. 

This point cannot be overstated, both from a legal and financial per-
spective. In a sequential-development project, a client could pay
much beyond the anticipated cost to get what she initially expected.
The attendant contract will not protect against this scenario but will
actually promote it by incorrectly assuming that it is quite possible
to define and deliver a large set of requirements without ongoing
feedback and evolution of understanding. 

For a legal practitioner, the implication is that agile principles can
protect a client from things they may not know. This dovetails with
the earlier recitation of the perceived duty of a lawyer to her client.
Hence, once a lawyer knows about agile principles, she will be
neglectful if she does not protect her client’s interests by continuing
to allow (by continuing to write traditional contracts) that client to
pay for what she doesn’t need and then allowing that client to pay
extra to realize what she truly needed.

This means that an agile approach

! reduces risk because it limits both the scope of the deliverable
and extent of the payment

Contracts that promote or mandate 
sequential life cycle development increase project risk.

https://less.works For Gene Gendel only, id:gene-gendel



513

Part 1: Thinking about Contracts

! allows for inevitable change

! focuses negotiations on the neglected area of delivery

As an initial imperative, hands-on people from the business area (for
the new system) and supplier development-team members must be
closely involved and collaborating throughout the life of a project.
Legal professionals are encouraged to look for signs that the parties
have this intention in mind and to encourage it during contract
negotiation and drafting.

This ongoing collaboration of customer and supplier does not mean
that a lawyer has vast opportunity for further billables (or if one is
internal, that a boatload of more work is now necessary) due to the
increase in interaction and joint discovery. Rather, it means that
contractual constructs must be created to allow for continual cus-
tomer participation, assessment, and evolution. If the right model is
created, a lawyer may have minimal further involvement—at least,
unless conflict arises—because the right framework is in place to
facilitate the cooperation inherent in an agile approach.

Try…Heighten lawyer sensitivity to software project complexity 
by analogies to legal work

If you are a coach or manager interested in increasing the apprecia-
tion among legal professionals as to the inherently complex, vari-
able, discovery-oriented nature of software projects, try sharing the
following thought-experiment with them:

“I want a fully complete project contract for my new project: A new
enterprise-wide financial management system that will probably
involve around 200 development people in six countries involving
four outsourcing service providers never used before, and that takes
between two and four years to complete. To the exact hour, how long
will it take you to negotiate and write the contract with the four pro-
viders? To the exact word count, how many words will be in the con-
tract? What will be the exact cost?”

Discuss the parallels between that scenario and software develop-
ment, and what are realistic versus unrealistic, and effective versus
ineffective ways to deal with uncertainty, discovery, and variability.

https://less.works For Gene Gendel only, id:gene-gendel



514

14 — Contracts

A lawyer will most certainly say that in this case it is impossible to
ascertain, to any degree of certainty, what the end contract will look
like, because of the evolutionary nature of contract drafting and
negotiation. The lawyer may be able to give a ballpark figure in
round numbers as to how much time, generally, it would take to
negotiate a complete the contract, say, 200 hours, but would never
commit to anything concrete in terms of actual total hours. Yet, iron-
ically, lawyers and business leaders (in a waterfall mindset) expect
that IT people will be able to ascertain, via requirements analysis
and articulation, what a software project—something of far greater
complexity, size, and variability than a “contract project”—will look
like and how much it will cost, to a high degree of certainty.

Avoid…Incentives and penalties

It is common for those involved in contracts (legal professionals,
sales people, procurement agents, …) to spend considerable time
inventing, negotiating, and writing incentive and penalty clauses in
contracts. There is an unquestioned assumption and belief that
incentives (related to performance or target dates) or bonuses are
beneficial. However, this is inconsistent with evidence-based man-
agement research [PS06, Austin96, Kohn93, Herzberg87], and there
is ample evidence incentives lead to increased gaming, a reduction
in transparency and quality, and other dysfunctions. Research was
summarized in the Organization chapter of the companion book.

Penalties (negative incentives) lead to the same problems.11

Incentives and penalties also foster a competitive us-them relation-
ship between customers and suppliers, rather than cooperation. 

Alternatives? 

! simplicity—no performance-based incentives or penalties 

! if the customer is extremely dissatisfied with performance, ter-
minate the engagement at the end of iteration

! shared pain/gain models

11. We are not referring to major penalties for gross negligence, but to 
penalties connected to performance variation.

https://less.works For Gene Gendel only, id:gene-gendel



515

Part 1: Thinking about Contracts

Try…Share the pain/gain

Some upcoming sections, such as the “Try…Target-cost contracts”
section on page 540, present models that share the pain or gain.
This can foster collaboration and improving together. For example,
in a target-cost model, if the actual cost is lower than the target, the
customer pays less and the supplier profit margin is higher.

Avoid…“Quality Management Plan” and “Deliverables List”

Traditional contracted outsourced work involves low levels of trans-
parency and trust, and a long delay until some software is done. One
(of many) classic contract-responses to this is to mandate a conven-
tional “quality management plan” or “deliverables list” that defines
a long checklist of documentation to provide, rather than a focus on
delivering real value: working software. One negotiator shared with
us the following story:

An agilist involved in contract negotiation needs to be skeptical
about extra documentation, and argue for measuring the cost of
producing it—but of course be willing to discuss why an organi-
zation may require something. My experience [with deliverables
lists] has varied, including in the worst case a very long negoti-
ation with a company that had a huge internal chasm between
the agile-friendly business people and traditional internal IT.
The internal IT group had been “thrown a bone” by the business
person who was the primary negotiator with us, by IT gaining
agreement that a “Quality Management Plan” would be agreed
to. The IT representative tried to reinstitute waterfall thinking
and documentation, and traditional command-and-control,
through various drafts of the ‘quality’ plan. Fortunately, we
finally succeeded in effectively eliminating both the quality plan
and the authoritarian non-value-producing “quality manager”
role that the IT representative was trying to build for himself.

See “Try…Prod-
uct-level Defini-
tion of Done” on 
p. 170.

What obviates the (assumed) need for a deliverables list, if any-
thing? In Scrum, it is the Definition of Done that the supplier teams
and client-side business-area Product Owner—rather than an IT
manager or legal professional—define and evolve each iteration.
Contract lawyers need to understand the Definition of Done because
it changes how agile contacts are framed, and how projects are done.

https://less.works For Gene Gendel only, id:gene-gendel



516

14 — Contracts

Try…Collaborate early and often with lawyers

Collaboration over negotiation and more and earlier feedback loops
apply not only to the customer and supplier in an outsourced con-
tracted agile development project—they also apply to engagement
with legal professionals. 

The system dynamics model in Figure 14.2 illustrates, in broad
terms, possible outcomes of increased support for flexibility and col-
laboration in contracts. But especially relevant to this section,
Figure 14.2 also illustrates the impact of more and earlier collabora-
tion of lawyers in business ventures and projects. This closer
engagement is part of a larger theme explored in the Teams chapter
of the companion book: cross-functional teams. People often
assume—wrongly—that the boundary of a cross-functional team is
the people within the R&D or IT department. Not so. For example:

Cross-functional means that team membership includes all the
key functions involved in the project, usually Engineering, Mar-
keting, and Manufacturing, at a minimum. [Smith07]

Beyond “at a minimum” is the inclusion of Legal.

The following is a case I (Tom here) saw where the impact of delayed
lawyer engagement—and silo mindset—was costly: Business lead-
ers identified marketing and cost-saving opportunities by creating a
new web-based billing system. The business case hinged on develop-
ing it cheaply—which they believed could be accomplished by off-
shore outsourcing. Eventually, after a proposal and bidding process,
a finalist was chosen and the parties started negotiations. This was
and is usually the stage where legal professionals get involved to
craft the contract terms and conditions. 

Unbeknownst to the business leaders, many jurisdictions have
recently tightened the rules regarding export of personal data across
national boundaries. This only became apparent with the late
engagement of some lawyers. Offshoring was infeasible due to these
rules. The business case thesis—and project—was invalidated.

Fortunately, the mistake was caught before it was too late. But it
would have been easy—given the limited and siloed engagement of
the lawyers—to miss this issue completely, leading (as shown in

https://less.works For Gene Gendel only, id:gene-gendel



517

Part 1: Thinking about Contracts

Figure 14.2) to increased company exposure. And even though it was
caught before project commencement, the initial work consumed sig-
nificant business resources. In addition to the waste of this aban-
doned work, the subsequent reworking of a new business case and a
new cycle of proposals and bidding reduced the time and energy that
business people had to explore other business opportunities.

Figure 14.2 system 
dynamics of degree 
of contract flexibility 
and early lawyer 
collaboration

In addition to the value of cross-functional teams that include legal
professionals, this case illustrates a point that IT people do not nec-
essarily appreciate: A contract lawyer has a duty to consider two
kinds of risks:

! internal project risks

support in the contract for 
flexibility, learning, 

collaboration

business-case
problems that could 

have been easily
anticipated, with some 

legal analysis

collaboration of 
business,
internal IT,

vendor, and 
lawyers

easy, useful consideration
of major risks in business 

case and/or contract

project or 
operational
problems

# of new opportunities 
handled by business leaders

exposure

goodwillcost

revenue

time to 
market

market share

O

O

OO

O

O

O

O

OO

O

https://less.works For Gene Gendel only, id:gene-gendel



518

14 — Contracts

– these are reduced with agile development, and so it
behooves legal professionals to support this contractually

! risks from knock-on effects (such as data export violation)

– these are reduced by cross-functional teams that include
legal professionals, and early, regular collaboration

PART 2: COMMON TOPICS OF AGILE CONTRACTS

Why No Specific Contract-Language Examples?

When drafting this chapter, we first considered including example
clauses from agile-project contracts that have been created at
Valtech, ThoughtWorks, and other parties. There are many corpo-
rate examples, in addition to variants such as the DSDM and Nor-
wegian PS-2000 contract templates.

However, the feedback from lawyers who reviewed chapter drafts,
and the opinion from our co-author, Tom, were consistent: Copy-
paste is a real and present danger among lawyers and sales people,
who—instead of grasping the underlying domain-specific principles
(such as agile or lean principles) embodied in contract language—
simply copy-paste clauses to draft new contracts. The legal profes-
sionals involved in this chapter had a clear message: Focus on prin-
ciples that help educate both IT people and lawyers about the
intersection of agile and lean development and contracts; sample
clauses obscure what is important.

Topics Overview

The major topics of agile-project contracts (such as acceptance and
termination) are the same as for traditional-project contracts. How-
ever, the content of these topics in the contract—and legal profes-
sional’s mindset behind it—contains elements that support
collaboration, learning, and evolution.12

12. The special case of fixed-price, fixed-scope contracts is covered later.

https://less.works For Gene Gendel only, id:gene-gendel



519

Part 2: Common Topics of Agile Contracts

Agility implies “responding to change over following a plan” and
“customer collaboration over contract negotiation,” how does this
impact the following contract topics?

Delivery Cycle

For legal professionals new to agile development, it is imperative to
understand the new delivery cycle. The cycle, from the start, is sim-
ply this:

! At the end of each two-week (or up to four-week) timeboxed
iteration, deliver a deployable system with useful features.

– it may have insufficient functionality to be of interest to
deploy, but each cycle it is closer to interesting deployment

Incremental delivery is not a novel concept in contracts; many iden-
tify intermediate milestones, either fixed by date or by goals with
associated acceptance criteria or a statement of work. The notewor-
thy differences for legal professionals to grasp regarding delivery
cycle and milestones in agile development include

! doneness and deployability—each iteration delivery is done,
programmed, tested, and so on, and is in theory deployable

! duration—smaller, usually two weeks

! timeboxing—fixed time but variable scope

Project Scope

Agile contracts do not define an exact and unchanging project scope,
although there are variations13 in the degree of scope specificity and

! delivery cycle ! project scope

! change control ! termination

! acceptance ! deliverables

! timing of payment ! pricing

! warranty ! limitations of liability

https://less.works For Gene Gendel only, id:gene-gendel



520

14 — Contracts

change, ranging from low to high. These variations are usually
related to the pricing scheme, as will be seen.

Near one end of the spectrum are target-cost contracts, in which
the overall project scope and details are identified at the start as
best as possible (in order to establish the original target cost), but
with mechanisms for change throughout. At the other end are pro-
gressive contracts, in which no (necessary) scope is defined
beyond one iteration.

Summary of vision—In the contract

There are contract examples in which the scope, vision, and business
motivation of the project or product is utterly inscrutable. Avoid that
because it suggests that the contract framers are not involved in the
project. Rather, they may be demonstrating legalistic, locally opti-
mizing silo mentality—a weakness discussed earlier. Plus, a con-
tract without a project overview is less comprehensible.

Therefore, invite the legal professionals to creatively write from
their own understanding—not to copy-paste—a Moore-style vision
statement [Moore91]. To achieve this, they will need to participate
in project visioning (for example, during a workshop) and other
project-engaged activities. Also, include a summary of the general
contract, price, and payment model. Place both of these in the con-
tract preamble. For example:

For Accounting and Marketing—Who want to consolidate bills,
reduce billing costs, and do targeted marketing with bills—Our
new product KillBill is a new billing system—That provides
web-based billing presentation and payment, and customized
marketing. Unlike our existing billing system—Our new
product is web-based and has 80% lower operating costs.

Contract Model: This is a target-cost model. The basis is an
expected delivery price of $YYY. Supplier will deliver and be
paid for, on an incremental basis of two-week iterations.

13. Specific contract models, including target-cost contracts, are dis-
cussed in a later section.

https://less.works For Gene Gendel only, id:gene-gendel



521

Part 2: Common Topics of Agile Contracts

Change Management

The issue of change is largely inherently addressed within the over-
all philosophy of an agile approach because of a re-prioritizable
backlog and adaptive iterative planning; no special (traditional)
change-management process, board, or request mechanism is
needed. Indeed, it is critical for legal professionals to expunge old
change-management language from contracts because such lan-
guage may violate the essence of agility.

This does not mean that all kinds of change management are dis-
pensed with in contractual form. Pertinent concepts in agile-project
contracts fall under two categories:

! change in relationships between parties

– For example, when a party is being acquired by another
entity, a fundamental change in corporate direction may
occur. Then, existing change-management language com-
monly used in contracts is likely still applicable. However,
keep in mind that, because of the nature of iterative deliver-
ables and concurrent payment inherent in an agile
approach, there will be less pressure on relative expecta-
tions and the impact a major change will have on them. 

! change in project scope

– This area requires the most care in contracting, to prevent
subverting the point of agile development: to make change
easy and frequent in the collaboration between customer
and vendor. Avoid mandating change-management boards,
change requests, or special change processes.

– But, as with project scope, there are variations in change-
management flexibility, ranging from high flexibility with-
out penalty when using flexible-scope progressive contracts,
to medium flexibility with shared gain/pain when using tar-
get-cost models.

Also, see Termination…

https://less.works For Gene Gendel only, id:gene-gendel



522

14 — Contracts

Termination

The concept of termination is linked with change control in that an
agile project should be amenable to changing course, to the point of
actually stopping further effort at the end of any iteration. In con-
trast to conventional project thinking, legal professionals need to
understand that early termination should be viewed as a positive,
desirable event in an agile project, because early termination need
not mean failure—it can mean that success was achieved quickly.

Arguably the ideal termination model in an agile contract is to allow
the customer to stop, without penalty, at the end of any iteration. 

Naturally, if the vendor has dedicated 100 people for an anticipated
two years, and termination is unexpectedly much earlier, they likely
have an expensive problem on their hands. Thus, agile-termination-
clause variations include a sliding scale of penalty to the customer
that reduce over time (and iterations).

Termination can be one of the most difficult areas to negotiate in
any contract. The key mitigating differences in an agile approach is
that (1) the customer has a working system each iteration, and (2)
both parties will have clear and up-to-date views on the state of the
deliverable. These are crucial points for legal professionals to grasp.

Acceptance

“Is it done?”—“What to do if not done?”—“We have now decided to
change our minds and reject the iteration delivery from three itera-
tions ago. Do you mind?” 

These are vital questions in outsourced project work, and ambiguity
around such issues is a possible source of conflict—and of litigation.
Clarity (in so far as practically feasible) regarding doneness, accep-
tance, and correction both in the minds of the parties and the con-
tract language should be a leading concern for legal professionals.
They can help considerably in defusing the explosives in this mine-
field with careful attention to negotiating a contractual framework
for acceptance that encourages collaboration.

https://less.works For Gene Gendel only, id:gene-gendel



523

Part 2: Common Topics of Agile Contracts

Acceptance still exists, but is much simplified because of iterative
delivery and acceptance, and because acceptance is incremental and
adaptively agreed upon for each iteration. Further, agile practices
usually include highly automated acceptance testing so that little or
no manual (human) effort is required for validation.

“Try…Accep-
tance test-driven 
development” 
section on 
page 42

Acceptance builds upon itself such that the final acceptance is the
culmination of a number of acceptances that have occurred through-
out the life cycle of the project, ideally most being repeatedly verified
with automated acceptance tests.

In terms of contract work, this means that acceptance definition and
negotiation does not have to be a massive comprehensive exercise;
only the framework for acceptance must be contractually clear. 

“Try…Product-
level Definition 
of Done” section 
on page 170

Broadly, for each iteration, acceptance is based on conformance to a
prior agreed-on acceptance-test set, and in the case of Scrum, in con-
formance with the “definition of done.” 

Another element of acceptance in agile development—worth consid-
ering in the contract framework—is to include candidate users of the
new system in the definition of acceptance and acceptance testing.
Legal professionals concerned with a successful project should ask,
“Are the right people—the hands-on users—involved in acceptance,
and at each iteration are they collaborating with the supplier?” 

Sample clauses

In contrast to the chapter’s general avoidance of sample clauses, we
decided an example in this case helps clarify the suggestion:

a) Customer and Supplier define acceptance of the Deliverable
as follows: 

i. Deliverable passes all new automated and manual acceptance
tests that were defined before the most recent iteration.
ii. Deliverable passes all prior automated and manual accep-
tance tests, verifying that no regression has occurred.
iii. Deliverable conforms to the “definition of done” that was
defined before the iteration.

https://less.works For Gene Gendel only, id:gene-gendel



524

14 — Contracts

b) Acceptance tests are incrementally defined together by Cus-
tomer and Supplier members (“Acceptance Group”), including
candidate users of the Deliverable, each iteration. The Accep-
tance Group reviews acceptance at the end of each iteration,
starting at Sprint Review.

c) Customer will have a period of half the business days of one
iteration (“Evaluation Period”, “Half Iteration”) after provision
to it of the final Deliverable to verify that the Deliverable or part
thereof is not deficient.

d) If Customer notifies Supplier in writing prior to the expira-
tion of the relevant Evaluation Period that the Deliverable or
part thereof is deficient in any material respect (a “Non-confor-
mity”), Supplier will correct such Non-conformity as soon as
reasonably practical but no longer than the length of one itera-
tion, whereupon Customer will receive an additional Half Itera-
tion period (“Verification Period”) commencing upon its receipt
of the corrected Deliverables or part thereof to verify that the
specific Non-conformity has been corrected. 

e) Customer will provide Supplier with such assistance as may
reasonably be required to verify the existence of and correct a
reported Non-conformity. 

Limitation of Liability

Negotiation of liability clauses is perhaps the most difficult area in
any contract negotiation, and an agile approach does not change
that. However, it may help. For instance, it can attenuate liability
because there is a usable deliverable at the end of each iteration.

For example, a defect in an iterative deliverable may have a lesser
impact in operation because the negative consequence is discovered
sooner. This does not mean there are no knock-on effects that never
have to be addressed through the liability paradigm, but the conse-
quences could be less.

Consider a case that I (Tom here) came across: In a traditional
sequential life cycle project for a new billing system, it was discov-
ered, after the “one big delivery at the end,” that duplicate and erro-

https://less.works For Gene Gendel only, id:gene-gendel



525

Part 2: Common Topics of Agile Contracts

neous charges were sent to many customers. The fallout and extra
costs were considerable: the company had to cut new bills, offer
rebates, and repair its image with customers—plus paying to correct
the underlying problems. There was then an ensuing fight with the
external supplier as to who should pay for the damages—liability. 

In an agile approach, the same problematic bills could be sent. But it
is also possible that those bills would be sent early to a much
smaller subset of customers, using an early release of the system
with just-sufficient functionality to field-test this critical feature.

This would reduce cost, exposure, and damage to goodwill. It might
also be cheaper to fix because the system would be smaller with
fewer entanglements between its software components. 

Hence, liability may be attenuated with agile development.

Warranty

Similar to liability, the concerns related to warranty are attenuated
in an incremental approach; the risk profile associated with the final
warranty is considerably less because of the confidence and accep-
tance in the deliverable itself, due to incremental acceptance. This is
especially enhanced if automated acceptance testing is employed. 

As with liability, warranty should be tied to each incremental work-
ing deliverable (at the end of each iteration), though there is still an
overall warranty to the final product. 

Deliverables

Traditional project contracts often include a detailed, prescriptive
list of what should be delivered (many documents, …), and how
acceptance of these artifacts is accomplished. These details are
sometimes embodied in a statement-of-work or “quality plan” appen-
dix. Avoid such specificity and rigidity—avoid including a detailed
deliverables list in the contract. Why?

! It leads to an increase in waste activities rather than a focus on
working software, and there is a presumption—possibly
untrue—of knowing what artifacts are valuable.

https://less.works For Gene Gendel only, id:gene-gendel



526

14 — Contracts

! There is a focus on negotiating and conforming to “quality
plans” rather than cooperating to create useful software.

! It reinforces (the illusory) command-control predictive-plan-
ning mindset rather than learning and responding to change.

! It reinforces the (untrue) belief that a fully defined system can
be predictably ordered and delivered as though it were a meal
in a restaurant rather than creative discovery work.

All that said, we have seen custom software for which the source
code was never provided by the supplier—somebody forgot. So, there
are cases in which the customer does not at first understand what is
critical. But in such cases, discovery of valuable deliverables can be
more simply achieved through frequent incremental delivery and
deployment, rather than through a contract deliverables list.

“Try…Back up 
“human infec-
tion” with an 
agile SAD work-
shop” section on 
page 310

On occasion, technical documentation to support maintenance is
valuable—usually as a learning aid for people new to the system—
and its delivery is often specified in a traditional project contract.
Yet, maintenance of a recently deployed system is frequently out-
sourced to the same people that created the system and so have less
need for such documentation. Therefore, it could be wasteful to
require it as an early deliverable. If, at some future time, there is a
demonstrated need for documentation for the customer (for instance,
if the customer takes over the maintenance work), then it can be cre-
ated by the supplier, perhaps in a joint agile-documentation work-
shop with the customer. 

Timing of Payment

Perhaps the most popular system is to pay each iteration, once there
is final acceptance of the deliverable. In the simple case, such as
with basic progressive contracts, payment is 100% of the agreed iter-
ation price. More complex payment schemes are usually tied to more
complex overall project pricing schemes. For example, in the various
“shared pain/gain” systems such as target-cost contracts, in addition
to iteration payments there will be a final deferred payment at
project end. Or, at each iteration there may be an X% holdback that
accumulates and may be paid at various intermediate milestones.

https://less.works For Gene Gendel only, id:gene-gendel



527

Part 2: Common Topics of Agile Contracts

Pricing

Time and materials

Variations of time and materials (T&M) make for good agile-project
pricing models: simple, straightforward. Recommended. Note that
T&M applies to both fixed- and flexible-scope contracts.

One traditional concern with T&M, common on sequential develop-
ment projects, is that customers are locked into a seemingly endless
cycle of payments before they see useful results. Another classic con-
cern is whether customers are getting good value for their money.
These concerns are ameliorated in an agile approach with a usable
system each iteration—progress measured in terms of usable soft-
ware features, high transparency, and termination that can occur at
the end of any iteration.

T&M requires trust and transparency between the parties. That
takes sincere effort and time to develop. On several projects, Valtech
India has started with variations of fixed-price contracts, and after
building trust, has been able to move to variations of T&M models
with their clients.

Several variations of T&M limit the customer’s exposure and/or bal-
ance the pain/gain. For example:

! capped (“not to exceed”) T&M per iteration

! capped T&M per project or release

! capped T&M per iteration, with adjustment—For the next iter-
ation, the price is capped, but if all original iteration goals are
delivered and accepted, at a T&M cost below the cap, there is
an adjustment payment to the supplier, such as one half of the
savings below the cap. A similar shared pain/gain pricing
scheme is used in the project-level target-cost model.

Fixed price per iteration (per unit of time)

This model has the virtue of simplicity and predictability, and is not
uncommon among agile outsourcers. There are two key cases:

https://less.works For Gene Gendel only, id:gene-gendel



528

14 — Contracts

! requirements defined and agreed-on before the iteration

! highly flexible or no predefined requirements

In the first case, the issues are identical to fixed-price per large
project…The supplier has to clarify the work and have sufficient
confidence in the estimates in order not to lose money. The small
scope of an iteration makes this much more likely than for a large
project. The key issue (or cost) for customers is that the supplier
adds a contingency fee to the rate because of the risk associated with
variability in research and development work.

In the second case, the key issue is customer trust in the supplier.
Transparency, frequent delivery, and easy termination help.

Fixed price per unit of work

Several agile outsourcers offer a fixed price per unit of work (UoW)
model. In contrast to traditional development, where a UoW might
mean a document or other incomplete solution, an agile UoW
reflects the seventh agile principle: Working software is the primary
measure of progress. That is, the UoW is related to running, tested
software features.

These models go by various names and with various systems to esti-
mate a UoW: “price per story point,” “price per function point,” “price
per feature point,” and so on. 

Points of size versus value—In the schemes we have seen, the ‘point’
is always related to an estimate of size or effort—and so, related to
cost. Although vendors may claim the price model is value-related by
using modern agile-sounding terminology such as “price per point,”
it is not accurate to say that a “story point” or “feature point” is a
value measure—in the idiom of “bang for buck” a point reflects buck,
not bang. However, there does exists in theory the ability to define
points in terms of business value impact—where this is measured
using a system such as Tom Gilb’s impact estimation tables (and he
has proposed such a value-impact price model [Gilb05])—but we do
not know any application of this approach. For more on this topic,
see also the “Try…Prioritize with multiple weighted factors” section
on page 141.

https://less.works For Gene Gendel only, id:gene-gendel



529

Part 2: Common Topics of Agile Contracts

We have seen agile outsourcers use one of two schemes to determine
the fixed price per point: (1) an average based on several previous
projects, and (2) a customized amount. In the latter case, the cus-
tomer pays the supplier-average point value for a few iterations (or
pays T&M, or …) during which time detailed costs are tracked. Then
the supplier and customer agree to a custom fixed price per point,
based on this cost plus some profit margin.

This model is congruent with agile and lean themes of being deliv-
ery- and value-oriented: Assuming that an agile UoW is loosely
related to value to customers (which is not always true), they pay
proportional to value received. However, since in the schemes we
have seen that a point is related to size or effort rather than true
value impact for the customer, this point is somewhat lost.

A key issue to attend to in this model—and one that needs consider-
ation in the contract—is a clear and common (for customer and sup-
plier) framework for defining a point. For example, only function
points are relatively unambiguously defined—and can be identified
and verified by certified function-point analysts. In contrast, story
points (also known as relative effort points) have no independent
meaning. 

Pay-per-use models

XPLabs (an agile-development company in Italy) promotes pay-per-
use contracts with their customers. Every ‘use’ (usually, a transac-
tion) of a custom-built or pre-built system that is deployed for a cli-
ent is automatically tracked by XPLabs. The customer is regularly
invoiced based on frequency of use—a simple payment model. The
approach tends to align the interests of the customer and supplier,
and both parties win if the system is increasingly used.

If it is a pre-built solution, the model is especially attractive to cus-
tomers: they have no maintenance or update costs, and only pay
extra for custom enhancements. Each new customer deployment is
based on the same, simple contract model.

If it is a custom-built solution for only one customer, the contract
model for the development work may be any of the other approaches

https://less.works For Gene Gendel only, id:gene-gendel



530

14 — Contracts

discussed here, such as T&M, perhaps at a below-average rate to
adjust for the future anticipated pay-per-use revenue.

Hybrid shared pain/gain models

There are numerous hybrid pricing schemes in business, well known
and not repeated here (see the recommended readings). One hybrid
shared pain/gain model applicable to agile development was pro-
posed by Bob Martin [Martin04]: 

Discounted fixed price per unit of work, plus discounted T&M—For
example, assume the following project scenario: 

In this model, a lower person-day rate is offered, with a complemen-
tary per-unit-of-work rate. For instance, assume a standard person-
day rate of $500. The supplier offers a discounted price per person-
day of $150, and a discounted price per point of $122.50.14 Then: 

Observations:

project estimate average velocity 
(140 people, 2-week iterations)

original person-
day estimate

payment if $500 
per person-day

100,000 points 4,000 points 35,000 $17,500,000

14. The price $122.50 is derived: Given a person-day rate of $150, 
35,000 person days, and 100,000 points, it is the price per point 
needed to reach a total payment of $17,500,000.

actual 
person-days

actual customer 
payment

change in esti-
mate-to-actual 

effort

change in esti-
mate-to-actual 

payment

effective person-
day rate

30,000 $16,750,000 -14% -4% $558

35,000 $17,500,000 0 0 $500

40,000 $18,250,000 +14% +4% $456

https://less.works For Gene Gendel only, id:gene-gendel



531

Part 3: Contract Models

! If actual effort equals original estimate (35,000 person-days,
100,000 points), the customer payment is equal to a simple
T&M scheme at $500 per person-day.

! If actual effort varies, customer payment varies less severely.

! As with target-cost and some other adjustment schemes, the
customer and supplier are sharing the pain or gain if the
project takes more or less effort than original estimate.

Fixed price per project and target-cost pricing

Both these pricing schemes are covered in the next section. Their
impact extends beyond pricing, to overall contract or project model.

PART 3: CONTRACT MODELS

Humans have been writing contracts since the dawn of time, encap-
sulating their hopes and fears. There are myriad models and varia-
tions on those—see the recommended readings for a broader
treatment. This section focuses on common models and their varia-
tions that customers and suppliers in agile projects will frequently
see or consider.

Avoid…Fixed-price, fixed-scope (FPFS) contracts

Fixed-price, fixed-scope—and worse, with fixed duration—contracts
and projects tend toward lose-lose situations for both the customer
and supplier; customers often do not get what they really need, and
suppliers can easily lose money. And in an effort to deliver some-
thing within the constraints of price and scope, suppliers will often
degrade the quality of their work—reduced code quality, less testing,
and so forth. All this leads to an increase in future costs for custom-
ers, who will eventually have to pay for the sins of the past, as fol-
low-on change requests15 to get what they truly need and as
increased maintenance costs for software of low quality and high
“technical debt.” 

https://less.works For Gene Gendel only, id:gene-gendel



532

14 — Contracts

Fixed-price bids have added a large risk contingency (a percentage
of estimated cost as high as 50%) to the overall price—this premium
is usually hidden in the effort estimate.16 This leads to a reduction
in transparency and increased gaming during project execution
because the supplier wants this premium as profit rather than con-
sumed budget. Plus, since the early requirement specification that is
signed off is almost never what is actually needed (due to myriad
factors in this inherently complex domain), the supplier generates
further revenue—in India, outsourcers call this ‘rent’—through a
series of follow-on change requests, each for an additional cost
beyond the original fixed price.

Fixed-price projects have been promoted under the guise of various
local optimizations (other than project success); we encourage legal
professionals to watch out for these:

! As a customer, most important is to know the cost, for financial
reporting or budgeting.17

! As a supplier, most important is to book the total order value.

! As a sales person, most important is to book the total order
value, to get full commission.

! As managers, most important is to avoid using time on the
project. We want to order something, go back to other work
without ‘interruption,’ and then get it delivered at the end. 

But there are companies, that for one reason or another, still try. In
that case, the most frequent question we get is, “How do you do
fixed-price, fixed-scope projects with an agile method?” First, it is
possible; Valtech India and other agile outsourcing suppliers have
done so (because of market demand)—though this is their least-
favorite model.

15. Traditional offshore outsourcers in India enjoy this change-request 
model because they make so much profit from it; they know very 
well that their FPFS contracts do not deliver what the customer 
really needs, and they look forward to the ‘rent’ (as they call it in 
India) they obtain from evolving the system to meet the true needs.

16. For this and other reasons, FPFS contracts are also called “latest 
date, most cost” contracts.

17. See the Beyond Budgeting section of the Organization chapter in the 
companion book, for an alternative to traditional budget processes.

https://less.works For Gene Gendel only, id:gene-gendel



533

Part 3: Contract Models

There are often two misunderstandings behind the question of FPFS
and agile methods:

! The first misunderstanding is that the overall project release
requirements are not known or estimated before the first itera-
tion when an agile method is used. Not true. Rather, in Scrum,
before iteration-1, there may be initial release planning (“ini-
tial Product Backlog creation”) in which all identifiable release
requirements are clarified and estimated.

! The second misunderstanding is that requirements must
change with agile methods. Not true. Rather, all agile methods
provide the opportunity and mechanism to support learning
and change, but do not require it. Scrum can be used with a
fixed-content Release Backlog—and still provide benefits,
thanks to better and more frequent feedback about ways of
working, technologies, test results, and smaller batches.

With Scrum or any other approach, there are keys to avoiding ruin
when taking on an FPFS project:

! Apply the best possible due diligence in terms of large, detailed
upfront requirements analysis, thorough acceptance test defi-
nitions, skillful effort estimation of all requirements, all done
with experienced people. 

! Do not allow any changes in requirements or scope, or only
allow new requirements to displace existing requirements if
they are of equal effort.

! Increase the margin of the contract price, to reflect the signifi-
cant risk inherent in FPFS software development—a domain
that is fraught with discovery, variability, and nasty surprises.

! Employ experienced domain experts with towering technical
excellence.

Note that a lean culture of long-term, hands-on great engineers and
manager-teachers who are experts in the work and coach their
teams provides the environment to build the experienced people nec-
essary to reduce risk on FPFS projects.

https://less.works For Gene Gendel only, id:gene-gendel



534

14 — Contracts

Payment timing

Payment timing for FPFS is usually per iteration, with a final lump
sum on completion (if total payments were not previously
exhausted). The per-iteration amount is a fixed percentage of the
overall price, either based on an estimate of total number of itera-
tions or if the project is also fixed, on the duration of the predefined
number of iterations.

Flexibility in FPFS projects with Scrum

There are several areas of low-risk increased flexibility when exe-
cuting a FPFS project with Scrum; the ability to…

! displace existing requirements with new ones of equal effort

– this replaceability option is important to highlight

! change the order of implementation of the fixed requirements

! improve the “definition of done” each iteration

Schwaber18 also suggests two other contract provisions:

! Customer may request additional releases at any time, priced
with T&M.

! Customer may terminate early if satisfied early, for a payment
to supplier of 20% of remaining unbilled value.

Legal professionals need to be aware that this flexibility can and
should be expressed in clauses of an FPFS contract.

Should we do FPFS projects with a sequential, traditional approach?

A question that is sometimes asked is, “If we have to do an FPFS
project, should we use an agile method or a sequential life cycle
(waterfall, …) and traditional approach?”

18. Ken Schwaber is co-creator of the Scrum agile method. 

https://less.works For Gene Gendel only, id:gene-gendel



535

Part 3: Contract Models

There is evidence that sequential life cycle development is corre-
lated with higher cost, slower delivery, lower productivity, more
defects, or higher failure rates, compared with iterative, incremen-
tal, or agile methods [MacCormack01, Reifer02, DBT05, MJ05,
CSSD05, AV07, PRL07]. 

Consequently, the last thing you want to do with an FPFS project is
make matters even worse by applying a traditional sequential devel-
opment approach.

Quite the opposite: If you execute an FPFS project with Scrum, you
will have less waste, less queues, less WIP, and you will gain early
realistic feedback about the true nature of the project. Based on that
early feedback, you can adjust early rather than late. Especially in
FPFS projects, you want to know how bad things are as fast as possi-
ble; agile methods enhance that feedback.

There is a more subtle advantage to using an agile approach on an
FPFS project: It may evolve into a collaboration-oriented flexible
project. Many customer stakeholders understand that the FPFS
model may not solve their problems, but it was imposed on them—
perhaps by the Legal or Finance arms. Once customers start inter-
acting directly with the agile supplier on the ostensibly fixed project
and see rapid delivery every two weeks of a well-done solution, and
realize their ability to change the iteration-order of implementation
of their fixed requirements (and to replace requirements), and trust
and collaboration builds with the supplier, ‘fixed’ can become ‘flexi-
ble.’ The customer relaxes, sees the advantages of “customer collabo-
ration over contract negotiation,” and agrees to pay less attention to
the original definition and more attention to evolutionary develop-
ment to meet their real needs. 

Finally, after an initial FPFS contract has been completed with
Scrum, the customer may be willing to use one of the alternative

https://less.works For Gene Gendel only, id:gene-gendel



536

14 — Contracts

agile contract models for a later project. Several agile outsourcers
have experienced these positive patterns with their customers.

Try…Variable-price variable-scope progressive contracts

In their purest form, progressive contracts19 imply completely flexi-
ble scope that is adaptively defined each subsequent iteration. They
are a good candidate for agile projects [Poppendieck05]. They are
master service agreements or umbrella-framework contracts that 

19. Also known as, or a variant of, open-ended variable scope, open-
ended incremental, or indefinite delivery indefinite quantity (IDIQ).

Contract Evolution on a Large Agile Project

with Greg Hutchings

An example of multi-phase variable-model contract evolution was a three-year
15,000 person-day project with Valtech (India) and a retail customer. There were
four contract phases, created (not pre-planned) in response to learning and adapta-
tion: (1) FPFS per project, (2) progressive, T&M per iteration, (3) progressive, fixed
price per unit of work, and (4) progressive, capped T&M per iteration. 

(1) FPFS per project—The customer was only familiar with sequential life cycle
projects, and new to Valtech—trust was low. Therefore, they expected (and got) a
traditional FPFS contract based on a sequential life cycle, with an agreed deadline
that was not contractually binding. Despite substantial effort to validate specifica-
tions and estimates, much—as usual—was discovered to be unknown and misun-
derstood. After the first year, costs exceeded budget and delivery was months
beyond the wish. But, some trust had developed by Valtech’s effort to be transpar-
ent and responsive, and so the customer agreed to replace the FPFS contract.

(2) Progressive, T&M with bonus/penalty—During the first year, the customer was
gradually exposed (by Valtech) to agile development principles, and so was open to
a new kind of development and a new contract: a progressive variable-scope con-
tract based on Scrum, priced with T&M per iteration, adjusted (at customer
request) with bonus/penalty clauses for (1) quality of iteration deliverables, and (2)
velocity. Not surprisingly ([Austin96]) these adjustments subtly affected devel-
oper’s behavior (a reduction in transparency, more gaming) to “avoid penalties.”
Progress (now with Scrum) was much faster, and confidence and trust improved
with a release each iteration and close customer collaboration. (continued…)

https://less.works For Gene Gendel only, id:gene-gendel



537

Part 3: Contract Models

define the overarching relationship and pricing scheme per itera-
tion, but do not define scope. Progressive contracts do not define a
total fixed project price—although one variation has a project cap. 

Customer exposure is controlled because termination can occur at
the end of any iteration—with a working system. If both parties are
happy with the relationship, progressive-contract projects can con-
tinue indefinitely.

Usually (but not required) before each subsequent iteration, the cus-
tomer and supplier define the goals of the upcoming next, perhaps
with acceptance tests. Sometimes—recurrent at Valtech—the goals
for iteration N are clarified during iteration N-2.

Pricing per iteration runs the gamut of variations: fixed-price per
iteration, T&M per iteration, and so on.

Variations—At Valtech, a capped-price variable-scope progressive
contract is common; there is an overall project price cap. Pricing per

(continued…)

(3) Progressive, fixed price per unit of work—In the third contract phase, pricing
changed to fixed price per use-case point (UCP), because the client felt it could pro-
vide better value for money. Further, the bonus/penalty element was removed. UCP
was chosen because the customer was very familiar with use cases, and wanted a
unit of work estimate related to that. Payment varied each iteration, based on the
number of UCPs delivered. Also, by this time, the customer was comfortable with
iterative, collaborative acceptance-test definition to drive iterations and acceptance,
and this, combined with better broad-theme integration testing, smoothed and
improved acceptance each iteration. This contract form was considered by both
Valtech and customer the most successful. However, the unit of work estimation
method (UCP) required more upfront requirements analysis than otherwise neces-
sary—a rolling wave of detailed use-case specification occurred usually about two
iterations before implementation.

(4) (Support phase) Progressive, capped T&M—The final contract form and phase
was established after product deployment, for support and minor enhancement.
The customer support budget was fixed (per annum), and the scope of work vari-
able. Therefore, capped (per month) T&M was acceptable—simple to administer,
and a high level of trust had been established. 

https://less.works For Gene Gendel only, id:gene-gendel



538

14 — Contracts

iteration is any variation, such as T&M. Also frequent is a capped-
price variable-scope progressive contract with a non-binding Release
Backlog, in which the parties create—before the contract is written—
a backlog of release goals. This backlog is included as an appendix to
the contract. However, it is agreed that nothing in the original back-
log is binding. (This is classic Scrum.) Why create the non-binding
Release Backlog before the contract is written? It is used to estimate
the overall release cap and to provide a starting-point common
vision. It is also common to create this non-binding Release Backlog
in a prior, separate, contracted phase.

“Try…Multi-
phase variable-
model frame-
works” section on 
page 543

Progressive contracts are a common model with agile outsourcers
and the long-term customers with whom they have built a relation-
ship of trust. A frequent pattern (not a recommendation) is

1. early contracts that are variations of fixed price and fixed scope

2. later, a shift to progressive contracts with simple T&M or
capped T&M per iteration

Try…Increase flexibility in project and contract variables

A variable-scope, variable-price, variable-date, pure-progressive con-
tract is flexible. Any variable (scope, price, date) can vary in flexibil-
ity, depending on the level of trust and collaboration between
customer and supplier—or otherwise constrained, such as by gov-
ernment regulation. Contract variations that agile outsourcers have
created include the following:

Capped-Price,20 Variable-Scope—Discussed in the previous sec-
tion.

Capped-Price, Partial-Fixed-Scope—A relatively small set of
requirements are fixed—leaving room for learning and adaptation. 

Fixed-Price, Variable-Scope—The optional scope contract [BC99]
is a variation of this model and also fixes the end date.

20. In this section, price refers to overall project price.

https://less.works For Gene Gendel only, id:gene-gendel



539

Part 3: Contract Models

Bounding risk in flexible contracts: The multi-phase model

The multi-phase model is described in the “Try…Multi-phase vari-
able-model frameworks” section on page 543. Briefly, it implements
a longer project from a series of shorter contracts. 

If trust is low, customers can bound their risk (and fear) by using a
series of short-duration, flexible contracts. For example, one year-
long, fixed-price, fixed-date, variable-scope contract may be viewed
with trepidation. But a series of two-month, fixed-price, fixed-date,
variable-scope contracts—with the ability to terminate at the end
any cycle—is more palatable. 

In addition, after a few contract cycles, trust can build. At that
point, the customer may shift to a simple progressive contract with
T&M pricing per iteration.

Models That Share or Adaptively Shift the Pain/Gain or Risks

There are potential risks and rewards in a project—for both parties.
And these may shift over time. For example, FPFS projects appear
to shift much of the risk to the supplier, although this is an illusion
for reasons previously identified. 

Some frameworks, explored next, have been explicitly crafted to
share these risks and rewards and to shift risks to the appropriate
party that can do something about them.21

In the best case, these frameworks engender an increased alignment
of motivations for the parties since they both have “skin in the
game.” And they may improve fundamental fairness and relation-
ship building. This philosophy is at the heart of the concept of a win-
win approach, and it will create the trust and relationships that will
foster further business.

21. That usually means placing requirement-related risks (‘what’) in 
the hands of the customer, and placing implementation and techni-
cal-related risks (‘how’) in the hands of the supplier.

https://less.works For Gene Gendel only, id:gene-gendel



540

14 — Contracts

But contracts do not themselves create trust and alignment. In the
worst case, these kinds of contracts are abused as part of a blame-
game, to shift pain to the other party and only individually gain.

These frameworks include

! target-cost

! multi-phase variable-model

! profit sharing

Try…Target-cost contracts

Target-cost contracts can help align motivations of both parties.
They are used in Toyota with their suppliers, reflecting the pillar of
respect for people in lean thinking, in which Toyota tries to build sta-
ble long-term relationships with suppliers, based on trust and
mutual support.

This model assumes an initial release planning step in which overall
project scope is identified. This is part of stage one to establish the
target cost:

1. In collaboration between customer and supplier, identify, ana-
lyze, and estimate all possible project requirements. 

2. In collaboration, estimate the cost of change or scope increase
during the project. This is important; target-cost contracts
must realistically account for overall effort and cost as best as
possible.

3. From these two elements, establish the target cost.

4. Calculate target profit, based on target cost (for example, 15%
of target cost).

5. Share all details and results with customer (this is important).

During stage one, keys to the success of this model are (1) a best-
effort, no-wishful-thinking target cost generated with skillful due
diligence, and (2) (supplier) open-book costing, so that the customer
transparently sees all details leading to the calculation of target
cost.

https://less.works For Gene Gendel only, id:gene-gendel



541

Part 3: Contract Models

Stage two in a target-cost contract is project execution—for example,
with Scrum. As will soon be appreciated, a vital practice for success
is tracking all actual costs as they are incurred (for example, devel-
oper time spent, meetings, hardware), and transparently sharing all
cost information with the customer in near-real time.

The key aspect of target-cost contracts is a shared pain/gain formula
for an adjustment related to the difference between actual and tar-
get cost. There are several variations in the formula. 

In the simplest case, an example:

Adjustment = (ActualCost – TargetCost) * CustomerShareOfCostDiff
CustomerPayment =  TargetCost + TargetProfit + Adjustment

As will be seen, Adjustment may be positive or negative.

Assume the agreement is that 60% share of any cost difference is to
the customer, and 40% share is to the supplier. Then: 

If costs are higher than estimated, both the supplier and customer
share the pain: The supplier’s profit is lower and the customer
assumes some of the burden of the cost. If there is a cost savings,
both parties share the gain: The supplier’s profit is higher and the
customer pays less then the original target payment.

An implication of this is that both parties may—no guarantee—pro-
actively promote ways to reduce waste during the project.

target
cost

target
profit

target 
customer
payment

actual 
supplier 

cost

adjustment actual 
customer
payment

actual 
supplier

profit

1,000,000 150,000 1,150,000 1,100,000 +60,000 1,210,000 110,000

1,000,000 150,000 1,150,000 900,000 -60,000 1,090,000 190,000

https://less.works For Gene Gendel only, id:gene-gendel



542

14 — Contracts

Payment scheme variations

Contract drafters have birthed myriad variations, including

! capped (ceiling) customer payment

! reduced supplier rate if target cost exceeded

Adjustable target cost and target profit

Another essential element of target-cost contracts, supportive of
agile and iterative values, is the ability to adjust the target cost (and
profit) by ongoing negotiation between parties. Keys for success in
adjusting target cost include

! high transparency and near-real-time, open-book project
accounting by the supplier so that the customer sees the true
state of expenses within the supplier 

! a spirit of working together by both the customer and supplier
to continuously improve

– this is something Toyota works hard at [ISV09]

! early agreement between the parties, expressed in the con-
tract, on the guidelines for target-cost adjustment

! a moderate adjustment cycle, to avoid being overly reactive or
using excessive overhead on adjustment; for example, once per
iteration may be too frequent

! acceptance test-driven development, to reduce ambiguity

These practices reduce but do not eliminate contention during ongo-
ing re-negotiations, because adjustment issues are often inherently
fuzzy—variations of “Is that a defect or a feature?”

https://less.works For Gene Gendel only, id:gene-gendel



543

Part 3: Contract Models

One group reported22 that the following pre-agreed classification
scheme for adjustments reduced contention: 

We do not recommend this or any other scheme; it could help or lead
to long and useless negotiation rather than cooperation.

Try…Multi-phase variable-model frameworks

Projects have a changing uncertainty or risk profile over time, ide-
ally improving—for both parties. This can be reflected in multi-
phase frameworks that reflect these shifting profiles for the cus-
tomer and supplier. Any one phase can use any model: FPFS, pro-
gressive, target-cost, and so on.

One Valtech multi-phase variable-model example reflects the com-
mon Scrum pattern: (1) initial Product Backlog creation (2) adaptive
iterative development. It was for a large B2B solution involving
stakeholders in 23 countries:

1. Phase 1—Fixed-price, fixed-duration, variable-scope. Essen-
tially, this was initial Product Backlog creation. The output of
this phase was a Product Backlog—more precisely, a Release
Backlog—and various business-analysis (market analysis,
vision, …) documents, based on workshops and team analysis.
Although a specific list of documents to deliver was identified
in the contract, the scope of analysis or content varied. 

– with a Release Backlog, a cost estimate was possible, so…

22. In [EMH05], a story about a target-cost contract for an agile project.

Type Description May Adjust 
Target Cost?

fix Changes to an implemented requirement, due to the supplier not 
doing what should have been ‘reasonably’ understood or done.

No

clarification Changes to a ‘correctly’ implemented requirement, due to cus-
tomer learning based on feedback.

No

enhancement New feature. Yes

https://less.works For Gene Gendel only, id:gene-gendel



544

14 — Contracts

2. Phase 2—Progressive contract, T&M per iteration, release cap,
non-binding Release Backlog, fixed duration. Phase two was
essentially a classic Scrum project: nothing in the original
backlog was binding, but it served to estimate and bound
release project cost, provide an initial overview, and kickstart
what to do in the first iteration.

Why bother with these multi-phase models instead of simple pro-
gressive contracts? Typically, the motivator is (1) lack of trust, (2) a
regulatory constraint, (3) a belief by a party they can make or save
more money or better reduce their risk, (4) a need to define the
vision, high-level requirements, or cost of a later phase (and the
effort of this work itself is large), or (5) ‘optimizing’ on a secondary
goal (other than project success) such as better cost predictability.

Another example [Larman03]: 

1. Phase one—Fixed-price partial-fixed-scope for three iterations
(fixed duration). The “mandatory” fixed scope is low (for exam-
ple, 20% of available effort), leaving plenty of room for variabil-
ity and discovery when uncertainties are high. Risks to the
customer and supplier are both bounded, and both parties
learn a great deal about the nature of the continuing project for
phase two. 

2. Phase two—FPFS, variable duration. Risks to the supplier in
taking on an FPFS phase are reduced because of increased
knowledge and prior reduction of some sources of variability
during phase one.

CONCLUSION

“How can we possibly do agile development when contracts are
involved?” This is a question we have often been asked. But the key
issues are not with the contract, they are with the contract writers
and the clients they serve—reflecting the belief that success
revolves more around contract negotiation and less around customer
collaboration, or that project success is not the goal of contract work.
That said, to reiterate a systems-thinking aphorism, “there is no
blame,” implying that the behavior of people within a system is
shaped by it—in this case by encouragement of departmental silos,

https://less.works For Gene Gendel only, id:gene-gendel



545

Part 3: Contract Models

local targets (and rewards) leading to local optimizations, and the
subtle message, “lawyers don’t need to learn about operational
details or new approaches to R&D, that’s someone else’s job.”

Also, when this question is asked, ‘contract’ is often used as a syn-
onym for “fixed-price fixed-scope” contract, which of course is not at
all necessary—there are a wide variety of contract models, including
variable-scope progressive contracts, and others.

Legal professionals have a duty to consider the ramifications of a
breakdown of trust and collaboration—and other problems—when
framing a contract. Just as contract lawyers need to learn more
about lean and agile principles, other parties need to learn more
about the necessary, valid concerns of lawyers. And just as product
work improves with cross-functional development teams, further
improvement is possible by including legal professionals in even
broader cross-functional teams.

RECOMMENDED READINGS

There are several resources, most on the web, related to agile devel-
opment and contracts; however, some of it is speculative rather than
experience-based—keep that in mind when reading. Suggestions:

! Mary and Tom Poppendieck, thought leaders in lean software
development, have organized several contract workshops over
the years, and collected and share “lean and agile contract”
papers and presentations at their website www.poppend-
ieck.com. Following a theme similar to this chapter, the Pop-
pendieck’s own material on agile contracts emphasizes the
underlying issues of trust, collaboration, and transparency
related to contracts.

! Some people new to the subject assume that contracts that
encourage flexibility, collaboration, and alignment of interests
(‘agile’ contracts) are a novel concept, but in fact much has been
written and promoted in this area over the years, including
within the USA government (for example, see Administration
of Government Contracts). There are dozens, if not hundreds, of
books and websites that discuss a variety of contract models.

https://less.works For Gene Gendel only, id:gene-gendel

www.poppendieck.com
www.poppendieck.com


546

14 — Contracts

! There are several ‘public’ contract models that we have
reviewed, explicitly supporting iterative, evolutionary, or agile
development. However, Valtech and ThoughtWorks—and other
agile outsourcers that we know of—write their own contracts
rather than use these models. We discourage “copy-paste” con-
tract writing, but these are worth study for ideas.

– The DSDM consortium (DSDM is an agile method) offers a
sample contract, available to members at www.dsdm.org.
Note that the contract is occasionally revised.

– The Norwegian PS 2000 Contract was created for iterative
and evolutionary development, by an alliance between
industry and government, available at www.dataforenin-
gen.no. To quote, “[The] Contract is designed to be used when
it is particularly difficult or unserviceable to draw up a
detailed specification prior to tendering, the idea being to
leave open for the developer to find the best way to attain the
objectives and needs of the customer.” 

https://less.works For Gene Gendel only, id:gene-gendel

www.dsdm.org
www.dataforeningen.no
www.dataforeningen.no


Miscellany

https://less.works For Gene Gendel only, id:gene-gendel



Chapter
• Introduction to Feature Teams 549

• Choose Component Teams or Feature 
Teams? 554

• Transitioning to Feature Teams 555
• Introduction to Requirement Areas 555

Book
1 Introduction   1

2 Large-Scale Scrum   9
Action Tools
3 Test   23

4 Product Management   99

5 Planning   155

6 Coordination   189

7 Requirements & PBIs   215

8 Design & Architecture   281

9 Legacy Code   333

10 Continuous Integration   351

11 Inspect & Adapt   373

12 Multisite   413

13 Offshore   445

14 Contracts   499

Miscellany
15 Feature Team Primer   549

Recommended Readings   559

Bibliography   565

List of Experiments   580

Index   589

https://less.works For Gene Gendel only, id:gene-gendel



549

Chapter

15
FEATURE TEAM PRIMER

Speech is conveniently located midway between
thought and action, where it often substitutes for both.

—John Andrew Holmes

Feature teams and Requirement Areas are key elements of
scaling. They are analyzed in depth in the Feature Team and
Requirement Area chapters of the companion book. This chapter
summarizes a few key ideas.

INTRODUCTION TO FEATURE TEAMS

A feature team, shown in Figure 15.1, is a long-lived,1 cross-func-
tional, cross-component team that completes many end-to-end cus-
tomer features—one by one.

Figure 15.1 feature 
team

1.  Feature teams stay together for years, implementing many features.

Team has the necessary knowledge and skills to complete 
an end-to-end customer-centric feature. If not, the team is 
expected to learn or acquire the needed knowledge and skill.

Feature team:
- stable and long-lived
- cross-functional
- cross-component

customer-
centric
feature

potentially
shippable
product

increment

Product
Backlog

https://less.works For Gene Gendel only, id:gene-gendel



550

15 — Feature Team Primer

The characteristics of a feature team are listed below:.

Applying modern engineering practices—especially continuous inte-
gration—is essential when adopting feature teams. Continuous inte-
gration facilitates shared code ownership, which is a necessity when
multiple teams work at the same time on the same components. 

A common misunderstanding: every member of a feature team
needs to know the whole system. Not so, because

! The team as a whole—not each individual member—requires
the skills to implement the entire customer-centric feature.
These include component knowledge and functional skills such
as test, interaction design, or programming. But within the
team, people still specialize… preferably in multiple areas.

! Features are not randomly distributed over the feature teams.
The current knowledge and skills of a team are factored into
the decision of which team works on which features.

Feature Team

! long-lived—the team stays together so that they can ‘jell’ for
higher performance; they take on new features over time

! cross-functional and cross-component

! ideally, co-located

! work on a complete customer-centric feature, across all com-
ponents and disciplines (analysis, programming, testing, …)

! composed of generalizing specialists

! in Scrum, typically 7 ± 2 people

https://less.works For Gene Gendel only, id:gene-gendel



551

Introduction to Feature Teams

Within a feature team organization, when specialization becomes a
constraint…learning happens.

Table 15.1 and Figure 15.2 show the differences between feature
teams and more traditional component teams.

Table 15.1 feature 
teams vs. compo-
nent teams

A feature team organization exploits speed benefits from special-
ization, as long as requirements map to the skills of the teams.

But when requirements do not map to the skills of the teams, 
learning is ‘forced,’ breaking the overspecialization constraint.

Feature teams balance specialization and flexibility.

feature team component team

optimized for delivering the 
maximum customer valuea

optimized for delivering the 
maximum number of lines of code

focus on high-value features 
and system productivity 

(value throughput)

focus on increased individual 
productivity by implementing

‘easy’ lower-value features

responsible for complete 
customer-centric feature

responsible for only part of a 
customer-centric feature

‘modern’ way of organizing teamsb

— avoids Conway’s law
traditional way of organizing teams 

— follows Conway’s lawc

leads to customer focus, visibility, 
and smaller organizations

leads to ‘invented’ work and a 
forever-growing organization

minimizes dependencies between 
teams to increase flexibility

dependencies between teams leads 
to additional planningd

focus on multiple specializations focus on single specialization

shared product code ownership individual/team code ownership

shared team responsibilities clear individual responsibilities

supports iterative development results in ‘waterfall’ development

https://less.works For Gene Gendel only, id:gene-gendel



552

15 — Feature Team Primer

Table 15.2 summarizes the differences between feature teams and
conventional project or feature groups.

Table 15.2 feature 
team vs. project 
group

exploits flexibility; 
continuous and broad learning

exploits existing expertise; 
lower level of learning new skills

requires skilled engineering prac-
tices—effects are broadly visible

works with sloppy engineering 
practices—effects are localized

provides a motivation to make 
code easy to maintain and test

contrary to belief, often leads
to low-quality code in component

seemingly difficult to implement seemingly easy to implement

a. The different optimization often makes the feature team feel
slower—from the local view.

b. Relatively ‘modern’ as feature teams have a long history in 
large-scale development, for example, Microsoft and Ericsson.

c. [Conway68] observed this undesirable structure, he did not rec-
ommended it—in fact, quite the opposite.

d. This additional planning is visible in more “release planning 
meetings” or “release trains” and more management overhead.

feature team component team

feature team feature group or project project

stable team that stays together for 
years and works on many features

temporary group of people created 
for one feature or project

shared team responsibility 
for all the work

individual responsibility for ‘their’ 
part based on specialization

self-managing team controlled by a project manager

results in a simple single-line 
organization

results in a matrix organization 
with resource pools

team members are dedicated—
100% allocated—to the team

members are part-time on many 
projects because of specialization

https://less.works For Gene Gendel only, id:gene-gendel



553

Introduction to Feature Teams

Figure 15.2 feature 
vs. component 
teams

Most drawbacks of component teams are explored in the companion
book, Figure 15.3 summarizes some of these. 

What is sometimes not seen is that a component team structure
reinforces sequential development (a ‘waterfall’ or V-model), with
many queues with varying-sized work packages, high levels of WIP,
many handoffs, and increased multitasking and partial allocation.

Item 1
Item 2
Item 3
Item 4
...

…

system

comp
C

Team

comp
A

Work from multiple teams is required 
to finish a customer-centric feature. 
These dependencies cause waste 
such as additional planning and 
coordination work, hand-offs
between teams, and delivery of
low-value items. 
Work scope is narrow.

Product
Owner

comp
B

Team

comp
A

Team

comp
B

comp
C

Item 1
Item 2
Item 3
Item 4
...

…
Team
Wu

Product
Owner

Team
Shu

Team
Wei

system

comp
A

comp
B

comp
C

Every team completes customer-
centric items. The dependencies 
between teams are related to shared 
code. This simplifies planning but 
causes a need for frequent 
integration, modern engineering 
practices, and additional learning.
Work scope is broad.

Component teams Feature teams

https://less.works For Gene Gendel only, id:gene-gendel



554

15 — Feature Team Primer

Figure 15.3 some 
drawbacks of com-
ponent teams

Choose Component Teams or Feature Teams?

A pure feature team organization is ideal from the value-delivery
and organizational-flexibility perspective. Value and flexibility, how-
ever, are not the only criterion for organizational design, and many
organizations therefore end up with a hybrid—especially during a
transition from component to feature teams. Caution: hybrid models
have the drawbacks from both worlds and can be…painful.

A frequently expressed reason in favor of a hybrid organization is
the need to build infrastructure, construct reusable components, or
clean up code—work traditionally done within component teams.

Backlog Item 1
Backlog Item 2
...

Comp A
Team

Comp B
Team

Comp
C

Team

Analyst System
Engineer

System
Testers

Iteration 1 Iteration 2
(probably later)

Iterations 3-5
(probably later 

and more)

At least 
iteration 6

(probably later)

Item 1

requirement
details

for Item 1

'backlog' by 
component

not all teams start Item 
1 at the same iteration; 
they are multitasking 
on multiple features system testers 

cannot start 
immediately on 
Item 1; they are 
multitasking on 
multiple features

not available 
until the analyst 
is finished

Analysis

Design

Implementation

Test

Component teams lead to a sequential life cycle with handoff, queues, and 
single-specialist groups and not true cross-functional teams without handoff.

code

https://less.works For Gene Gendel only, id:gene-gendel



555

Introduction to Requirement Areas

But these activities can also be done in a pure feature team organi-
zation—without establishing permanent component teams. How?
By adding infrastructure, reusable components, or cleanup work to
the Product Backlog and giving it to an existing feature team—as if
it were a customer-centric feature. The feature team temporarily—
for as long as the Product Owner wishes—does such work and then
returns to building customer-centric features.

Transitioning to Feature Teams

Different organizations require different transition strategies when
changing from component to feature teams. We have experience
with many strategies that worked…and failed in a different context.
A safe—but slow—transitioning strategy is to establish one feature
team within the existing component team organization. After this
team performs well, a second feature team is formed. This continues
gradually at the speed the organization is comfortable with. This is
shown in Figure 15.4.

INTRODUCTION TO REQUIREMENT AREAS

Feature teams scale nicely, but when their number goes above ten
teams—about a hundred people—additional structure is needed.
Requirement areas provide this structure and complement the con-
cepts behind feature teams. A requirement area is a categoriza-
tion of the requirements leading to different views of the Product
Backlog. 

The Product Owner (PO) groups every Product Backlog item under
exactly one requirement category—its requirements area. After this,
he generates different views on the overall Product Backlog—called
an Area Backlog. The Area Backlogs are prioritized by an Area
Product Owner who specializes in part of the product—from a cus-
tomer perspective. Each Requirement Area has several feature
teams working from the Area Backlog, as shown in Figure 15.5.

https://less.works For Gene Gendel only, id:gene-gendel



556

15 — Feature Team Primer

Figure 15.4 gradual 
transitioning from 
feature to compo-
nent teams

Requirement areas are scaled-up feature teams. Scaling up by struc-
turing teams according to the product’s architecture is called devel-
opment areas. Table 15.3 summarizes the differences.

Table 15.3 require-
ment areas vs. 
development areas

Item 1
Item 2

Item 3

Item 4

…

…

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

Product
Owner

Feature
Team
Red

tasks for A
tasks for B

tasks for A
tasks for B

tasks for A
tasks for C

contains ex-members 
from component 
teams A, B, and C, 
and from analysis, 
architecture, and 
testing groups

system

Requirement Area Development Area

organized around 
customer-centric requirements

organized around 
product’s architecture

no subsystem code ownership code ownership per subsystem

temporary in nature; should 
change over the lifetime of the 

product, but not at every iteration

tends to be more fixed over 
the lifetime of the product

https://less.works For Gene Gendel only, id:gene-gendel



557

Introduction to Requirement Areas

Figure 15.5 require-
ment areas

Finally, an Area Product Owner is different than a supporting Prod-
uct Owner—someone that works with one or two teams to help a
busy overall Product Owner. An Area Product Owner has different
responsibilities and focus, and works with (probably) at least four
teams, not just with one. This avoids local optimization toward the
activities of one team.

focus on the customer, 
using customer language

focus on the architecture, 
using technology language

Requirement Area Development Area

Backlog Item 1

…

...

Product Backlog

Backlog Items 1
Backlog Items 2
...

Performance

Backlog Item 3
Backlog Item 4
...

Protocols

feature
team

performance area feature teams

protocols area feature teams

Area
Product
Owner

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

Area
Product
Owner

https://less.works For Gene Gendel only, id:gene-gendel



558

15 — Feature Team Primer

CONCLUSION

Feature teams are stable teams that are given complete customer-
centric features. These teams resolve local optimizations and extra
coordination overhead caused by component team organizations.
However, feature teams are not without challenges themselves.

Requirement areas scale the feature team concept by creating cus-
tomer-centric views on the overall Product Backlog and thus creat-
ing a structure that allows feature teams to be scaled up to any size.

RECOMMENDED READINGS

! The Feature Teams chapter in the companion book.

https://less.works For Gene Gendel only, id:gene-gendel



559

Large-Scale Scrum
•The companion book, Scaling Lean & Agile Development: Thinking and Organizational 
Tools for Large-Scale Scrum, focuses on foundations supporting the practices in this book.

Test
•Agile Testing, by Lisa Crispin and Janet Gregory. A great overview of the role of testing in 
agile development. It covers the challenges organizations face when adopting agile develop-
ment and also describes the concrete role of testing during the iteration.

•Lessons Learned in Software Testing, by Cem Kaner, James Bach, and Bret Pettichord. This 
book describes the lessons learned from decades of experience in testing and also introduces 
the context-driven school of thinking in software testing.

•Agile Testing Directions, by Brian Marick. A series of blog posts wherein Brian Marick intro-
duces the agile testing quadrants.

•A Practitioner’s Guide To Software Test Design, by Lee Copeland. An easy-to-read catalog of 
test design techniques.

•Software Testing: A Craftsman’s Approach, by Paul Jorgensen. A thorough coverage of dif-
ferent test design techniques. Starts off with mathematics for testing.

•Bridging the Communication Gap, by Gojko Adzic. At this moment, Gojko’s book is the only 
book purely on the subject of A-TDD (which he calls agile acceptance testing). It has a strong 
focus on requirements clarifications and workshops.

•Acceptance Test Driven Development: An Overview, by Elisabeth Hendrickson. A blog post 
and related paper providing an overview of A-TDD by giving a detailed example of using Robot 
Framework.

•Fit for Developing Software, by Rick Mugridge and Ward Cunningham. This book has a 
strong focus on improving the communication of requirements by means of Fit tables.

•Robot Framework User Guide. Does not cover A-TDD but does provide an excellent introduc-
tion to the Robot Framework tool.

•Test-Driven .NET Development with FitNesse, by Gojko Adzic. This book has less emphasis 
on A-TDD and more on FitNesse. But it does a good job in describing the tool.

•Exploratory Testing Explained, by James Bach. An article available on the web; it is the clas-
sic reference related to this subject. Definitely worth reading.

•Exploratory Testing in an Agile Context, by Elisabeth Hendrickson. A freely available mini-
book related to the role of exploratory testing in agile development. Easy to read.

•Test-Driven, by Lasse Koskela. A well-written thorough book on the subject. It uses Java and 
also covers A-TDD.

•Test-Driven Development, by Kent Beck. A classic and one of the first books on the subject. 
It uses Java.

•Test-Driven Development in Microsoft .NET, by James Newkirk and Alexei Vorontsov. A 
good introduction to TDD in .NET.

•xUnit Test Patterns, by Gerard Meszaros. More than you ever wanted to know about xUnit.

RECOMMENDED READINGS

https://less.works For Gene Gendel only, id:gene-gendel



560

•Test-Driven Development in C: Modern C Programming for Embedded, Mobile, Open Source 
and You, by James Grenning. Does this work for embedded software? Yes. James discusses 
how to use TDD when developing embedded software. Not yet published.

•Growing Object-Oriented Software, Guided by Tests by Steve Freeman and Nat Pryce rein-
forces the value of evolving design based on feedback from tests.

Product Management
•The Product Development and Management Association (www.pdma.org) offers online and 
printed learning resources (such as The PDMA Handbook of New Product Development), and 
an online list of classic P-M literature. Some of the material assumes the traditional Contract 
Game or sequential life cycle development, but much is still worth investigation.

•Innovation Games by Luke Hohmann emphasizes simple, creative, and collaborative tech-
niques—applicable in workshops—for customer-focused product definition.

•Agile Product Management with Scrum by Roman Pichler explores envisioning a product in 
the context of Scrum development, the role of the Product Owner, and more.

•The text Product Strategy and Management is written by researchers with long in-depth 
study into product management and development. It contains many solid suggestions, and a 
vast number of references to the major papers and researchers in this field. This book is an 
excellent window into the breadth and depth of P-M-related research.

•Product Management by Lehmann and Winer is a solid introduction to market analysis, 
product strategy, pricing, distribution channels, and more.

Planning
•For envisioning and vision workshops, two books already recommended in the Product Man-
agement chapter are relevant: Innovation Games and Agile Product Management with Scrum.

•For planning with small or large groups, Agile Estimating and Planning by Mike Cohn is an 
excellent, practical resource.

•Waltzing with Bears by DeMarco and Lister is informative and entertaining; it emphasizes 
iterative—rather than sequential—development as a key risk-management practice, and ex-
plains how to apply Monte Carlo simulation in estimation.

Coordination
•“Bridging the Boundary: External Activity and Performance in Organizational Teams,” by 
Deborah Ancona and David Caldwell. One of the early research articles that explored teams 
within their context and how external activity—boundary spanning—relates to team perfor-
mance.

•Leading Teams, by Richard Hackman. Still one of the best references on teams and self-man-
aging teams. It also covers how teams manage their boundaries.

•Succeeding with Agile, by Mike Cohn. Scrum coach Mike Cohn covers some team coordina-
tion topics in his book.

https://less.works For Gene Gendel only, id:gene-gendel

www.pdma.org


561

Requirements & PBIs
•Bridging the Communication Gap: Specification by Example and Agile Acceptance Testing 
by Gojko Adzic was also recommended in the Test chapter; it emphasizes acceptance TDD, re-
quirements by examples, and includes a chapter on agile requirements workshops.

•Requirements by Collaboration by Ellen Gottesdiener describes how to organize and facili-
tate requirement workshops.

•Writing Effective Use Cases by Alistair Cockburn is an excellent book on use cases, and wide-
ly considered the de facto standard for this subject.

•Patterns for Effective Use Cases also includes useful tips.

•A Use Cases chapter, based on the Cockburn system, is available in the Articles section of 
www.craiglarman.com.

•User Stories Applied, by Mike Cohn, is a great introduction.

•In the classic The Design of Everyday Things and his more recent Emotional Design, Donald 
Norman emphasizes that human factors need to be front and center.

•Interaction design is a fast-moving field of publication. Broadly, search for material that em-
phasizes lightweight modeling, iteration, prototyping, and cross-functional teams. For exam-
ple, see Sketching User Experiences by Bill Buxton.

•Agile Modeling by Scott Ambler emphasizes lightweight and collaborative approaches to 
modeling.

•Applying UML and Patterns demonstrates a variety of modeling techniques, including do-
main models, activity diagrams, and state-machine models.

Design & Architecture
•The site www.codingthearchitecture.com emphasizes the need for architects to be master 
hands-on active developers.

•Many of our clients have vast quantities of messy legacy code that is difficult to test in iso-
lation and difficult to evolve. Michael Feather’s Working Effectively with Legacy Code is an 
important antidote, covering the techniques that allow developers to start designing a more 
agile architecture within their existing code base.

•A key element of technical agility is design patterns. Consider these texts: Design Patterns,
Pattern-Oriented Software Architecture (five volumes), Applying UML and Patterns, and Pat-
tern Languages of Program Design (five volumes).

•Two books by Bob Martin encourage a more agile architecture: Agile Development, Princi-
ples, Patterns and Practices and Clean Code: A Handbook of Agile Craftsmanship.

•Two more useful quality-code-oriented books include Code Complete by Steve McConnell and 
Implementation Patterns by Kent Beck.

•Growing Object-Oriented Software, Guided by Tests by Steve Freeman and Nat Pryce rein-
forces a culture of growing rather than specifying “the architecture.”

•Domain-Driven Design by Eric Evans encourages thoughtful iterative design, shared under-
standing, and a domain model that must be well-expressed in the code.

https://less.works For Gene Gendel only, id:gene-gendel

www.craiglarman.com
www.codingthearchitecture.com


562

•The paper Agile Product Development [TR98] explores the business value of product devel-
opment and design agility, and how how development flexibility can be quantified.

Legacy Code
•Working Effectively with Legacy Code, by Michael Feathers. Concrete advice on how to grad-
ually improve your legacy system at code level.

•Refactoring: Improving the Design of Existing Code, by Martin Fowler. The classic work on 
improving existing code.

•Refactoring Workbook, by Bill Wake. A concrete guide for becoming better at refactoring 
code.

•Refactoring to Patterns, by Joshua Kerievsky. In this book, Joshua explains how to gradually 
refactor your code to standard, robust design patterns.

•Refactoring in Large Software Projects, by Stefan Roock and Martin Lippert. Large systems 
might need large refactorings. This book explains how to do these in as small steps as possible 
so that your systems stays stable.

•Enterprise Scrum, by Ken Schwaber. Chapter 9 of Enterprise Scrum is one of the few de-
scriptions explaining the relationship between customer promises and the creation of legacy 
code.

•Sustainable Software Development: An Agile Perspective, by Kevin Tate. This book does not 
cover many new techniques but provides an excellent overview of the practices for creating 
software in a sustainable way.

•The Pragmatic Programmer: From Journeyman to Master, by Andrew Hunt and Dave Tho-
mas. Classic book on modern software craftsmanship.

•Software Craftsmanship, by Pete McBreen dives in craftsmanship approach and compares 
it to the traditional software engineering perspective.

•Agile Development, Principles, Patterns and Practices, by Bob Martin. Also known as Agile
PPP, links good code, modern practices, and eternal design principles to explain what it 
means to be a craftsman.

•Clean Code: A Handbook of Agile Craftsmanship, by Bob Martin. The subtitle says it all. 
Clean Code is the code-focused prequel to Agile PPP.

Continuous Integration
•Extreme Programming Explained, by Kent Beck. The term CI was first coined in the Ex-
treme Programming method.

•Continuous Integration, by Martin Fowler. Probably the best CI description available.

•Managing Projects with GNU Make, by Robert Mecklenburg. When working with C/C++, 
you will probably use Make. This book provides a great overview of Make and also talks about 
Make in large-scale development.

•Ant in Action, by Steve Loughran and Erik Hatcher. When working with Java, you will prob-
ably use Ant. This book’s focus is Ant, but it covers other topics. Maven—another popular 
build automation tool—is also covered.

https://less.works For Gene Gendel only, id:gene-gendel



563

•Groovy in Action, by Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, Jon 
Skreet. Groovy is a recent JVM-based dynamic programming language. It has some excellent 
build automation support.

•Pragmatic Project Automation: How to Build, Deploy and Monitor Java Apps, by Mike Clark. 
A small book that covers lots of technology related to automating Java builds.

•Continuous Integration: Improving Software Quality and Reducing Risk, by Paul Duvall, 
Steve Matyas, and Andrew Glover. The focus of this book is on the automation of builds more 
than on the practice of CI.

•“Scaling Continuous Integration,” by Owen Rogers in Extreme Programming and Agile Pro-
cesses in Software Engineering 2004 Conference Proceedings. Although a little dated, this is 
among the best of the available material (other than this chapter) related to scaling CI.

Inspect & Adapt
•The Birth of Lean, edited by Shimokawa and Fujimoto, offers a glimpse into the evolution 
and adoption of lean production and thinking at Toyota. For example: “At a time when all of 
us are struggling to implement lean production and lean management, often with complex pro-
grams on an organization-wide basis, it is helpful to learn that the creators of lean had no 
grand plan and no company-wide program to install it.”

•Fearless Change: Patterns for Introducing New Ideas by Mary Lynn Manns and Linda Rising 
comes from authors with experience in change initiatives and knowledge of agile develop-
ment; they emphasize a bottom-up approach to change.

•The site www.solonline.org, from the Society for Organizational Learning, contains many 
learning resources and recommended readings related to organizational improvement.

•Taiichi Ohno, in his Workplace Management, conveys a sense of the importance—for creat-
ing a lean culture—of leaders who truly grasp lean thinking, and relentlessly coach others in 
this.

•There are several good (and more bad) books on team building; some are of the better ones 
are recommended in the Teams chapter of the companion book. Two mentioned in this chapter 
include The Five Dysfunctions of a Team and Overcoming the Five Dysfunctions of a Team by 
Patrick Lencioni.

•Teamwork Is an Individual Skill: Getting Your Work Done When Sharing Responsibility by 
Chris Avery emphasizes taking personal responsibility for creating an effective team, and 
shares tips for how to do so.

•The Fifth Discipline: The Art & Practice of The Learning Organization by Peter Senge, is a 
classic in systems thinking, learning, and the qualities needed by effective leaders for sustain-
able, high-impact organizational improvement.

•Agile Retrospectives: Making Good Teams Great by Esther Derby and Diana Larsen covers 
core retrospective skills. And Project Retrospectives by Norm Kerth explores how to do retro-
spectives with larger groups.

•Agile Coaching by Rachel Davies and Liz Sedley captures many practical tips for ScrumMas-
ters and other agile coaches, from two experienced coaches.

https://less.works For Gene Gendel only, id:gene-gendel

www.solonline.org


564

Multisite
•Erran Carmel’s books, Global Software Teams and Offshoring Information Technology, are 
two of the better high-level books that explore multisite development.

•Jutta Eckstein’s Agile Software Development with Distributed Teams is written by a consult-
ant and coach with hands-on experience in both agile and multisite development.

•Keith Braithwaite and Tim Joyce summarize key principles and practices in their paper XP
Expanded: Distributed Extreme Programming. Although written in the context of Extreme 
Programming, it applies to all agile development approaches.

Offshore
•All the recommendations in the Multisite chapter are relevant, such as Offshoring Informa-
tion Technology and Agile Software Development with Distributed Teams.

•Two of the largest agile-offshore outsourcers in India are Valtech and ThoughtWorks. In 
Martin Fowler’s online article Using an Agile Software Process with Offshore Development (at 
martinfowler.com) he describes lessons learned at ThoughtWorks, which parallel those at 
Valtech.

Contracts
•Mary and Tom Poppendieck, thought leaders in lean software development, have organized 
several contract workshops over the years, and collected and share “lean and agile contract” 
papers and presentations at their website www.poppendieck.com. Following a theme similar 
to this chapter, the Poppendieck’s own material on agile contracts emphasizes the underlying 
issues of trust, collaboration, and transparency related to contracts.

•Some people new to the subject assume that contracts that encourage flexibility, collabora-
tion, and alignment of interests (‘agile’ contracts) are a novel concept, but in fact much has 
been written and promoted in this area over the years, including within the USA government 
(for example, see Administration of Government Contracts). There are dozens, if not hun-
dreds, of books and websites that discuss a variety of contract models.

•There are several ‘public’ contract models that we have reviewed, explicitly supporting iter-
ative, evolutionary, or agile development. However, Valtech and ThoughtWorks—and other 
agile outsourcers that we know of—write their own contracts rather than use these models. 
We discourage “copy-paste” contract writing, but these are worth study for ideas.

Feature Team Primer
•The Feature Teams chapter in the companion book.

https://less.works For Gene Gendel only, id:gene-gendel

www.poppendieck.com


565

BIBLIOGRAPHY

ABCP02 Adolph, S., Bramble, P., Cockburn, A., Pols, A., 2002. Patterns for Effective Use
Cases, Addison-Wesley

AC92 Ancona, D., Caldwell, D., 1992. “Bridging the Boundary: External Activity and
Performance in Organizational Teams,” Administrative Science Quarterly, Dec
1992, Vol. 37, No. 4

Accenture08 Accenture, 2008. “Accenture Delivery Centers In India,” Accenture website, at
https://www.accenture.com/NR/rdonlyres/
9BFC7780-F3C2-47C0-8733-DB51E9DA0B3E/0/IndiaLowresSept2007.pdf
(accessed on July 10, 2008)

AD72 Adler, M. J., Van Doren, C.L. 1972. How to Read a Book, Simon & Schuster, Inc.

Adzic08 Adzic, G., 2008. Test Driven.Net Development with FitNesse, Neuri Limited

Adzic09 Adzic, G., 2009. Bridging the Communications Gap: Specification by Example and
Agile Acceptance Testing, Neuri Limited 

AKB04 Appleton, B., Konieczka, S., Berczuk, S., 2004. “Continuous Staging: Scaling Con-
tinuous Integration to Multiple Component Teams,” CM Crossroads, at http://
www.cmcrossroads.com/articles/agilemar04.pdf

AKSMW09 Ancona, D., Kochan, T., Scully, M., van Maanen, S., Westney, D., 2009. Managing
for the Future, South-Western

Ambler02 Ambler, S., 2002. Agile Modeling, John-Wiley

Armstrong07 Armstrong, J., 2007. “A History of Erlang,” Proceedings of the 3rd ACM SIGPLAN
Conference on History of Programming Languages

AS95 Argyris, C., Schon, D., 1995. Organizational Learning II: Theory, Method, and
Practice, Prentice Hall

Atwood08 Atwood, J., 2008. “Does More Than One Monitor Improve Productivity?” at http://
www.codinghorror.com/blog/archives/001076.html

Austin96 Austin, R., 1996. Measuring and Managing Performance in Organizations, Dorset
House

AV07 APLN, Version One, 2007. “2nd Annual Survey. The State of Agile,” VersionOne
website at http://www.versionone.com/pdf/stateofagiledevelopment2
_fulldatareport.pdf 

https://less.works For Gene Gendel only, id:gene-gendel

https://www.accenture.com/NR/rdonlyres/9BFC7780-F3C2-47C0-8733-DB51E9DA0B3E/0/IndiaLowresSept2007.pdf
https://www.accenture.com/NR/rdonlyres/9BFC7780-F3C2-47C0-8733-DB51E9DA0B3E/0/IndiaLowresSept2007.pdf
http://www.cmcrossroads.com/articles/agilemar04.pdf
http://www.cmcrossroads.com/articles/agilemar04.pdf
http://www.codinghorror.com/blog/archives/001076.html
http://www.codinghorror.com/blog/archives/001076.html
http://www.versionone.com/pdf/stateofagiledevelopment2_fulldatareport.pdf
http://www.versionone.com/pdf/stateofagiledevelopment2_fulldatareport.pdf


566

AWT01 Avery, C., Walker, M. A., O’Toole E., 2001. Teamwork Is an Individual Skill: Get-
ting Your Work Done When Sharing Responsibility, Berrett-Koehler Publishers

BA03 Berczuk, S., Appleton, B., 2003. Configuration Management Patterns, Addison-
Wesley

Bach94 Bach, J., 1994. “The Immaturity of CMM,” American Programmer, Sept ‘94

Bach00 Bach, J., 2000. “Session-Based Test Management,” Software Testing and Quality
Engineering Magazine, Nov 2000, also available at http://www.satisfice.com/
articles/sbtm.pdf

Bach03 Bach, J., 2003. “Exploratory Testing Explained,” at www.satisfice.com/articles/
et-article.pdf 

BB09 Bach, J., Bolton, M., Rapid Software Testing, training material at http://
www.satisfice.com/rst.pdf

BC99 Beck, K., Cleal, D., 1999. “Optional Scope Contracts,” at www.jarn.com/about/
OptionalScopeContracts.pdf

BCK98 Bass, L., Clements, P., Kazman, R., 1998. Software Architecture in Practice, Addi-
son-Wesley

BDSSS99 Beedle, M., Devos, M., Sharon, Y., Schwaber, K., Sutherland., J., 1999. “Scrum: A
Pattern Language for Hyperproductive Software Development,” Proceedings of
Pattern Languages of Programs ‘98, also in [HFR00]

Beck99 Beck, K., 1999. Extreme Programming Explained: Embrace Change (1st edition),
Addison-Wesley

Beck01 Beck, K., 2001. “Aim, Fire,” IEEE Software, Vol. 18, Issue 5, Sept/Oct 2001

Beck03 Beck, K., 2003. Test-Driven Development: By Example, Addison-Wesley

Beck04 Beck, K., 2004. Extreme Programming Explained: Embrace Change (2nd edition),
Addison-Wesley

Beck08 Beck, K., 2008. Implementation Patterns, Addison-Wesley

Beck09 Beck, K., 2009. “Approaching a Minimum Viable Product,” Thoughts on Program-
ming Blog, at http://www.threeriversinstitute.org/blog/?p=333

BH07 Baker, M., Hart, S., 2007. Product Strategy and Management, Prentice Hall

BHS97 Brink, C., Kahl, W., Schmidt, G., 1997. Relational Methods in Computer Science,
Springer

BHS07a Buschmann, F., Henney, K., Schmidt, D., 2007. Pattern-Oriented Software Archi-
tecture Volume 4: A Pattern Language for Distributed Computing, Addison-Wesley

BHS07b Buschmann, F., Henney, K., Schmidt, D., 2007. Pattern-Oriented Software Archi-
tecture Volume 5: On Patterns and Pattern Languages, Addison-Wesley

BI05 Brown, J., Isaacs, D., 2005. The World Café, Berrett-Koehler Publishing

https://less.works For Gene Gendel only, id:gene-gendel

http://www.satisfice.com/articles/sbtm.pdf
http://www.satisfice.com/articles/sbtm.pdf
www.satisfice.com/articles/et-article.pdf
www.satisfice.com/articles/et-article.pdf
http://www.satisfice.com/rst.pdf
http://www.satisfice.com/rst.pdf
www.jarn.com/about/OptionalScopeContracts.pdf
www.jarn.com/about/OptionalScopeContracts.pdf
http://www.threeriversinstitute.org/blog/?p=333


567

BJ05 Braithwaite, K., Joyce, T., 2005. “XP Expanded: Distributed Extreme Program-
ming,” Proceedings of the XP2005, Springer

BJP02 Buwalda, H., Janssen, D., Pinkster, I., 2002. Integrated Test Design and Automa-
tion, Addison-Wesley

BMRSS96 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., 1996. Pattern-
Oriented Software Architecture, Addison-Wesley

Boehm00a Boehm, B., Abts, C., Brown, W., Chulani, S., Clark, B., Horowitz, E., Madachy, R.,
Reifer, D., Steece, B., 2000. Software Cost Estimation with Cocomo II, Prentice
Hall

Boehm00b Boehm, B., 2000. “Spiral Development: Experience, Principles, and Refinements”
Special Report CMU/SEI-2000-SR-008

Boehm06 Boehm, B., 2006. “Keynote: Product and Process Architectures for Integrating
Agile and Plan-Driven Methods,” XP2006 Conference Keynote

Booch96 Booch, G., 1996. Object Solutions. Managing the Object-Oriented Project, Addison-
Wesley

Brooks87 Brooks, F., Jr. “No Silver Bullet: Essence and Accidents of Software Engineering,”
Computer Vol. 20, Issue 4, Apr 1987

Burnstein02 Burnstein, I., 2002. Practical Software Testing, Springer

Buxton07 Buxton, B., 2007. Sketching User Experiences: Getting the Design Right and the
Right Design, Morgan Kaufman

Buzan96 Buzan, T., Buzan, B., 1996. The Mind Map Book: How to Use Radiant Thinking to
Maximize Your Brain’s Untapped Potential, Plume

Cagan08 Cagan, M., 2008. Inspired. How to Create Products Customers Love, SVPG Press

Carmel99 Carmel, E., 1999. Global Software Teams, Prentice Hall

CG09 Crispin, L., Gregory, J., 2009. Agile Testing: A Practical Guide for Testers and Agile
Teams, Addison-Wesley

CH01 Cockburn, A., Highsmith, J., 2001. “Agile Software Development: The People Fac-
tor,” IEEE Computer, Vol. 34, No. 11

CH05 Coplien, J., Harrison, N., 2005. Organizational Patterns of Agile Software Develop-
ment, Pearson Prentice Hall

CKS07 Chrissis, M.B., Konrad, M., Shrum, S., 2007. CMMI, 2nd edition, Addison-Wesley

Clark04 Clark, M., 2004. Pragmatic Project Automation: How to Build, Deploy, and Moni-
tor Java Apps, The Pragmatic Programmers

CNN06 Cibinic, J., Nash, R., Nagle, J., 2006. Administration of Government Contracts, 4th
edition, CCH Inc

Cockburn97 Cockburn, A., 1997. “Parts: Precision, Accuracy, Relevance, Tolerance, Scale in
Object Design,” at http://alistair.cockburn.us/Parts:+precision,+accuracy,+
relevance,+tolerance,+scale+in+object+design

https://less.works For Gene Gendel only, id:gene-gendel

http://alistair.cockburn.us/Parts:+precision,+accuracy,+relevance,+tolerance,+scale+in+object+design
http://alistair.cockburn.us/Parts:+precision,+accuracy,+relevance,+tolerance,+scale+in+object+design


568

Cockburn99 Cockburn, A., 1999. “Characterizing People as Non-Linear, First-Order Compo-
nents in Software Development,” at http://alistair.cockburn.us/
Characterizing+people+as+non-linear,+first-order+components+in+
software+development

Cockburn01 Cockburn, A., 2001. Agile Software Development, Addison-Wesley

Cockburn02 Cockburn, A., 2002. Writing Effective Use Cases, Addison-Wesley

Cockburn04 Cockburn, A., 2004. Crystal Clear: A Human-Powered Methodology for Small
Teams, Addison-Wesley

Cockburn07 Cockburn, A., 2007. Agile Software Development: The Cooperative Game, Addison-
Wesley

Cohn04 Cohn, M., 2004. User Stories Applied, Addison-Wesley

Cohn05 Cohn, M., 2005. Agile Estimating and Planning, Addison-Wesley

Cohn07 Cohn, M., 2007. “Advice on Conducting the Scrum of Scrums Meeting,”
ScrumAlliance Articles at http://www.scrumalliance.org/articles/
46-advice-on-conducting-the-scrum-of-scrums-meeting

Cohn09 Cohn, M., 2009. Succeeding with Agile: Software Development using Scrum, Addi-
son-Wesley

Cone08 Cone, L., 2008. “CMM Level 5 — So What!” A Day in the Life of a Project Manager
Blog, at http://it.toolbox.com/blogs/coneblog/cmm-level-5-so-what-5534

Conway68 Conway, M., 1968. “How Do Committees Invent?” Datamation Magazine, Apr 1968
Copeland08 Copeland, L., 2008. A Practitioner’s Guide to Software Test Design, Artech House

Publishers

Cottmeyer09 Cottmeyer, M., 2009. “Product Owner by Proxy,” Leading Agile blog, at http://
www.leadingagile.com/2009/03/product-owner-by-proxy.html 

Crosy80 Crosby, P., 1980. Quality is Free, Mentor

CS95 Coplien, J., Schmidt, D., 1995. Pattern Languages of Program Design, Addison-
Wesley

CSSD05 Ceschi, M., Sillitti, A., Succi, G., De Panfilis, S., 2005. “Project Management in
Plan-Based and Agile Companies,” IEEE Software, May/June 2005

CT05 Carmel, E., Tija, P., 2005. Offshoring Information Technology, Cambridge

CY00 Cusumano, M., Yoffie, B., 2000. Competing on Internet Time: Lessons from
Netscape and Its Battle with Microsoft, Free Press

Cybernews09 Cybernews, 2009. “Scrumming RealXtend,” News article at http://
www.cybertechnews.org/?p=338

DBT05 Dalcher, D., Benediktsson, O., Thorbergsson, H., 2005. “Development Life Cycle
Management: A Multiproject Experiment.” Proceedings of the 12th International
Conference on Engineering of Computer-Based Systems, IEEE Computer Society

https://less.works For Gene Gendel only, id:gene-gendel

http://alistair.cockburn.us/Characterizing+people+as+non-linear,+first-order+components+in+software+development
http://alistair.cockburn.us/Characterizing+people+as+non-linear,+first-order+components+in+software+development
http://alistair.cockburn.us/Characterizing+people+as+non-linear,+first-order+components+in+software+development
http://www.scrumalliance.org/articles/46-advice-on-conducting-the-scrum-of-scrums-meeting
http://www.scrumalliance.org/articles/46-advice-on-conducting-the-scrum-of-scrums-meeting
http://it.toolbox.com/blogs/coneblog/cmm-level-5-so-what-5534
http://www.leadingagile.com/2009/03/product-owner-by-proxy.html
http://www.leadingagile.com/2009/03/product-owner-by-proxy.html
http://www.cybertechnews.org/?p=338
http://www.cybertechnews.org/?p=338


569

DeMarco95 DeMarco, T., 1995, “Conversation with Tom DeMarco,” Computerworld, Dec. 4.
1995

Deming82 Deming E. W., 1982. Out of the Crisis, MIT Press

DL03 DeMarco, T., Lister, T., 2003. Waltzing with Bears: Managing Risk on Software
Projects, Dorset House

DL06 Derby, E., Larsen, D., 2006. Agile Retrospectives: Making Good Teams Great, Prag-
matic Bookshelf

DM89 de Meyer, A., Mizushima A., 1989. “Global R&D Management,” R&D Manage-
ment, Vol. 19, Issue 2. 1989

DMG07 Duvall, P., Matyas, S., Glover, A., 2007. Continuous Integration: Improving Soft-
ware Quality and Reducing Risk, Addison-Wesley

DS09 Davies R., Sedley, L., 2009. Agile Coaching, Pragmatic Bookshelf

Eckstein04 Eckstein, J., 2004. Agile Software Development in the Large, Dorset House

Eckstein10 Eckstein, J., 2010. Agile Software Development with Distributed Teams: Staying
Agile in a Global World, Draft. In the companion book this book was referred to as
Agile in the Face of Global Software Development.

Edmondson99 Edmondson, A., 1999. “A Safe Harbor: Social Psychological Conditions Enabling
Boundary Spanning in Work Teams,” in [Wageman99]

EE06 Elshamy, A., Elssamadisy, A., 2006. “Divide After You Conquer: An Agile Software
Development Practice for Large Projects,” Proceedings of the XP2006, Springer

EMH05 Eckfeldt, B., Madden, R., Horowitz, J., 2005. “Selling Agile: Target-Cost Con-
tracts.” Proceedings of Agile 2005 Conference

Evans04 Evans, E., 2004. Domain-Driven Design, Addison-Wesley

Feathers04 Feathers, M., 2005. Working Effectively with Legacy Code, Addison-Wesley

Feathers05 Feathers, M., 2005. “A Set of Unit Testing Rules, at http://www.artima.com/
weblogs/viewpost.jsp?thread=126923

Festa00 Festa, P., 2000. “Netscape 6 Ships after 32-Month Gestation,” CNET News.com at
http://news.cnet.com/2100-1023-248549.html

FG99 Fewster, M., Graham, D., 1999. Software Test Automation, Addison-Wesley

FK06 Fleming, Q., Koppelman, J., 2006. Earned Value Project Management, 3rd edition,
Project Management Institute

FL97 Fleischer, M., Liker, J., 1997. Concurrent Engineering Effectiveness, Hanser Gard-
ner Publications.

Fowler99 Fowler, M., 1999. Refactoring: Improving the Design of Existing Code, Addison-
Wesley

Fowler04 Fowler, M., 2004. “Inversion of Control Containers and the Dependency Injection
Pattern,” at http://martinfowler.com/articles/injection.html

https://less.works For Gene Gendel only, id:gene-gendel

http://www.artima.com/weblogs/viewpost.jsp?thread=126923
http://www.artima.com/weblogs/viewpost.jsp?thread=126923
http://news.cnet.com/2100-1023-248549.html
http://martinfowler.com/articles/injection.html


570

Fowler06a Fowler, M., 2006. “Continuous Integration,” at http://www.martinfowler.com/
articles/continuousIntegration.html

Fowler06b Fowler, M., 2006. “Using an Agile Software Process with Offshore Development,”
at http://martinfowler.com/articles/agileOffshore.html

Fowler07 Fowler, M., 2007. “Mocks Aren’t Stubs,” at http://martinfowler.com/articles/
mocksArentStubs.html

Fowler09 Fowler, M., 2009. “Feature Branch,” at http://martinfowler.com/bliki/
FeatureBranch.html

FP09 Freeman, S., Pryce, N., 2009. Growing Object-Oriented Software, Guided by Tests,
Addison-Wesley

GH88 Gelperin, D., Hetzel, B., 1988. “The Growth of Software Testing,” Communications
of the ACM, Vol. 31, No. 6, June 1988

GHJV94 Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley

Gilb88 Gilb, T., 1988. Principles of Software Engineering Management, Addison-Wesley

Gilb05 Gilb, T., 2005. Competitive Engineering, Butterworth-Heinemann

Gorchels06 Gorchels, L., 2006. The Product Manager’s Handbook, McGraw Hill

Gottesdiener02 Gottesdiener, E., 2002. Requirements by Collaboration: Workshops for Defining
Needs, Addison-Wesley

Grady92 Grady, R., 1992. Practical Software Metrics for Project Management and Process
Improvement, Prentice Hall

Grenning02 Grenning, J., 2002. “Planning Poker or How to Avoid Analysis Paralysis while
Release Planning,” at www.objectmentor.com/resources/articles/PlanningPoker.zip

Grenning10 Grenning, J. 2010. Test-Driven Development in C: Modern C Programming for
Embedded, Mobile, Open Source and You (forthcoming). The Pragmatic Program-
mers

GW89 Gause, D., Weinberg, G., 1989. Exploring Requirements: Quality Before Design.
Dorset House

Hackman99 Hackman, R., 1999. “Thinking Differently about Context,” in [Wageman99]

Hackman02 Hackman, R., 2002. Leading Teams, Harvard Business School Press

Hall76 Hall, E., 1976. Beyond Culture, Anchor Books

Hayashi08 Hayashi, N., 2008. “Top Engineer Explains How Toyota Develops People,” Nikkei
Business Online, Translated at http://www.gembapantarei.com/2008/08/
toyotas_top_engineer_on_how_to_develop_thinking_pe.html

Hendrickson08 Hendrickson, E., 2008. “Driving Development with Tests: ATDD and TDD,” at
http://testobsessed.com/wordpress/wp-content/uploads/2008/12/atddexample.pdf

https://less.works For Gene Gendel only, id:gene-gendel

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/agileOffshore.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/articles/mocksArentStubs.html
http://martinfowler.com/bliki/FeatureBranch.html
http://martinfowler.com/bliki/FeatureBranch.html
www.objectmentor.com/resources/articles/PlanningPoker.zip
http://www.gembapantarei.com/2008/08/toyotas_top_engineer_on_how_to_develop_thinking_pe.html
http://www.gembapantarei.com/2008/08/toyotas_top_engineer_on_how_to_develop_thinking_pe.html
http://testobsessed.com/wordpress/wp-content/uploads/2008/12/atddexample.pdf


571

Hendrickson09 Hendrickson, E., 2009. Exploratory Testing in an Agile Context, at http://
www.qualitytree.com/ebooks/et.pdf

Herzberg87 Herzberg, F., 1987. “One More Time: How Do You Motivate Employees?” Harvard
Business Review, Sept/Oct 1987

Hetzel73 Hetzel, B., 1973. Program Test Methods, Prentice Hall

Hetzel88 Hetzel, B., 1988. The Complete Guide to Software Testing, Wiley-QED

HFR00 Harrison, N., Foote, B., Rohnert, H., 2000. Pattern Languages of Program Design
4, Addison-Wesley

HH05 Hofstede, G., Hofstede, G.J., 2005. Cultures and Organizations: Software of the
Mind, McGraw-Hill

HM03 Herbsleb, J., Mockus, A., 2003. “An Empirical Study of Speed and Communication
in Globally Distributed Software Development,” IEEE Transactions of Software
Engineering, Vol. 29, No. 6, June 2003

Hock99 Hock, D., 1999. The Birth of the Chaordic Age, Berrett-Koehler Publishers

Hohmann03 Hohmann, L., 2003. Beyond Software Architecture: Creating and Sustaining Win-
ning Solutions, Addison-Wesley

Hohmann06 Hohmann, L., 2006. Innovation Games, Addison-Wesley

Hohmann08 Hohmann, L., 2008. “Why Prioritizing Your Product Backlog for ROI Doesn’t
Work,” Insights-Tools, at http://www.enthiosys.com/insights-tools/
prioritizeforprofit1of3/

Horowitz74 Horowitz, E. 1974. Practical Strategies for Developing Large Software Systems,
Addison-Wesley

HP08 HP, 2008. HP website, at http://h20219.www2.hp.com/services/cache/
602196-0-0-225-121.html (accessed July 10, 2008)

HT99 Hunt, A., Thomas, D., 1999. The Pragmatic Programmer, Addison-Wesley

HW01 Hoffman, D., Weiss, D., editors, 2001. Software Fundamentals: Collected Papers by
David L. Parnas, Addison-Wesley

IBM08 IBM, 2008. IBM website, at http://www-935.ibm.com/services/us/index.wss/
casestudy/imc/a1025831?cntxt=a1000056 (accessed July 10, 2008)

ISQTB07 ISQTB, 2007. ISQTB Syllabus Foundation Level v2007, at http://www.istqb.org/
download.htm

ISV09 Iyer, A., Seshadri, S., Vasher, R., 2009. Toyota’s Supply Chain Management: A
Strategic Approach to Toyota’s Renowned System, McGraw-Hill

IXP04 Industrial Logic, 2004. Industrial Extreme Programming, at http://
www.industrialxp.com

James07 James, M., 2007. “A ScrumMaster’s Checklist,” at http://
www.scrummasterchecklist.org

https://less.works For Gene Gendel only, id:gene-gendel

http://www.qualitytree.com/ebooks/et.pdf
http://www.qualitytree.com/ebooks/et.pdf
http://www.enthiosys.com/insights-tools/prioritizeforprofit1of3/
http://www.enthiosys.com/insights-tools/prioritizeforprofit1of3/
http://h20219.www2.hp.com/services/cache/602196-0-0-225-121.html
http://h20219.www2.hp.com/services/cache/602196-0-0-225-121.html
http://www-935.ibm.com/services/us/index.wss/casestudy/imc/a1025831?cntxt=a1000056
http://www-935.ibm.com/services/us/index.wss/casestudy/imc/a1025831?cntxt=a1000056
http://www.istqb.org/download.htm
http://www.istqb.org/download.htm
http://www.industrialxp.com
http://www.industrialxp.com
http://www.scrummasterchecklist.org
http://www.scrummasterchecklist.org


572

Jeffries01 Jeffries, R., 2001. “Essential XP: Card, Convention, Confirmation,” XProgram-
ming.doc. An Agile Software Development Resource, at http://xprogramming.com/
xpmag/expcardconversationconfirmation/

Jeffries02 Jeffries, R., 2002. “Foreword by Ron Jeffries,” in Agile Modeling [Ambler02]

Jeffries04 Jeffries, R., 2004. Extreme Programming Adventures in C#, Microsoft Press

Jeffries09 Jeffries, R., 2009. “Re: Version One,” ScrumDevelopment mailing list, at http://
groups.yahoo.com/group/scrumdevelopment/message/39103

Jones08 Jones, C., 2008. Applied Software Measurement, McGraw-Hill

Jorgensen08 Jorgensen, P., 2008. Software Testing: A Craftsman’s Approach, 3rd edition, Auer-
bach Publications

JPZ96 Janicki, R., Parnas, D., Zucker, J., 1996. “Tabular Representation in Relational
Documents,” published in [BHS97]. Reprint in [HW01].

Kahn04 Kahn, K., 2004. The PDMA Handbook of New Product Development, 2nd edition,
John Wiley

Kanigel05 Kanigel, R., 2005. The One Best Way: Frederick Winslow Taylor and the Enigma of
Efficiency, MIT Press

Kao08 Kao, C., 2008. Pushmi, at http://search.cpan.org/~clkao/Pushmi-v0.994.0/lib/
Pushmi.pm

Kato06 Kato, I., 2006. Summary Notes from Art Smalley Interview with Mr. Isao Kato, at
http://artoflean.com/documents/pdfs/Mr_Kato_Interview_on_TWI_and_TPS.pdf

KBP02 Kaner, C., Bach, J., Bettichord, B., 2002. Lessons Learned in Software Testing,
Wiley

Kerievsky05 Kerievsky, J., 2005. Refactoring to Patterns, Addison-Wesley

Kerth01 Kerth, N., 2001. Project Retrospectives: A Handbook for Team Reviews, Dorset
House

KGKLS07 Koenig, D., Glover, A., King, P., Laforge, G., Skeet, J., 2007. Groovy in Action, Man-
ning

KJ04 Kircher, M., Jain, P., 2004. Pattern-Oriented Software Architecture: Patterns for
Resource Management, Addison-Wesley

Koch05 Koch, A., 2005, Agile Software Development. Evaluating the Methods for your
Organization, Artech House

Koch04 Koch, C., 2004. “Software Quality: Bursting the CMM Hype,” CIO.com News Arti-
cle, March 2004

Kohn93 Kohn, A., 1993. Punished by Rewards, Houghton Mifflin

Koskela08 Koskela, L., 2008. Test-Driven, Manning

Koskinen03 Koskinen, J., 2003. “Software Maintenance Costs,” at http://users.jyu.fi/~koskinen/
smcosts.htm

https://less.works For Gene Gendel only, id:gene-gendel

http://xprogramming.com/xpmag/expcardconversationconfirmation/
http://xprogramming.com/xpmag/expcardconversationconfirmation/
http://groups.yahoo.com/group/scrumdevelopment/message/39103
http://groups.yahoo.com/group/scrumdevelopment/message/39103
http://search.cpan.org/~clkao/Pushmi-v0.994.0/lib/Pushmi.pm
http://search.cpan.org/~clkao/Pushmi-v0.994.0/lib/Pushmi.pm
http://artoflean.com/documents/pdfs/Mr_Kato_Interview_on_TWI_and_TPS.pdf
http://users.jyu.fi/~koskinen/smcosts.htm
http://users.jyu.fi/~koskinen/smcosts.htm


573

KP99 Koomen, T., Pol, M., 1999. Test Process Improvement, Addison-Wesley

Kylmäkoski03 Kylmäkoski, R., 2003. “Efficient Authoring of Software Documentation using
RaPiD7,” Proceedings of the 25th International Conference on Software Engineer-
ing

Larman03 Larman, C., 2003. Agile and Iterative Development: A Manager's Guide, Addison-
Wesley

Larman04a Larman, C., 2004. Applying UML and Patterns: An Introduction to Object-Ori-
ented Analysis and Design and Iterative Development, Prentice Hall

Larman04b Larman, C., 2004. “Chapter 6: Use Cases,” Applying UML and Patterns, at http://
www.craiglarman.com/wiki/downloads/applying_uml/
larman-ch6-applying-evolutionary-use-cases.pdf

Laukkanen06 Laukkanen, P., 2006. Data-Driven and Keyword-Driven Test Automation
Frameworks, Helsinki University of Technology, Master’s Thesis, at http://
code.google.com/p/robotframework/

Lecht67 Lecht, C., 1967. The Management of Computer Programming Projects, American
Management Association

Leffingwell07 Leffingwell, D. 2007. Scaling Software Agility, Addison-Wesley

Lencioni02 Lencioni, P., 2002. The Five Dysfunctions of a Team: A Leadership Fable, Jossey-
Bass

Lencioni05 Lencioni, P., 2005. Overcoming The Five Dysfunctions of a Team, Jossey-Bass

LH07 Loughran, S., Hatcher, E., 2005. Ant in Action, Manning

LH08 Liker, J., Hoseus, M., 2008. Toyota Culture: The Heart and Soul of the Toyota Way,
McGraw-Hill

Liker04 Liker, J., 2004. The Toyota Way, McGraw-Hill

Link01 Link, J., 2001. Unit Tests Mit Java: Der Test-First-Ansatz, Dpunkt, translated as
[Link03]

Link03 Link, J., 2003. Unit Testing in Java: How Tests Drive the Code, Morgan Kaufman

LM06a Liker, J., Meier, D., 2006. The Toyota Way Fieldbook, McGraw-Hill

LM06b Liker, J., Morgan J., 2006. The Toyota Product Development System, Productivity
Press

Lundgren08 Lundgren, M., 2008. “The Agile Organization” presentation at Scrum Gathering
2009, Stockholm

LV08 Larman, C., Vodde, B., 2008. Scaling Lean & Agile Development: Thinking and
Organizational Tools for Large-Scale Scrum, Addison-Wesley

LV09 Larman, C., Vodde, B., 2009. Lean Primer, at www.leanprimer.com

LW05 Lehmann, D., Winer, R., 2005. Product Management, McGraw Hill

https://less.works For Gene Gendel only, id:gene-gendel

http://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
http://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
http://www.craiglarman.com/wiki/downloads/applying_uml/larman-ch6-applying-evolutionary-use-cases.pdf
http://code.google.com/p/robotframework/
http://code.google.com/p/robotframework/
www.leanprimer.com


574

MacCormack01 MacCormack, A., 2001. “Product-Development Practices That Work,” MIT Sloan
Management Review. Vol. 42, No. 2.

Magennis07 Magennis, T., 2007. “Continuous Integration and Automated Builds at Enterprise
Scale,” at http://blog.aspiring-technology.com/file.axd?file=
Continuous+Integration+at+Enterprise+Scale.pdf

Marick03 Marick, B., 2003, My Agile Testing Project, at http://www.exampler.com/old-blog/
2003/08/21/

Martin91 Martin, J., 1991. Rapid Application Development, Macmillan

Martin02 Martin, R., 2002. Agile Software Development: Principles, Patterns and Practices,
Addison-Wesley

Martin04 Martin, R., 2004. “Estimating Costs Up Front,” Extreme Programming mailing
list, at http://groups.google.com/group/comp.software.extreme-programming/msg/
9a203fad85f3d363?hl=en

Martin08 Martin, R., 2008. Clean Code, Addison-Wesley

MC05 Mugridge, R., Cunningham, W., 2005. Fit for Developing Software, Prentice Hall

McBreen01 McBreen, P., 2001. Software Craftsmanship, Addison-Wesley

McConnell04 McConnell, S., 2004. Code Complete, Microsoft Press

Mecklenburg04 Mecklenburg, R., 2004. Managing Projects with GNU Make, O’Reilly

Meszaros07 Meszaros, G., 2007. xUnit Test Patterns: Refactoring Test Code, Addison-Wesley

Meyers76 Meyers, G., 1976. Software Reliability, Wiley-Interscience

Meyers79 Meyers, G., 1979. The Art of Software Testing, Wiley-Interscience

Mironov08 Mironov, R., 2008. The Art Of Product Management, Enthiosys Press

MJ05 Moløkken-Østvold, K., Jørgensen, M., 2005. “A Comparison of Software Project
Overruns—Flexible versus Sequential Development Models,” IEEE Transactions
on Software Engineering, Vol. 31, No. 9, Sept 2005

MM08 Martin, R., Melnik, G., 2008. “Tests and Requirements, Requirements and Tests:
A Möbius Strip,” IEEE Software, Vol. 25, Issue 1, Jan/Feb 2008

Monson-
Haefel09

Monson-Haefel, R., 2009. 97 Things Every Software Architect Should Know: Col-
lective Wisdom from the Experts, O’Reilly Media

Moore91 Moore, G., 1991. Crossing the Chasm, HarperCollins Publishers

MR04 Manns, M.L., Rising, L., 2004. Fearless Change: Patterns for Introducing New
Ideas, Addison-Wesley

MRB98 Martin, R., Riehle, D., Buschmann, F., 1998. Pattern Languages of Program
Design 3, Addison-Wesley

MVN06 Manolescu, D., Voelter, M., Noble, J., 2006. Pattern Languages of Program Design
5, Addison-Wesley

https://less.works For Gene Gendel only, id:gene-gendel

http://blog.aspiring-technology.com/file.axd?file=Continuous+Integration+at+Enterprise+Scale.pdf
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://groups.google.com/group/comp.software.extreme-programming/msg/9a203fad85f3d363?hl=en
http://groups.google.com/group/comp.software.extreme-programming/msg/9a203fad85f3d363?hl=en
http://blog.aspiring-technology.com/file.axd?file=Continuous+Integration+at+Enterprise+Scale.pdf


575

Netscape08 Netscape, 2008. “End of Support for Netscape Browsers,” Netscape Blog at http://
blog.netscape.com/2007/12/28/end-of-support-for-netscape-web-browsers

NN03 Ngwenyama, O., Nielsen, P., 2003. “Competing Values in Software Process
Improvement: An Assumption Analysis of CMM From an Organizational Culture
Perspective,” IEEE Transactions on Software Engineering, Vol 50. No. 1, Feb 2003

Norman02 Norman, D., 2002. The Design of Everyday Things, Basic Books

Norman05 Norman, D., 2005. Emotional Design: Why We Love (or Hate) Everyday Things,
Basic Books

North03 North, D., 2003. “Introducing BDD,” Better Software Magazine, Aug 2003. Also at
http://dannorth.net/introducing-bdd

NV04 Newkirk, J., Vorontsov, A., 2004. Test-Driven Development in Microsoft .NET,
Microsoft Press

Ohno88 Ohno, T., 1988. The Toyota Production System: Beyond Large-Scale Production,
Productivity Press

Ohno07 Ohno, T., 2007, Workplace Management, Gemba Press

OO00 Olson, G., Olson, J., 2000. “Distance Matters,” Human-Computer Interaction, Vol.
15, Sept 2000

Owen97 Owen, H., 1997. Open Space Technology: A User’s Guide, Berrett-Koehler Publish-
ers

Parkinson57 Parkinson, C., 1957. Parkinson’s Law, Buccaneer Books

Parnas72 Parnas, D., 1972. “On the Criteria to be Used in Decomposing Systems in Mod-
ules,” Communications of the ACM, Vol. 15, Issue 12, 1972, also in [HW01]

Parnas94 Parnas, D., 1994. “Software Aging,” Proceedings of the 16th International Confer-
ence on Software Engineering, also in [HW01]

Patton05 Patton, J., 2005. “It’s All in How You Slice It,” Better Software Magazine. Jan 2005.
Also at http://www.agileproductdesign.com/writing/how_you_slice_it.pdf

Paulk01 Paulk, M., 2001, “Extreme Programming from a CMM Perspective,” IEEE Soft-
ware, Vol. 18, Issue 6, Nov/Dec 2001

Paulk05 Paulk, M., 2005. “Foreword by Mark Paulk,” in Agile Software Development
[Koch05]

Pichler10 Pichler, R., 2010. Agile Product Management with Scrum, Addison-Wesley

Poole08 Poole, D., 2008. “Multi-Stage Continuous Integration,” at 
http://damonpoole.blogspot.com/2007/12/multi-stage-continuous-integration.html

Poppendieck04 Poppendieck, M., 2004. “An Introduction to Lean Software Development,” at
www.poppendieck.com/pdfs/Interview.pdf

Poppendieck05 Poppendieck, M., 2005. “Agile Contracts” Agile 2005 Conference Workshop, at
www.poppendieck.com/pdfs/AgileContracts.pdf

https://less.works For Gene Gendel only, id:gene-gendel

http://blog.netscape.com/2007/12/28/end-of-support-for-netscape-web-browsers
http://blog.netscape.com/2007/12/28/end-of-support-for-netscape-web-browsers
http://dannorth.net/introducing-bdd
http://www.agileproductdesign.com/writing/how_you_slice_it.pdf
http://damonpoole.blogspot.com/2007/12/multi-stage-continuous-integration.html
www.poppendieck.com/pdfs/Interview.pdf
www.poppendieck.com/pdfs/AgileContracts.pdf


576

Poppendieck06 Poppendieck, M., Poppendieck, T., 2006. Implementing Lean Software Develop-
ment: From Concept to Cash, Addison-Wesley

PRL07 Parsons, D., Ryu, H., Lal, R., 2007. “The Impact of Methods and Techniques on
Outcomes from Agile Software Development Projects,” IFIP—Organizational
Dynamics of Technology-Based Innovation: Diversifying the Research Agenda.
Springer (draft)

PS06 Pfeffer, J., Sutton, R., 2006. Hard Facts, Dangerous Half-Truths And Total Non-
sense, Harvard Business School Press

Rasmusson04 Rasmusson, J., 2004. “Long Build Trouble Shooting Guide,” Proceedings of XP/
Agile Universe 2004 Conference

Reeves92 Reeves, J., 1992. “What is Software Design?” C++ Journal, Fall 1992

Reifer02 Reifer, D., 2002. “How Good are Agile Methods?” IEEE Software, July/Aug 2002.

Reinertsen97 Reinertsen, D., 1997. Managing the Design Factory, Free Press

Reppert04 Reppert, T., 2004. “Don’t Just Break Software. Make Software,” Better Software
Magazine, Jul/Aug 2004

RL06 Roock, S., Lippert, M., 2006. Refactoring in Large Software Projects, Wiley

Robot09 Robot. 2009. Robot Framework User Guide, at http://code.google.com/p/
robotframework/wiki/UserGuide

Rogers04 Rogers, O., 2004, “Scaling Continuous Integration,” Proceedings of Extreme Pro-
gramming 2004 Conference

Rogers08 Rogers, O., 2008, “Beyond Continuous Integration: Continuous Monitoring,” at
http://www.hanselminutes.com/default.aspx?showID=131

RS98 Reger, G., Schmoch, U., 1998. Organisation of Science and Technology at the
Watershed, Physica-Verlag Heidelberg

SB02 Schwaber, K., 2002. Agile Software Development with Scrum, Prentice Hall

Schatz05 Schatz, B., 2005. “Scrum at Primavera,” presentation at Scrum Gathering 2005,
Boston

Schwaber04 Schwaber, K., 2004. Agile Project Management with Scrum, Microsoft Press

Schwaber05 Schwaber, K., 2005. Certified ScrumMaster Course, version 6.3

Schwaber06 Schwaber, K., 2006. Scrum et al. Video Google talk, at http://video.google.com/
videoplay?docid=-7230144396191025011#

Schwaber07a Schwaber, K., 2007. The Enterprise and Scrum, Microsoft Press

Schwaber07b Schwaber, K., 2007. “Scrum Release 2.0?” Scrum Alliance Articles, at http://
www.scrumalliance.org/articles/12-scrum-release

Schwaber07c Schwaber, K., 2007. Story told in Certified ScrumMaster course.

Schwaber09 Schwaber, K., 2009. Scrum Guide, May 2009, ScrumAlliance, at http://
www.scrumalliance.org/resource_download/598

https://less.works For Gene Gendel only, id:gene-gendel

http://code.google.com/p/robotframework/wiki/UserGuide
http://code.google.com/p/robotframework/wiki/UserGuide
http://www.hanselminutes.com/default.aspx?showID=131
http://video.google.com/videoplay?docid=-7230144396191025011#
http://video.google.com/videoplay?docid=-7230144396191025011#
http://www.scrumalliance.org/articles/12-scrum-release
http://www.scrumalliance.org/articles/12-scrum-release
http://www.scrumalliance.org/resource_download/598
http://www.scrumalliance.org/resource_download/598


577

Schwartz74 Schwartz, J., 1974. “Construction of Software: Problems and Practicalities,” pub-
lished in [Horowitz74]

SD76 Doyle, M., Straus, D., 1976, How to Make Meetings Work, Jove Book

SEI08 SEI, 2008. CMMI FAQ: CMMI Appraisals, at http://www.sei.cmu.edu/cmmi/start/
faq/appraisals-faq.cfm

SEI09 SEI, 2009. CMMI Overview, at http://www.sei.cmu.edu/cmmi/general (accessed
Jan. 2, 2009)

Senge94 Senge, P., 1994. The Fifth Discipline, Doubleday Business

SF09 Shimokawa, K., Fujimoto, T., 2009. The Birth of Lean, Lean Enterprise Institute

Shingo89 Shingo, S., 1989. A Study of the Toyota Production System, Productivity Press

Shore03 Shore, J., 2003. “How I Use Fit,” at http://jamesshore.com/Blog/
How-I-Use-Fit.html

Shore06 Shore, J., 2006. “Continuous Integration on a Dollar a Day,” at http://
jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html

SJJ07 Sutherland, J., Jakobsen, C., Johnson, K., 2007. “Scrum and CMMI Level 5: The
Magic Potion for Code Warriors,” Proceedings of the 2007 Agile Software Develop-
ment Conference, IEEE Computer Society

Smith07 Smith, P., 2007. Flexible Product Development: Building Agility for Changing
Markets, Jossey-Bass

Spolsky04 Spolsky, J., 2004. Joel on Software, Apress

SR07 Stewart, T. A., Raman, A. P., 2007. “Lessons from Toyota's Long Drive: Katsuaki
Watanabe,” Harvard Business Review, Vol. 85

SSRB00 Schmidt, D., Stal, M., Rohnert, H., Buschmann, F., 2000. Pattern-Oriented Soft-
ware Architecture Volume 2: Patterns for Concurrent and Networked Objects, Addi-
son-Wesley

Stapleton03 Stapleton, J., 2003. DSDM: Business Focused Development. Addison Wesley

Sutherland08 Sutherland, J., 2008. Mail to ScrumTrainer list

Sutherland09a Sutherland, J., 2009. Personal communication

Sutherland09b Sutherland, J., 2009. Personal communication

Sutherland09c Sutherland, J., 2009. Personal communication

SW07 Shore, J., Warden, S., 2007. The Art of Agile Development, O’Reilly

Tate05 Tate, K., 2005. Sustainable Software Development: An Agile Perspective, Addison-
Wesley

TR98 Thomke, S., Reinertsen, D., 1998. “Agile Product Development: Managing Devel-
opment Flexibility in Uncertain Environments,” California Management Review,
Fall 1998

https://less.works For Gene Gendel only, id:gene-gendel

http://www.sei.cmu.edu/cmmi/start/faq/appraisals-faq.cfm
http://www.sei.cmu.edu/cmmi/start/faq/appraisals-faq.cfm
http://www.sei.cmu.edu/cmmi/general
http://jamesshore.com/Blog/How-I-Use-Fit.html
http://jamesshore.com/Blog/How-I-Use-Fit.html
http://jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html
http://jamesshore.com/Blog/Continuous-Integration-on-a-Dollar-a-Day.html


578

VCK96 Vlissides, J., Coplien, J., Kerth, N., 1996. Pattern Languages of Program Design 2,
Addison-Wesley

Venkatesh08 Venkatesh, U., 2008. Managing Offshore Development Projects: An Agile
Approach, Multi-Media Publications

VH09 Voos, K., Hileman, A., 2009. “Using Virtual Worlds for Distributed Agile” presen-
tation at Agile2009 Conference, Chicago

Vodde08 Vodde, B., 2008. “Measuring Continuous Integration Capability,” CrossTalk: The
Journal of Defense Software Engineering, May 2008

Wageman99 Wageman, R., 1999. Research on Managing Groups and Teams: Groups in Context,
JAI Press

Wake03a Wake, W., 2003. “INVEST in Stories, and SMART tasks,” at http://xp123.com/
xplor/xp0308/index.shtml

Wake03b Wake, W., 2003. Refactoring Workbook. Addison-Wesley

Weinberg71 Weinberg, G., 1971. The Psychology of Computer Programming, Dorset House

Weinberg08 Weinberg, G., 2008. Perfect Software and Other Illusions about Testing. Dorset
House

Wipro08 Wipro, 2008. Wipro: About Us, at http://www.wipro.com/aboutus/whoweare.htm
(accessed July 10, 2008) 

WJ00 Weisbord, M., Janoff, S., 2000. Future Search, Berrett-Koehler Publishers

WJR90 Womack, J., Jones, D. T., Roos, D., 1990. The Machine That Changed the World,
Harper Perennial

Womack09 Womack, J., 2009. “Why Toyota Won and How Toyota Can Lose,” Lean Enterprise
Institute Newsletter, at http://www.lean.org/common/display/?o=750

WS95 Wood, J., Silver, D., 1995. Joint Application Development, Wiley

Zahran98 Zahran, S., 1998. Software Process Improvement, Addison-Wesley

https://less.works For Gene Gendel only, id:gene-gendel

http://xp123.com/xplor/xp0308/index.shtml
http://xp123.com/xplor/xp0308/index.shtml
http://www.wipro.com/aboutus/whoweare.htm
http://www.lean.org/common/display/?o=750


This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Large-Scale Scrum

• Try…Large-scale Scrum FW-1 for up to ten teams 
10

• Try…Large-scale Scrum FW-2 for ‘many’ teams 15

Test

• Avoid…Assuming testing means testing 24
• Try…Challenge assumptions about testing 25
• Avoid…Complex testing terminology 26
• Try…Simple testing classifications 27
• Avoid…Separating development and testing 29
• Avoid…Test department 30
• Avoid…Test department 32
• Avoid…TMM, TPI, and other ‘maturity’ models 32
• Avoid…ISTQB and other tester certification 32
• Try…Testers and programmers work together 33
• Try…Testers not only test 33
• Try…Technical writer tests 34
• Try…Educate and coach testing 34
• Try…Community of testing 35
• Try…Recognize project test smells 36
• Avoid…Separate test automation team 37
• Try…Feature team as test automation team 38
• Try…All tests pass—stop and fix 38
• Avoid…Using defect tracking systems during the 

iteration 39
• Try…Zero tolerance on open defects 39
• Avoid…Commercial test tools 40
• Try…Acceptance test-driven development 42
• Avoid…Traditional requirement handoff 46
• Avoid…Thinking A-TDD is for testers 47
• Avoid…Confusing TDD and A-TDD 47
• Try…A-TDD match the iteration flow 48
• Try…Discuss in workshop during Product Backlog 

refinement 49
• Try…Clarification over writing tests 49
• Try…Use examples 50
• Try…Product Owner writes tests 51
• Avoid…‘Optimizing’ the requirements workshop 

51
• Avoid…Computers and projectors in the workshop 

52
• Try…Condense workflow in business rules 52
• Try…Test the walls 52
• Try…Use table format 53
• Try…Workflow tests 54
• Try…Typical workshop agenda 54
• Try…Distill the tests 55

• Avoid…Multiple requirement descriptions 56
• Try…Use A-TDD coaches and facilitators 56
• Try…Robot Framework 57
• Try…Other A-TDD compatible tools 57
• Avoid…Conventional test tools for A-TDD 57
• Try…Wrap conventional test tools under an A-

TDD tool 58
• Try…Show tests in Sprint Review 59
• Avoid…Confusing acceptance and user-acceptance 

test 59
• Try…Automate all tests 60
• Try…Manual tests 61
• Try…Write “A-TDD tests” for non-automatable re-

quirements 62
• Try…Exploratory testing 62
• Try…Plan and time-box exploratory test sessions 

64
• Try…Continuous Integration System 65
• Try…Maintainable tests 65
• Try…Refactor tests 66
• Avoid…Duplication in and between tests 66
• Try…Delete tests 66
• Avoid…Test through the UI 67
• Try…Run tests frequently 67
• Avoid…Traceability 67
• Try…Traceability 68
• Try…Treat non-functionals the same as function-

als 69
• Try…Requirement area for non-functionals 70
• Try…Continuously run long-running tests 70
• Avoid…Expensive tests 71
• Try…Expensive tests 72
• Try…Automate expensive tests 72
• Try…Unit testing 72
• Try…CppUTest for C and C++ 73
• Avoid…Unit testing by a separate person 73
• Try…C++ xUnit framework for C 73
• Avoid…CUnit 73
• Try…Test-driven development 74
• Try…Use TDD coaches 74
• Try…Internal and external coaches 75
• Avoid…Write your own xUnit framework 76
• Try…Use a unit test framework in a compatible 

language 76
• Try…Write your own xUnit framework 76
• Try…Dual targeting 76
• Try…Run tests on the development environment 

76
• Try…Run tests on the real hardware 77

List of Experiments

https://less.works For Gene Gendel only, id:gene-gendel



• Try…Function-to-function-pointer refactoring 78
• Try…Learning tests 79
• Try…Learning tests for hardware 80
• Try…Refactor tests 81
• Try…Small tests that test only one thing 82
• Avoid…Slow unit tests 83

Product Management

• Try…Exploit business advantages of Scrum & lean 
thinking 100

• Try…Understand the changes with Scrum & lean 
thinking 104

• Avoid…Product management negotiating a “re-
lease contract” (scope & date) with R&D 106

• Try…Product management collaborates with R&D 
each iteration, adapting release scope or date 116

• Try…Challenge traditional product-management 
assumptions 117

• Try…Product Manager is Product Owner 120
• Avoid…Product Manager is not Product Owner 

120
• Avoid…Fake Product Owner 121
• Avoid…Business manager is not Product Owner 

121
• Try…Product management owns the product 122
• Try…Product Owner owns the product 122
• Avoid…Short-term product managers or focus 123
• Try…Fake Product Owner 123
• Try…Business manager is Product Owner 124
• Avoid…Believing Product Owner is just an analyst 

role 124
• Avoid…Believing Product Owner must attend the 

Daily Scrum 124
• Try…Product Owner product manager focuses out-

ward to the market and channels 124
• Avoid…Too ‘inward’ product management & Prod-

uct Owners 124
• Avoid…Too ‘outward’ product management & 

Product Owners 125
• Avoid…Us-Them: Product Owner versus Team 

125
• Avoid…“Product Owner” 126
• Try…“Product Owner” 127
• Try…Overall product manager is chief engineer 

128
• Avoid…Platform group with a “shared infrastruc-

ture” backlog 128
• Try…Add and do a cross-product common goal 128
• Try…Product Owners work together to maximize 

company ROI 131
• Try…One and only one Product Backlog 132

• Avoid…Fake team-level “Product Backlogs” 132
• Try…Area Product Owners when many teams 133
• Try…Product Owner Team 134
• Try…Map different scaling terms 134
• Try…Better behavior over ‘better’ PO scaling defi-

nitions 136
• Avoid…Try…“Product Owner Team” 136
• Avoid…Too inward-focused Product Owner Team 

137
• Try…Product Owner representative (supporting 

PO) 138
• Try…Value 139
• Avoid…Value 140
• Try…Prioritize with multiple weighted factors 141
• Try…Include total life-cycle cost of an item 142
• Avoid…Feature priority categories 143
• Avoid…False dichotomy yes/no answers to custom-

ers 145
• Try…Involve real users or customers in Sprint Re-

view 145
• Try…Product management connects teams and 

customers 146
• Avoid…Product management or Product Owner 

between teams and users 146
• Avoid…Multi-level P-M indirection from custom-

ers to teams 146
• Try…Shift R&D language toward P-M and user 

language 146
• Try…Extra help for product-manager Product 

Owner 147
• Avoid…SMEs not talking to customers 148
• Try…Product Management inspect and adapt 148
• Try…Product management education 149
• Try…Product Managers study Scrum & attend a 

course 149
• Try…Product managers Go See 149
• Try…Senior product managers coach 150
• Try…Invite displaced people to join product man-

agement 150

Planning

• Try…Kickstart large-scale Scrum with one initial
Product Backlog refinement workshop 155

• Try…Continuous product development rather 
than projects 157

• Try…Initial Product Backlog refinement work-
shop 158

• Try…Scaling Sprint Planning Part One 163
• Try…Simple Sprint Planning Part Two 166
• Try…Asynchronous or joint Product Backlog re-

finement 166

https://less.works For Gene Gendel only, id:gene-gendel



• Try…Plan bounded research or learning items 166
• Try…Plan infrastructure items by regular teams 

168
• Try…Avoid… Fixing defects 169
• Try…Product-level Definition of Done 170
• Avoid…Definition of Done defined by quality group 

173
• Avoid…Undone Work 173
• Avoid…Needing a Release Sprint 173
• Avoid…Needing to ‘harden’ 175
• Try…Include Scrum teams in a Release Sprint 175
• Try…After one Release Sprint, hand off remaining 

Undone Work to the Undone Unit 177
• Try…Reduce—and eventually, remove—the Un-

done Unit over time 178
• Try…Expand the Definition of Done 178
• Try…Expand team-level Definition of Done 179
• Try…Avoid…Early and incremental handoff of 

Undone Work 179
• Avoid…Try…Planning an ‘agile’ release train 180
• Try…Estimate with Story Points 181
• Try…Avoid…Synchronize points and range 182
• Try…Combine progress measures 183
• Try…Avoid…Estimate velocity before iteration-1 

184
• Try…Adjust duration estimate with Monte Carlo 

simulation 184

Coordination

• Try…Avoid…Cross-department coordinator 190
• Try…Integrate all functions into the teams 191
• Try…Focus on the overall product 193
• Try…Coordinator, ambassador, and scout activi-

ties 193
• Try…Team is responsible for coordination 194
• Avoid…External-to-team coordinator 195
• Avoid…Project managers 196
• Avoid…“Fake Scrum” by renaming the project 

manager role 196
• Avoid…ScrumMaster coordinates 197
• Try…Facilitation (rather than coordination) by 

ScrumMaster 197
• Try…Focus on overall product measures 198
• Avoid…Competition between teams 198
• Try…Myriad coordination methods 199
• Try…Scrum of Scrums 200
• Try…Use different questions for the Scrum of 

Scrums 201
• Try…Two-part Scrum of Scrums 202
• Avoid…Scrum of Scrums being a status meeting to 

management 202
• Avoid…Scrum of Scrums being a ScrumMaster 

meeting 203
• Try…CoP for ScrumMasters 203
• Try…Rotate Scrum of Scrums representatives 203
• Avoid…Frequently rotating representatives 203
• Try…Open Space 204
• Try…Town Hall meeting 205
• Try…Joint Scrum meetings 205
• Try…Joint Sprint Review bazaar 206
• Try…Prefer decentralization solutions over cen-

tralization ones 206
• Try…Send chickens to Daily Scrums 206
• Try…Travelers 207
• Try…Communities of Practice 207
• Try…Communication CoP 208
• Try…Increase shared space 208
• Try…Break cubicles and other barriers 209
• Try…Communicate in code 211
• Try…Communicate in tests 211
• Try…Environment mapping 211
• Try…Coordination working agreements 212

Requirements & PBIs

• Try…Group items into requirement areas 215
• Try…Group items into themes 216
• Avoid…Feature screening for PBIs 216
• Try…Prune an overgrown backlog 217
• Try…Prefer cell-like splitting over treelike split-

ting 217
• Try…Maintain at most one ancestor—direct or in-

direct 220
• Try…Maintain three levels when using Area Back-

logs 221
• Avoid…Maintaining more than three levels of split 

items 222
• Try…Use special terms for size of items 222
• Try…Defer or ignore implementation and analysis

of sub-items 223
• Avoid…Defect items in the Product Backlog—un-

less few 225
• Try…Add a single placeholder PBI for all defects—

when many 225
• Try…“Undone Work” and system-level NFRs as 

PBIs 225
• Avoid…Try…Separate “Undone Work” from the 

Product Backlog 226
• Try…Genuine research work as PBIs 227
• Try…Research items quickly lead to customer-cen-

tric PBIs 228

https://less.works For Gene Gendel only, id:gene-gendel



• Avoid…Fake research items: regular analysis, … 
228

• Avoid…Giving research items to separate ‘re-
search’ groups 228

• Try…Visual management for the Product or Re-
lease Backlog 229

• Try…Traceability with executable requirements 
as tests 229

• Try…Organize requirement artifacts to include… 
229

• Avoid…‘Solving’ requirement problems with a doc-
umented meta-model 232

• Avoid…A complex requirements meta-model 233
• Avoid…Describing a simple meta-model in a com-

plex way 233
• Avoid…Separate analysis or specialist groups 234
• Avoid…Separate systems-engineering group 234
• Avoid…Separate interaction design group 235
• Avoid…Separate architecture group 235
• Avoid…Fake team members 235
• Avoid…Product Owner Team as separate analysis 

group 236
• Try…Write customer-centric requirements (PBIs) 

236
• Avoid…Technical task ‘requirements’ (PBIs) 237
• Avoid…Technical task PBIs in team-level “Product 

Backlogs” 238
• Try…Ask, “Would users understand every PBI?” 

238
• Try…Prefer goal-oriented over solution-oriented 

requirements 238
• Try…Requirements workshops 240
• Avoid…Using computers in workshops 241
• Avoid…A large queue of well-analyzed, fine-

grained PBIs 242
• Try…Maintain only a small queue of fine-grained 

PBIs 242
• Try…Requirements workshops for Product Back-

log refinement 243
• Try…Specification by example—usually in tables 

245
• Try…Joint requirement workshops 246
• Try…Stop refining an item once it is fully IN-

VESTed 247
• Try…Split Product Backlog items (such as stories) 

247
• Try…Ask, “What benefit from splitting in this 

way?” 250
• Avoid…Adopting user stories because they are ‘ag-

ile’ 266
• Avoid…Believing writing user stories means user 

stories 266
• Try…Apply user stories with card, conversation, 

confirmation 266
• Avoid…User stories good; other models bad 267
• Try…Learn many analysis skills: user stories, use 

cases, … 268
• Try…Explore requirements as automated tests 

271
• Try…Prefer PBI titles in C-style user-story for-

mat—usually 271
• Avoid…Requirements management and ALM 

tools—for N years after agile adoption 273
• Avoid…Old-style, centralized, and hierarchical 

document tools 274
• Try…“Web 2.0” decentralized, networked tools 275
• Try…Baseline and version-control in your “Web 

2.0” tools 275
• Avoid…Requirement information in email 276
• Try…Aggregate email and discussion threads on 

webpages 276
• Try…RSS feeds on requirement page changes 276
• Try…Multiple page labels for a requirement page 

276

Design & Architecture

• Try…Think ‘gardening’ over ‘architecting’—Create 
a culture of living, growing design 282

• Try...Design workshops with agile modeling 289
• Try…Just-in-Time (JIT) modeling; vary the ab-

straction level 295
• Try…Design workshops each iteration 295
• Try…A couple of days to a couple of weeks of design 

workshops before first iteration 296
• Try…Design workshops in the team rooms 297
• Try…Joint design workshops for broader design is-

sues 298
• Try…Technical leaders teach at workshops 299
• Try…Architects and system engineers are regular 

(feature) team members 300
• Avoid…System engineers and architects outside of 

regular feature teams 300
• Try…Serious attention to user interface (UI) skills 

and design 300
• Try…UI designers in regular (feature) teams 300
• Avoid…UI designers in a separate UI design group 

300
• Try…Architectural analysis before architectural 

design (repeat) 301
• Try…Question all early architectural decisions as 

final 301
• Avoid…Conformance to outdated architectural de-

cisions 302
• Try…Hire and strive to retain master-programmer

‘architects’ 302

https://less.works For Gene Gendel only, id:gene-gendel



• Avoid…Architecture astronauts (PowerPoint ar-
chitects) 302

• Avoid…“Don’t model” advice from extremists 303
• Try…Prototypes in a different language 304
• Try…Very early, develop a walking skeleton with 

tracer code 305
• Try…Incrementally build ‘vertical’ architectural 

slices of customer-centric features 305
• Try…Do customer-centric features with major ar-

chitectural impact first 307
• Try…Architects clarify by programming spike so-

lutions 308
• Avoid…Architects hand off to ‘coders’ 308
• Try…Tiger team conquers then divides 308
• Try…SAD workshops at end of “tiger phase” 310
• Try…Agile SAD with views & technical memos 310
• Try…Back up “human infection” with an agile 

SAD workshop 310
• Try…Technical leaders teach during code reviews 

312
• Try…Experts participate in ongoing design work-

shops rather than late approval reviews 312
• Avoid…Approval reviews by experts at the end of 

a step 312
• Try…Design/architecture community of practice 

313
• Try…Show-and-tell during workshops 313
• Try…Component guardians for architectural in-

tegrity when shared code ownership 314
• Try…Component mailing lists 314
• Try…Internal open source with teachers—for tools 

too 315
• Try…Configurable design for customization 315
• Avoid…Branches for customization 315
• Avoid…Create ‘designs’ and then send them for off-

shore implementation 316
• Try…Architectural and design patterns 316
• Try…Promote a shared pattern vocabulary 316
• Try…Test on the old hardware as soon as possible 

317
• Try…HTML-ize and hyperlink your entire source 

code, daily 317
• Try…Lots of stubs, plus dependency injection 318
• Avoid…Using stubs to delay integration 319
• Try…Test-driven development for a better archi-

tecture 319
• Try…Dependency injection framework 320
• Try…Use an OS abstraction layer 320
• Try…Create a low-level hardware abstraction lay-

er (HAL) API 320
• Try…Create a mid-level object-oriented HAL 321
• Try…Create simulation layers for hardware, etc. 

321
• Try…More FPGAs and fewer ASICs 322
• Avoid…Big upfront interface design 324
• Try…Start with some weakly-typed interfaces, 

then strengthen 324
• Try…Simplify interface change coordination with 

feature teams 326
• Avoid…Freezing interfaces 327
• Try…Wrap calls to remote components with prox-

ies or adapters 327
• Try…Start with indirect interaction between ma-

jor components, then replace as needed 327

Legacy Code

• Avoid…Fixed content with unrealistic deadlines 
335

• Try… Transparency and customer collaboration 
337

• Avoid…Hiring many weak developers 339
• Avoid…Believing universities teach development 

skills 340
• Try…Increase organizational support for learning 

development skills 340
• Try…Support more self-study 341
• Avoid…Trivializing programming 341
• Try…Raise awareness of the negative impact of 

legacy code 342
• Avoid…Rewriting legacy code 343
• Try...Clean up your neighborhood 346
• Try…Write both high-level and unit tests 346
• Try…Rewrite lethal legacy code 347

Continuous Integration

• Avoid…Believing CI is a tool 352
• Avoid…Large batches of changes 355
• Avoid…Process preventing developers from check-

ing in 357
• Avoid… Branching 358
• Try…Speed up the build 361
• Try…Add new hardware to speed up the build 362
• Try…Parallelize the build 362
• Avoid…Using ClearCase 362
• Avoid…Treating test code differently than produc-

tion code 364
• Try…Multi-stage CI systems 364
• Try…A mix between feature and component CI 

systems 365
• Avoid…Manual promotion 365
• Try…Visual management with CI 367
• Try…Add red-green screens to your CI system 368

https://less.works For Gene Gendel only, id:gene-gendel



• Avoid…Large changes 369
• Avoid…Leaving obsolete interfaces in your code 

369
• Avoid…‘Solving’ organizational problems with 

technical solutions 370

Inspect & Adapt

• Avoid…Adoption with top-down management sup-
port 374

• Try…Adoption with top-down management sup-
port 375

• Try…Individuals & interactions over processes & 
tools 376

• Try…Job and personal safety (not role safety) 376
• Try…Patience 378
• Avoid…Adopting “do agile/lean” 378
• Avoid…Being agile/lean without agile/lean practic-

es/tools 379
• Avoid…Agile/lean transformations or change 

projects 380
• Try…Agile/lean adoption forever 381
• Try…Impediments service rather than change 

management 381
• Try…Human infection 385
• Avoid…Agile/lean adoption targets or rewards 385
• Avoid…Competitive ‘improvement’ 386
• Avoid…Try…‘Easy’ agile or lean adoption 386
• Try…Experiment rather than improve 387
• Avoid…Forcing adoption of practices 387
• Try…Encourage experiments; offer coaching 387
• Avoid…Adopting <X> because “agile didn’t work 

here” 388
• Avoid…IBM/Accenture/… agile adoption 388
• Avoid…Adopting agile with “agile management” 

tools 389
• Try…Transition from component to feature teams 

gradually 391
• Avoid…Waiting for the organization chart 393
• Avoid…In-line ‘ScrumMaster’ line- or project man-

agers 393
• Try…Line manager as ScrumMaster of out-of-line 

team 393
• Try…Break the walls—team areas with white-

boards 394
• Try…Two-week iterations to break waterfall hab-

its 394
• Try…One flip chart for tasks of one Product Back-

log item 395
• Try…Repeating large-audience introductions 397
• Try…Open-Space Technology for early-days adop-

tion 398
• Try…Big gatherings to share stories & experi-

ments 398
• Try…Central coaching group 399
• Avoid…Central coaching group with formal au-

thority 399
• Try…Concentrate the coaching on a few products 

399
• Try…External agile coaches 399
• Try…Pair external agile coaches with internal 

ones 400
• Avoid…Advisors/consultants who are not hands-

on coaches 400
• Try…Structured intensive curriculum for all 

teams 401
• Avoid…Internal agile/lean cookbooks 401
• Try…Joint Sprint Retrospectives 403
• Try…Joint Retrospective big improvements in 

Product Backlog 404
• Try…Cross-team working agreements 405
• Try…Joint Sprint Reviews 405
• Avoid…Try…Individual team-level Sprint Review 

406
• Try…Spend money on improving, instead of “add-

ing capacity” 406
• Try…Lower the waters in the lake 407
• Avoid…Rotating the ScrumMaster role quickly 

408
• Try…Reduce harm of policies that cannot yet be re-

moved 408

Multisite

• Try…Fewer sites 414
• Try…Think ‘multisite’ even when close 415
• Avoid…Believing in multisite Daily Scrum magic

or that multisite forces are inconsequential 415
• Avoid…Thinking ‘distributed’ must mean ‘dis-

persed’ 416
• Avoid…Thinking distributed pair programming is 

required 416
• Try…One iteration (Sprint) for the product, not for 

the site 417
• Avoid…Sites organized by components or func-

tions 417
• Try…Allocate a whole feature to a co-located fea-

ture team  418
• Avoid…Dispersed groups or ‘teams’ 419
• Try…A dispersed feature ‘team’ only if it really 

hurts 420
• Try…Gradual transition to co-located Scrum fea-

ture teams 421
• Try…Temporary co-location of a new dispersed 

team 422
• Try…Learn at existing sites, rather than add ‘ex-

https://less.works For Gene Gendel only, id:gene-gendel



pert’ sites 422
• Try…Prefer co-location of feature teams and Area 

Product Owner of one requirement area…but do 
not restrict this 423

• Try…Treat all sites as equal partners 423
• Try…Continuous integration in “one repository” 

across sites 424
• Try…Seeing is believing—ubiquitous cheap video 

technology and video culture 425
• Try…Include diverge–converge cycles in large vid-

eo meetings 428
• Try…Start early multisite video meetings infor-

mally 428
• Try…Multisite planning poker (estimation poker) 

429
• Try…Multisite Open Space to replace Scrum of 

Scrums 430
• Try…Experiment with multisite Scrum meeting 

formats and technologies 431
• Try…Cross-pollination 432
• Try…Welcoming committees and buddies 433
• Try…Multisite communities of practice (CoP), in-

cluding a communications CoP 433
• Try…Retrospectives at several levels 433
• Avoid…ScrumMaster representing the team 434
• Try…ScrumMasters acting as and encouraging 

matchmakers 435
• Try…Improve multisite design with Design chap-

ter tips 435
• Try…Basic practices for multisite meetings 435
• Try…Vigilance for shared agile vocabulary and 

concepts 437
• Try…Cultural education 437
• Try…Vigilance about a common coding style 438
• Try…Multisite tool that records audio or video 438
• Try…Tablets for shared sketching 439
• Avoid…Commercial ‘agile’ tools for multisite col-

laboration 439
• Avoid…Commercial development tools; use free 

tools 440
• Try…Wikis as your share point; employ a Wiki-

Gardener 440
• Avoid…ClearCase for multisite continuous inte-

gration 441

Offshore

• Try…Educate that agile offshore is not just short 
iterations 446

• Try…Agile guide for sales people and prospects 
448

• Try…Kickoff agile workshop to educate customers 
448

• Try…Remove barriers between offshore team and 
onshore client 450

• Try…Matchmakers rather than intermediaries 
450

• Avoid…Single point of contact 450
• Try…Seeing is believing—video sessions 451
• Try…Remote Sprint Review 454
• Try…Seeing is believing—client visits team 454
• Try…Team members visit client 455
• Try…Rotating ambassadors 455
• Try…Translator on team 455
• Try…Offshore team speaks English 456
• Try…Clients participate in a Sprint Retrospective 

456
• Try…Offshore group first does several iterations 

onshore 457
• Try…Proactively find and educate an onshore 

Product Owner 457
• Avoid…Believing ‘yes’; ask open questions 458
• Try…Offshore requirement workshops each itera-

tion 458
• Try…Offshore domain and vision workshop 460
• Try…Requirements documentation adaptively 

‘simple’ 461
• Try…Frequent onshore UI prototypes 461
• Try…Semi-detailed requirements documentation 

for iteration 462
• Try…Detailed requirements with A-TDD 462
• Try…Wiki for all requirements 462
• Try…A-TDD for UAT 463
• Try…Manual (if you must) UAT each iteration 463
• Try…Manual pre-UAT after each feature 464
• Try…Iterative requirements onshore to offshore 

465
• Try…Stable offshore Scrum teams 466
• Try…Simple titles map to special titles 467
• Try…Encouraging the teams to say ‘no’ 467
• Try…A ScrumMaster intent on self-organizing 

teams 468
• Try…Long-term agile coaching group if high attri-

tion 468
• Try…Outside-the-site agile coaches 469
• Try…Buddy system if high attrition 469
• Avoid…Onshore management, offshore develop-

ment 469
• Try…Offshoring features, not disciplines or com-

ponents 470
• Try…Treating the offshore organization as inter-

nal partners 470
• Try…Dispersed feature team if us-them is a prob-

lem 472

https://less.works For Gene Gendel only, id:gene-gendel



• Avoid…Unbalanced onshore favoritism or bias 472
• Avoid…“four-year programmer” partners 473
• Try…Experts coach/review rather than dictate de-

sign 474
• Avoid…Outsourcers saying “Leave it to us, we do

agile for you” 475
• Avoid…Outsourcers with top-heavy management 

476
• Avoid…“four-year programmer” outsourcers 477
• Avoid…Outsourcers whose environment does not 

“walk the agile talk” 477
• Avoid…Outsourcers with analysis, coding, or test-

ing ‘factories’ 478
• Avoid…Try…Large outsourcers 479
• Try…Interview outsourcer-programmers by pro-

gramming 479
• Try…The great programmers forever 480
• Try…Improve together with your outsourcer 480
• Avoid…Believing CMMI appraisal or certification 

means much in creative R&D work 489
• Avoid…Believing ‘agile’—or any—certification 

means much 493
• Avoid…Toxic CMMI consultants and appraisers 

494
• Try…Alternative contract models 494
• Try…Fixed price and fixed scope with agility 495
• Avoid…Commercial tools 495

Contracts

• Try…Share these key insights with contract law-
yers 500

• Try…Lawyers study agile, iterative, & systems-
thinking concepts 501

• Try…Appreciate a traditional lawyer’s point of 
view 502

• Try…Debug common misunderstandings when 
lawyers are introduced to the third agile value 504

• Try…Lawyers study problems arising from silo 
mentality and lack of systems thinking 505

• Try…Lawyers study the impact of potentially de-
ployable two-week increments on assumptions and 
contracts 509

• Try…Lawyers study how agility reduces risk and 
exposure 511

• Try…Heighten lawyer sensitivity to software 
project complexity by analogies to legal work 513

• Avoid…Incentives and penalties 514
• Try…Share the pain/gain 515
• Avoid…“Quality Management Plan” and “Deliver-

ables List” 515
• Try…Collaborate early and often with lawyers 516
• Avoid…Fixed-price, fixed-scope (FPFS) contracts 

531
• Try…Variable-price variable-scope progressive 

contracts 536
• Try…Increase flexibility in project and contract 

variables 538
• Try…Target-cost contracts 540
• Try…Multi-phase variable-model frameworks 543

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



589

2
A
acceptance test-driven development

coach 56
compared to test-driven development 47
definition 42
for requirements 271
for UAT 463
in iteration 48
is not testing 47
offshore 462
overview 44
recommended reading 96

adapters 327
adoption

agile curriculum 401
avoid cookbooks 401
large-group introductions 397
Open Space 398
overview 373
project 380
targets 385

Adzic, Gojko 49
agile modeling 268, 292, 303

in design workshops 289
ambassador

activities in coordination 194
multisite 432
offshore 455

analysis
see requirements

analysis group 234
Ancona, Deborah 193
andon 359
appraisals

CMMI 480
appraisers

CMMI 494
Arbogast, Tom 499
architect

active master programmers 288, 302
astronauts 302
avoid handing off to programmers 308
avoid separate review of work 312
coaches during design workshops 299
impact if not programming 286

PowerPoint 285, 302
program spikes 308
programmer in tiger team 308
teaches during code reviews 312

architecture
analysis 301
and customer-centric features 307
build vertical slices 305
Community of Practice 313
design 301
documentation 310

see SAD workshops
group 234
integrity 293
outdated 302
question finality 301
see also design
spikes 308
versus growing, gardening 282

Area Backlog 15, 133, 215, 221, 555
Area Product Owner 15, 133, 135, 136, 215,
423, 555
artifacts

see documentation
A-TDD

see acceptance test-driven development
attrition 468, 469

B
backlog grooming

see Product Backlog refinement
best practices 4, 492
branching 358
browser wars 334
bug-free code 39
build speed 361
business advantages 100
business analyst

not the Product Owner 124
business manager

as Product Owner 121
business rules 52

INDEX

https://less.works For Gene Gendel only, id:gene-gendel



590

C
C++ unit testing 73
career paths 342
cargo cult 2
Carmel, Erran 413
certifications

agile 493
CMMI 480

change management
contracts 521

change project 380
changes

large ones 369
chief engineer 128, 191
chief Product Owner 135
clean up your neighborhood 346
ClearCase

avoid 362, 441
CMMI

appraisers 494
overview 480

coaches
avoid coaches who aren’t hands-on 400
external 399
external and internal 400
offshore 469

coaching
internal group 399

code
HTLM-ize it 317
is the design 282
multisite 438
reviews 312

coffee 86
Cohn, Mike 195
collaboration 116
co-located team 413
commitments 190, 335
committer role 314
communicate in code 211
communication barriers 209
Communities of Practice

design/architecture 313
for communication 208
general 207

multisite 433
Community of Practice

testing 35
competition between teams 198
component guardians 314
component teams

drawbacks 553
to feature teams 391

Concordion 57
continuous integration

developer practice 352
how frequently? 356
misconceptions 351
multisite 424
overview 351

continuous integration system
multi-stage 364
overview 65, 359
scaling 361
scaling example 366

continuous product development 157
contract game 106
contract negotiation 106
contracts

acceptance 522
agile 518
appreciate lawyer point of view 502
change management 521
collaborate with lawyers 516
collaboration 116
common misunderstandings 504
contract game 106
deliverables 525
delivery 519
fixed price 527
fixed-price fixed-scope 531
hybrid pricing 530
incentives, rewards, penalties 514
internal 190
key agile insights 500
lawyer education 501, 509, 511, 513
liability 524
multi-phase models 539
multi-phase variable-model 543
offshore 494

https://less.works For Gene Gendel only, id:gene-gendel



591

overview 499
payment timing 526
pay-per-use pricing 529
progressive 536
release contract 106
scope 519
silo mentality 505
target-cost 520, 540
termination 522
thinking about 500
time and materials 527
traditional assumptions 504
value-based pricing 528
variable-price variable-scope 536
warranty 525

cookbooks 401
coordination

centralized 200
cross-department 190
decentralized 206
meetings 200
responsibility for 196
ScrumMaster’s responsibilities 197
team is responsible for 194
thinking about 189
travelers 207

coordinator 190
coordinator, ambassador, and scout 193
copy-paste 336
CppUTest 73
craftsmanship 337, 339
cross-department coordinator 190
cross-functional teams 191
cubicles 209
Cucumber 57
culture

multisite 437
overview 468

Cunningham, Ward 57
customer documentation 192
customer-facing test 42
customers 145

D
Daily Scrum 14, 124
defect tracking 39
defects

(to fix) in Product Backlog 225
zero tolerance 39

Definition of Done 15, 170, 178
demo preparation 59
department interfaces 190
dependency injection 318, 319, 320
design

multisite 435
overview 281
see also architecture
sending offshore 316
thinking about 282
walking skeleton 305

design patterns 316
design workshops

at the start 296
each iteration 295
in team room 297
joint for multiple teams 298
overview 289

developer testing 72
development skills 335, 339
discuss-develop-deliver cycle 44
dispersed team 413, 416, 419, 420, 472
distributed teams 413, 416
documentation

architectural 310
offshore 461, 462
requirements

done
see Definition of Done

dual targeting 76
duplication

between requirements and tests 56
between tests 66
code 82

E
education

for all teams 401

https://less.works For Gene Gendel only, id:gene-gendel



592

embedded software
learning tests for new hardware 80
testing 77

environment mapping 211
epic

see splitting
terminology 222

estimation
Monte Carlo simulation 184
multisite 429
overview 181
value 139

examples for requirements 50, 245
experiments 2
exploratory testing 62
external coordinator 195
Extreme Programming

see XP

F
false dichotomies 2
Feathers, Michael 73
feature 222
feature screening 216
feature teams

as automation team 38
choosing 554
dispersed 420
from component teams 391
in large-scale Scrum 12
multisite 418
overview 549
transition 555
vs component teams 551
vs project groups 552

Fit 57
FitNesse 57
fixed-price contracts

see contracts
flexibility and specialization 551
Fowler, Martin 351
FPGA 322
function-to-function-pointer refactoring 78
FURPS+ 231

G
Git 358
Grenning, James 97
grooming

see Product Backlog refinement
growing vs building 355

H
Hackman, Richard 198
hardware 317
hardware abstraction layer 320, 321
hardware design 322
hardware simulators 71
Hetzel, Bill 29
Hohmann, Luke 152

I
impediments

backlog 381
service 381

improvement 373
incentives 514
incremental handoff 179
infrastructure work 128, 168
inspect-adapt

overview 373
product management 148

interaction design
see UI design

interaction design group 234
interface API design 323, 324, 326
INVEST test 247
ISTQB 32
iteration planning

see Sprint Planning

J
jidoka 353
JIT modeling 295
joint design workshop 298
joint requirement workshops 246
joint Scrum meetings 205
joint Sprint Retrospective 15, 17, 403

https://less.works For Gene Gendel only, id:gene-gendel



593

joint Sprint Review 17, 405

K
Klärck, Pekka 57

L
lake and rocks metaphor 407
language 456
large-scale Scrum

artifacts 13
definition 9
framework-1 10
framework-2 15
overview 9, 10
roles 12

law of communication paths 199
law of the inverse relationship between size and
skill 339
lead Product Owner

overall 135
learning debt 336
learning tests 79
Lecht, Charles 334
legacy code

awareness 342
lethal 347
overview 333
solution 343

line manager 393

M
maintainable tests 65
Marick, Brian 27
Martin, Bob 57
matrix organization 31
MDA 291
MDD 291
meetings

multisite 428, 431, 435
Meszaros, Gerard 36
milestone 108
mocks 318, 321
modeling

agile 292
avoid extremists 303
just-in-time 295
requirements
tools 291

Monte Carlo simulation 184
moving skeletons 368
multisite

ambassador 432
avoid ClearCase 441
centrifugal forces 413
coding style 438
Communities of Practice 433
continuous integration 424
culture 437
design 435
dispersed vs. distributed 416
estimation 429
feature team 418
is non-trivial 415
matchmakers 435
meetings 425, 431, 435
one iteration per product, not site 417
Open Space 430
overview 413
partner sites 423
planning poker 429
Scrum of Scrums 430
shared space 209
site organization 417
teams 420
thinking about 414
tools 438, 439
transition to feature teams 421
video culture 425, 428
visits 432

myriad coordination methods 199

N
Netscape 334
non-functional requirements

in Product Backlog 225
see FURPS+

https://less.works For Gene Gendel only, id:gene-gendel



594

O
offshore

acceptance TDD 462
ambassador 455
certification 480
CMMI 480
CMMI appraisers 494
coaches 469
contracts 494
culture 468
design problems 316
documentation 461, 462
domain and vision workshop 460
educate customers 446
educate Sales 448
feature teams 470
kickoff workshop 448
language 456
matchmakers 450
onshore partnership 469
onshore Product Owner 457
overview 445
partnership 470
planning 470
remove barriers 450
requirements 462, 465
requirements workshop 458
ScrumMaster 468
Sprint Retrospective 456
Sprint Review 454
team visits onshore 457
teams 466
titles 467
tools 495
translator on team 455
UAT 463, 464
UI design 461
video sessions 451
visits both ways 454

Open Space
for agile adoption 398
multisite 430
overview 204

outsourcer
avoid factories and factory mindset 478

choose good programmers 479
choosing 475
four-year programmers 477
improve together 480
poor environment 477
top-heavy management 476

outsourcing
and legacy code 341
choosing a partner 475
overview 445

overall product focus 193, 198
overall Product Owner 135
overburden 337

P
PBI 215
PDMA 152
penalties 514
personal safety 376
Pichler, Roman 152
planning

infrastructure 168
iteration 163
overview 155
research and learning 166
Sprint 163

planning poker
multisite 429

platform departments 191
platform development 128, 168
Poppendieck, Mary 4
potentially shippable 26
potentially shippable product increment 14, 170
PowerPoint architects 302
practices

context dependent 4
pricing

contracts and outsourcing 527
prioritization

avoid categories 143
of Product Backlog 139
of value 139, 141

Product Backlog
Area Backlog 215

https://less.works For Gene Gendel only, id:gene-gendel



595

avoid tasks 237
avoid team-level backlogs 238
creation 155
items 215
major improvement goals 404
one per product 132
only one per product 13
PBI 215
prioritization 139, 141
refinement 166
themes 216
visual management 229

Product Backlog refinement
for A-TDD 49
initial 155, 158
joint or asynchronous 166
overview 15
workshop 243

product management
avoid short-term focus 123
changes when adopting Scrum 104
collaboration with R&D 116
contract negotiation 106
inspect-adapt 148
overview 99
traditional assumptions 117

product manager 120, 126, 128
Product Owner 120, 122, 135

Area 15, 133, 135, 136, 215
avoid too inward 124
chief 135
fake 123
has business authority 121
help from Team 147
interaction with other POs 131
lead 135
looks outward 124
not just an analyst 124
offshore development 457
overall 135
overview 12, 120
PO Team 17, 136, 137, 236
proxy 135
representative 135, 138
supporting PO 134, 135

us-them versus Team 125
Product Owner representative 135, 138
Product Owner Team 17, 136, 137, 236
profit 141
program manager 190
project managers 196, 393
projects

prefer product view 127, 157
prototypes 304
proxies 327
proxy Product Owner 135
punching holes 210

R
refactoring

large ones 369
Reinertsen, Donald 4
relative value points 139
release contract 106
release planning 155, 158
Release Sprint 175, 177
release train 180
requirement areas 133, 215

for non-functionals 70
overview 555
vs development areas 556

requirements
acceptance TDD 271
artifacts 229
by example 245
clarifying by writing tests 49
customer-centric 236
meta-models 232, 233
multiple descriptions 56
non-functional 225
offshore 462
offshore to onshore 465
offshore workshop 458
overview 215
splitting 217, 247
tables 245
tool 462

requirements workshop
A-TDD workshop agenda 54

https://less.works For Gene Gendel only, id:gene-gendel



596

for Product Backlog refinement 243
overview 240
so-called optimizing 51

research
fake 228
in Product Backlog 227
planning it 166

rewards 385, 514
risk 141
Robot Framework

architecture 87
calling C code 90
example using 83
introduction 57
test library 86
types of tables 86

room
see team room

rubber chicken 354

S
SAD workshop 310
safety (personal) 376
SAGE 338
salary 342
scenario 249
Schwaber, Ken 9
Scientific Management, critique 4
scout activities 194
Scrum

see large-scale Scrum
Scrum 2.0 9
Scrum of Scrums

alternatives
Open Space 204
Town Hall 205

format 201
multisite 430
overview 200
rotate representatives 203
rotate representatives too frequently 203
ScrumMaster’s role 203
status to management 202
two parts 202

ScrumMaster
avoid representing team 434
in large-scale Scrum 13
not project manager 393
offshore 468
slow rotation 408

Second Life 209
secret toolbox 336
shared space 208
simulation layers 321
Slim 57
small changes 355
specialization 550
spikes 308
splitting requirements 217, 247
splitting user stories

see splitting requirements
Sprint Backlog 13
Sprint Planning 163

in large-scale Scrum 14, 17
multisite issues 165
part one 163
part two 166

Sprint Retrospective
in large-scale Scrum 15
joint 17, 403, 433
multisite 433
offshore 456

Sprint Review
bazaar 206
in large-scale Scrum 15, 17
joint 17, 405
multisite 454
offshore 454
show tests 59
team level 406

stakeholders 141
stop and fix 38
stories

see user stories
story points 181
strategic alignment 141
stubs 318, 321
supporting Product Owner 134, 135

https://less.works For Gene Gendel only, id:gene-gendel



597

T
tables for requirements 245
target-cost contracts 520
targets 385
task-coordinator activities 194
tasks

in Product Backlog 237
Taylor, Frederick 4
TDD

see test-driven development
Team (in Scrum) 12
team room 297, 394
team size 192
teams

cross-functional 234
technical debt 336
technical writing 34
test 23
test automation team 37
test department 30
test education 34
test independence 29
test sessions 64
test smells 36
test tools

commercial 40
conventional 57
wrap conventional tools 58

test-driven development
better architecture 319
coach 74

internal 75
overview 74

tester certification 32
testing

and Product Owner 51
assumptions 24, 26
before release 42
classifications 27
customer-facing 28, 42
developer 28, 72
in Sprint Planning 41
in Sprint Review 42
keyword-driven 83
legacy code 346

manual 60, 61
meaning of 24
on the hardware 317
overview 40
skills 96
specialization 33
terminology 26
thinking about 24
through the UI 67
traditional 46
UAT 463, 464
using walls 52

testing community 35
tests

automated 60
deleting 66
distill 55
expensive 71
long-running 70
non-automatable 62
non-functional 69
on development environment 76
on real hardware 77
performance 70
refactoring 81
reliability 70
table format 53
user-acceptance 59
workflow 54

testware 37
themes 216
tiger team 308
TMM 32
tools

agile management 389
for modeling 291
for requirements 273
multisite 438, 439
offshore 495
requirements offshore 462
testing 40, 56, 57

Town Hall meeting 205
TPI 32
traceability 67, 68, 229
tracer code 305

https://less.works For Gene Gendel only, id:gene-gendel



598

transformation project 380
transition

component teams to feature teams 391
overview 373
to feature teams 421

travelers 207
trivializing programming 341
TTCN 57

U
UAT 463

pre-UAT 464
with A-TDD 463

UI design
importance of 300
offshore 461

UML 291, 295
Undone Unit 31, 177
Undone Work 173, 177, 179, 225, 226
unit testing

overview 72
rules for 73

unit tests
slow 83

use case 249
user stories

formats 271
history 223, 271
overview 266
question their use
splitting
term 222

user-acceptance test 59
see UAT

V
value 139, 141
velocity 184
video sessions 451
video technology 425
virtual shared space 209
virtualization of hardware 71
visual management 229, 367

W
walking skeleton 305
weakly-typed interfaces 324
whiteboards 290
wikis 275, 440, 462
wishful thinking 337
workflow test 54
working agreements

cross-team 405
for coordination 212

workshops
design 289, 295, 296, 297
initial Product Backlog refinement 158
joint 246
joint design 298
multisite 428
requirements 54, 240, 243
SAD 310

X
XP 303
xUnit 76

https://less.works For Gene Gendel only, id:gene-gendel



This page intentionally left blank 

https://less.works For Gene Gendel only, id:gene-gendel



Lean Development and Agile
Methods for Large-Scale
Products: Key Thinking and
Organizational Tools for
Sustainable Competitive
Success

Coverage includes:

• Lean thinking and development combined with agile practices and methods
• Systems thinking
• Queuing theory and large-scale development processes
• Moving from single-function and component teams to stable cross-functional

cross-component Scrum feature teams with end-to-end responsibility for features 
• Organizational redesign to a lean and agile enterprise that delivers value quickly
• Large-scale Scrum for multi-hundred-person product groups

Increasingly, large product-development organizations are turning to lean thinking, agile
principles and practices, and large-scale Scrum to quickly and sustainably deliver value and
innovation. However, many groups have floundered in their practice-oriented adoptions.
Why? Because without a deeper understanding of the thinking tools and profound
organizational redesign needed, it is like casting seeds onto an infertile field. Now, drawing
on their long experience leading and guiding large-scale lean and agile adoptions for large,
multisite, and offshore product development, and drawing on the best research for great
team-based agile organizations, internationally recognized consultant and bestselling
author Craig Larman and former leader of the agile transformation at Nokia Networks Bas
Vodde share the key thinking and organizational tools needed to plant the seeds of product
development success in a fertile lean and agile enterprise.

For more information and to read sample material, 
please visit informit.com.

This title is also available at safari.informit.com.

Craig Larman, Bas Vodde • 978-0-321-48096-5

https://less.works For Gene Gendel only, id:gene-gendel



Register the Addison-Wesley, Exam 
Cram, Prentice Hall, Que, and 
Sams products you own to unlock 
great benefi ts. 

To begin the registration process, 
simply go to informit.com/register
to sign in or create an account. 
You will then be prompted to enter 
the 10- or 13-digit ISBN that appears 
on the back cover of your product.

informIT.com 
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram   
IBM Press | Que | Prentice Hall | Sams 

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS 
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall 
Professional, Que, and Sams. Here you will gain access to quality and trusted content and 
resources from the authors, creators, innovators, and leaders of technology. Whether you’re 
looking for a book on a new technology, a helpful article, timely newsletters, or access to 
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock 
the following benefi ts:

• Access to supplemental content, 
including bonus chapters, 
source code, or project fi les. 

• A coupon to be used on your 
next purchase.

Registration benefi ts vary by product.  
Benefi ts will be listed on your Account 
page under Registered Products.

informit.com/register

THIS PRODUCT

https://less.works For Gene Gendel only, id:gene-gendel



InformIT is a brand of Pearson and the online presence 
for the world’s leading technology publishers. It’s your source 
for reliable and qualified content and knowledge, providing 
access to the top brands, authors, and contributors from 
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips?  InformIT has the solution.

• Learn about new releases and special promotions by 
subscribing to a wide variety of newsletters. 
Visit informit.com/newsletters.

•   Access FREE podcasts from experts at informit.com/podcasts.

•   Read the latest author articles and sample chapters at 
informit.com/articles.

• Access thousands of books and videos in the Safari Books 
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the 
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook, 
Twitter, YouTube, and more! Visit informit.com/socialconnect.

https://less.works For Gene Gendel only, id:gene-gendel



Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top 
technology publishers, including Addison-Wesley Professional, Cisco Press, 
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books, 
Safari’s extensive collection of video tutorials lets you learn from the leading 
video training experts.

WAIT, THERE’S MORE!
Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst 
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content 
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY! 
www.informit.com/safaritrial

https://less.works For Gene Gendel only, id:gene-gendel

www.informit.com/safaritrial


Your purchase of Practices for Scaling Lean & Agile Development includes access to 
a free online edition for 45 days through the Safari Books Online subscription service. 
Nearly every Addison-Wesley Professional book is available online through Safari Books 
Online, along with more than 5,000 other technical books and videos from publishers 
such as Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams. 

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste 
code, download chapters, and stay current with emerging technologies. 

Activate your FREE Online Edition at 
www.informit.com/safarifree

STEP 1:  Enter the coupon code: LWUQFDB.

STEP 2:  New Safari users, complete the brief registration form. 
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition, 
please e-mail customer-service@safaribooksonline.com

FREE Online 
Edition

https://less.works For Gene Gendel only, id:gene-gendel

www.informit.com/safarifree

	Contents
	1 Introduction
	2 Large-Scale Scrum
	Action Tools
	3 Test
	4 Product Management
	5 Planning
	6 Coordination
	7 Requirements & PBIs
	8 Design & Architecture
	9 Legacy Code
	10 Continuous Integration
	11 Inspect & Adapt
	12 Multisite
	13 Offshore
	14 Contracts

	Miscellany
	15 Feature Team Primer

	Recommended Readings
	Bibliography
	List of Experiments
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X




