

THE LEAN THINKING HOUSE

Management applies and teaches lean thinking,
and bases decisions on this long-term philosophy

Respect
for People

- don�t trouble
 your �customer�

- “develop people,
 then build products”

- no wasteful work

- teams & individuals
 evolve their own
 practices and
 improvements

- build partners with
 stable relationships,
 trust, and coaching
 in lean thinking

- develop teams

Sustainable shortest lead time, best quality and value (to people
and society), most customer delight, lowest cost, high morale, safety

Product Development
- long-term great engineers
- mentoring from manager-
 engineer-teacher
- cadence
- cross-functional
- team room + visual mgmt
- entrepreneurial chief
 engineer/product mgr
- set-based concurrent dev
- create more knowledge

14 Principles
long-term, flow, pull, less
variability & overburden,

Stop & Fix, master norms,
simple visual mgmt, good
tech, leader-teachers from
within, develop exceptional

people, help partners be
lean, Go See, consensus,

reflection & kaizen

Continuous
Improvement

- Go See

- kaizen
 - spread knowledge
 - small, relentless
 - retrospectives
 - 5 Whys
 - eyes for waste
 * variability, over-
 burden, NVA ...
 (handoff, WIP,
 info scatter,
 delay, multi-
 tasking, defects,
 wishful thinking..)

- perfection challenge

- work toward flow
 (lower batch size,
 Q size, cycle time)

https://less.works For Gene Gendel only, id:gene-gendel

Systems Thinking

• Try…Causal loop sketching workshop to see sys-
tem dynamics 16

• Try…Sketch causal loop diagrams at whiteboards
with others 16

• Try…See the positive feedback loops in your sys-
tem 23

• Try…See mental models and assumptions during
a causal modeling workshop 25

• Try…See root causes during causal modeling and
retrospective workshops, with 5 Whys and Ishika-
wa diagrams 29

• Try…See and hear local optimizations; these are
endemic in large product groups 32

Lean Thinking

• Avoid…Lean misconceptions 40
• Avoid…Thinking that queue management, kan-

ban, and other tools are pillars of lean 41
• Try…Reflect on the two pillars of lean: respect for

people and continuous improvement 43
• Try…Know system goals in lean thinking 46
• Try…Foundation of lean thinking manager-teach-

ers 48
• Try…Continuous improvement with Go See, kai-

zen, perfection challenge, and working towards
flow 52

• Try…Spread knowledge rather than force con-
formance to central processes 54

• Try…Study the lean meaning of value and waste;
learn to see them 58

• Try…Improve by removing waste 59
• Try…Learn, see, and eliminate NVA actions in-

cluding handoff, overproduction, and waiting 60
• Try…Reduce the three sources of waste: variabili-

ty, overburden, NVA actions 62
• Try…Apply the 14 principles, including exception-

al people, stop and fix, leveling, and pull 65
• Try…Visual management 71
• Try…Outlearn the competition 73
• Try…Long-term hands-on engineers 74
• Try…Increase the value and lower the cost of infor-

mation 74
• Try…Cadence (such as timeboxing) in lean devel-

opment 78
• Try…Re-use more information and knowledge

through mentoring, design patterns, wikis, … 80
• Try…Team rooms for lean development 80
• Try…Chief engineer with business acumen as

chief product manager 81
• Try…Set-based concurrent engineering—several

alternate designs in parallel 82

Queueing Theory

• Try…Compete on shorter cycle times 94
• Try…Use several high-level cycle-time KPIs 95
• Try…Eradicate queues by changing the system 98
• Avoid…Fake queue reduction by increased multi-

tasking or utilization rates 99
• Try…Small batches of equal size 100
• Try…Visual management to see the invisible

queues 111
• Try…Reduce the variability in Scrum 117
• Try…Limit size of the clear-fine subset of the Re-

lease Backlog 120

False Dichotomies

• Try…Adjust method weight empirically in Scrum
126

• Try…Identify and avoid false dichotomies 129
• Avoid…Extreme Relativism 131
• Try…Identify misconceptions and misreads 132

Be Agile

• Try…Be agile 139
• Try…Learn and applying the four values and

twelve agile principles for competitive advantage
141

• Try…Know and share the five Scrum values 141
• Try…Learn and applying nine agile management

principles 144

Feature Teams

• Avoid…Single-function teams 155
• Avoid…Component teams 155
• Try…Feature teams 174

Teams

• Try…Self-organizing teams 194
• Avoid…Manager not taking responsibility for cre-

ating the conditions needed for teams to self-orga-
nize 194

• Try…Set challenging but realistic goals 195
• Try…Cross-functional teams 196
• Avoid…Single-function specialist teams 196
• Avoid…IBM 198
• Try…Long-lived teams 199
• Try…Team owns the process 200
• Try…Team manages external dependencies 202
• Try…Dedicated team members 204
• Try…Multi-skilled workers 204

Experiments

https://less.works For Gene Gendel only, id:gene-gendel

• Try…Team makes decisions 207
• Try…Open team conflict 208
• Avoid…Phase-based “resource allocation” 209
• Avoid…Parallel releases (a symptom of imbal-

anced groups and work) 209
• Avoid…Staircase branching (a symptom of imbal-

anced groups and work) 210
• Avoid…Projects in product development (a symp-

tom of imbalanced groups and work) 212

Requirement Areas

• Try…One Product Owner and one Product Backlog
217

• Try…Requirements areas 218
• Try…Affinity clustering or diagram for finding re-

quirement areas 218
• Try…Moving whole teams between areas 223
• Try…An all-at-once transition to requirement ar-

eas 224
• Avoid…Development areas 224
• Avoid… Traditional requirement management

tools 226
• Avoid…Tools optimized for reporting 226

Organization

• Try…Work redesign 234
• Try…Distinguish between products and projects

236
• Avoid…Projects in product development 238
• Try…Continuous product development 238
• Try…Give projects to existing teams 239
• Avoid…Resource pools with resource management

240
• Try…Keep the organization as flat as possible 241
• Try…Make the organization slightly flatter than it

can handle. 242
• Try…Invite managers to join teams to do develop-

ment work 242
• Avoid…Functional units 243
• Try…Scrum teams as organizational unit 243
• Try…Organize around requirement areas 244
• Try…Keep the formal organization flexible 245
• Try…Eliminating the ‘Undone’ unit by eliminating

‘Undone’ work 245
• Try…Service and support unit 246
• Try…Internal open source for internal tools 247
• Try…Product Owner Team as organizational unit

248
• Avoid…Project Management Office 249
• Avoid…So-called Agile PMO 249

• Avoid…Fake ScrumMasters 250
• Avoid…Matrix organizations in product develop-

ment 250
• Try…Self-organized team creation 251
• Try…Form self-organizing teams based on skill

252
• Try…Cultivate Communities of Practice 252
• Try…Use CoPs for functional learning 253
• Try…Merged product backlog for a set of products

256
• Try…Team works on multiple products 257
• Avoid…Stage-gate processes (if Scrum is adopted)

258
• Avoid…Especially…traditional stage-gate 260
• Avoid…Stage-gate becoming a waterfall 260
• Try…Beyond budgeting 261
• Try…Engage HR 267
• Try…Ask HR for credible research evidence 267
• Avoid…Incentives linked to performance 268
• Try…De-emphasize incentives 270
• Avoid…Putting incentives on productivity mea-

sures 271
• Try…Team incentives instead of individual incen-

tives 272
• Try…Team-based targets without rewards 273
• Avoid…Performance appraisals 273
• Avoid…ScrumMasters do performance appraisals

275
• Try…Discuss with your team how to do appraisals

275
• Try…Fill in the forms 275
• Avoid…Limiting peoples’ perspective 276
• Avoid…Job titles 276
• Try…Create only one job title 277
• Try…Let people make their own titles; encourage

funny titles 277
• Try…(if all else fails) Generic title with levels 277
• Try…Simple internal titles map to special external

titles 277
• Avoid…Job descriptions 278
• Try…Simple general job descriptions 278
• Avoid…Career paths 278
• Try…Job rotation 279
• Try…Start people with job rotation 280
• Try…Hire the best 280
• Avoid…Hiring when you cannot find the best 281
• Try…Team does the hiring 281
• Try…Long and in-depth hands-on evaluation 281
• Try…Pair programming with developer candi-

dates 282

https://less.works For Gene Gendel only, id:gene-gendel

• Try…Trial iteration 282
• Try…Lots of formal education and coaching 282
• Try…Lots of coaching 283

Large-Scale Scrum

• Try…Large-scale Scrum FW-1 for up to ten teams
291

• Try…Large-scale Scrum FW-2 for ‘many’ teams
298

Scrum Primer

• Try…Learn and do standard Scrum 308

https://less.works For Gene Gendel only, id:gene-gendel

Scaling Lean & Agile
Development

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Scaling Lean & Agile
Development

Thinking and Organizational Tools
for Large-Scale Scrum

Craig Larman
Bas Vodde

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

https://less.works For Gene Gendel only, id:gene-gendel

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or
special sales, which may include electronic versions and/or custom covers and content particular to
your business, training goals, marketing focus, and branding interests. For more information, please
contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Larman, Craig.
Scaling lean & agile development : thinking and organizational tools for large-scale Scrum / Craig

Larman, Bas Vodde.
 p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-48096-5 (pbk. : alk. paper) 1. Agile software development. 2. Scrum (Computer

software development) I. Vodde, Bas. II. Title.

QA76.76.D47L394 2008
005.1—dc22

 2008041701

Copyright © 2009 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright,
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-321-48096-5
ISBN-10: 0-321-48096-1
Text printed in the United States at Courier in Westford, Massachusetts.
First printing, December 2008

https://less.works For Gene Gendel only, id:gene-gendel

To our clients, and my friend and co-author Bas

To

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

xi

1 Introduction 1

Thinking Tools

2 Systems Thinking 9

3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools

7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany

12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

CONTENTS

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

xiii

PREFACE

Thank you for reading this book! We’ve tried to make it useful.
Some related articles and pointers are at www.craiglarman.com
and www.odd-e.com. Please contact us for questions.

Typographic Conventions

Basic point of emphasis or Book Title or minor new term. A notice-
able point of emphasis. A major new term in a sentence.
[Bob67] is a reference in the bibliography.

About the Authors

Craig Larman serves as chief scientist for Valtech, a consulting
and outsourcing company with divisions in Europe, Asia, and
North America. He spends most of his time working as a manage-
ment and product-development consultant and coach within large
or offshore groups adopting agile and lean product development,
usually with an embedded systems focus. He led the agile offshore
adoption (with Scrum) at Valtech India and served as creator and
lead coach for the lean software development initiative at Xerox,
in addition to consulting and coaching on large-scale agile and
Scrum adoption for long periods at Nokia, Siemens, and NSN,
among many other groups. Originally from Canada, he has lived
off and on in India since 1978. Craig is the author of Agile and
Iterative Development: A Manager’s Guide and Applying UML and
Patterns: An Introduction to Object-Oriented Analysis and Design
& Iterative Development, the world’s best-selling books on agile
methods, OOA/D and iterative development. Along with Bas, he is
also co-author of the companion book Practices for Scaling Lean &
Agile Development: Large, Multisite, and Offshore Product Devel-
opment with Large-Scale Scrum.

After a failed career as a wandering street musician, he built sys-
tems in APL and 4GLs in the 1970s. Starting in the early 1980s he
became interested in artificial intelligence (having little of his
own). Craig has a B.S. and M.S. in computer science from beautiful
Simon Fraser University in Vancouver, Canada.

Bas Vodde works as an independent product-development consult-
ant and large-scale Scrum coach. For several years he led the agile

https://less.works For Gene Gendel only, id:gene-gendel

www.craiglarman.com
www.odd-e.com

xiv

and Scrum enterprise-wide adoption initiative at Nokia Networks.
He has been a member of the leadership team of a very large mul-
tisite product group (in Europe and China) adopting Scrum. Bas
has worked as a senior developer/architect in embedded telecom-
munication systems, in addition to serving as a quality manager.
He has led the development of solutions and the coaching for test-
driven development in embedded systems. Along with Craig, Bas
is co-author of the companion book Practices for Scaling Lean &
Agile Development. Originally from Holland, he has lived in China
for years and is now based in Singapore.

Acknowledgments

Thanks to all our clients.

Thanks to reviewers or contributors, including Peter Alfvin, Alan
Atlas, Gabrielle Benefield, Bjarte Bogsnes, Mike Bria, Larry Cai,
Mike Cohn, Pete Deemer, Esther Derby, Jutta Eckstein, Kenji
Hiranabe, Clinton Keith, Kuroiwa-san, Diana Larsen, Timo Lep-
pänen, Eric Lindley, Mary Poppendieck, Tom Poppendieck, Ken
Schwaber, Maarten Smeets, Jeff Sutherland, Dave Thomas, and
Ville Valtonen.

Current and past Flexible company team members (and review-
ers), including Kati Vilki, Petri Haapio, Lasse Koskela, Paul Nagy,
Joonas Reynders, Gabor Gunyho, Sami Lilja, and Ari Tikka. Cur-
rent and past IPA LT members (and reviewers), especially Tero
Peltola and Lü Yi.

Bas appreciates his wife Sun Yuan for all the time he had to “focus
on the books” rather than on each other, and for her support when
moving or traveling to different countries to work with different
product groups. And he thanks Craig for the stimulating discus-
sions and the years working together with large products and with
debugging organizations—and Bas’s writing.

Craig thanks Albertina for her help so that he could write.

Thanks to Louisa Adair, Raina Chrobak, Chris Guzikowski, Julie
Nahil, and Mary Lou Nohr for publication support.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Thinking and Organizational Tools 2

• Action Tools 4

• Experiments: Try… and Avoid… 4

• Limitations 5

https://less.works For Gene Gendel only, id:gene-gendel

1

Chapter

1
INTRODUCTION

The future ain’t what it used to be.
—Yogi Berra

We sat down in the meeting room with our hot coffee. Outside was a
bitter-cold north European winter morning. In came our new client
and we shook hands. “Thanks for visiting,” he said. “First, you
should know that our product group is not large, maybe only eighty
developers.”

We once met a group adopting agile development that was not sure
if they could grow to very large-scale development: 12 people.

People have different scales in mind regarding ‘large.’ To some it
means only 50 people or even less. To others, much more. We define
a large product1 group as one whose members’ names you could not
remember if you were all together in a room. We work typically with
single-product groups in the range of 100–500 people that are adopt-
ing Scrum, lean principles, and agile development practices, usually
on software-intensive embedded systems. So by this definition—at
least with our limited memories—this is the realm of ‘large.’

On to our key recommendation: After working for some years in the
domains of large, multisite, and offshore development, we have dis-
tilled our experience and advice down to the following: Don’t do it.

There are better ways to build large systems than with many devel-
opers in many places. Rather, build a small group of great develop-
ers and other talents that can work together in teams, pay them
well, and keep them together in one place with product management
or whoever acts as the voice of the customer.

1. Scrum (and this book) applies both to product development for an
external market, and to internal applications (internal products).

https://less.works For Gene Gendel only, id:gene-gendel

2

1 — Introduction

But of course you are still going to do large, multisite, or offshore
development. This is because your existing system is already struc-
tured that way, or because—in the case of large groups—there is the
mindset that “big systems need lots of people.” We regularly coach
groups that ask, “How can we calculate how many people we will
need?” Our suggestion is, “Start with a small group of great people,
and only grow when it really starts to hurt.” That rarely happens.

Since large, multisite, and offshore development is going to happen,
we would like to share what we have tried or seen at the intersection
of these domains with lean and agile product development principles
and practices.2

THINKING AND ORGANIZATIONAL TOOLS

When Bas was a member of the leadership team of a large product
group, he frequently (in meetings) asked, “Why do we have this pol-
icy? … What will happen to the organizational system if we do
that?” Months later a member of the team told Craig, “It drove me
nuts to keep hearing those questions. But later, I appreciated it.”
Bas wasn’t trying to be annoying; he was trying to suggest and
encourage systems thinking—a thinking tool (1) to consider the
deeper dynamics of the development system as a whole, (2) to under-
stand how a system became the way it is, and (3) to reconsider
assumptions underlying the existing organization.

When people are introduced to Scrum with its short timeboxed
development iterations, they first see it as a localized practice to
incrementally grow a product in small manageable steps, with
learning and corrective actions toward a goal. Consequently, people
will say, “Oh, ‘agile’ doesn’t affect me; that’s a development practice.”
But there is a bigger picture and a potential higher-level learning

2. The companion book is Practices for Scaling Lean & Agile Develop-
ment: Large, Multisite, and Offshore Product Development with
Large-Scale Scrum. It covers detailed practice tips related to scaling
and planning, product management, multisite, offshore develop-
ment, contracts, requirements, design and architecture, coordina-
tion, legacy code, testing, and more.

https://less.works For Gene Gendel only, id:gene-gendel

3

Thinking and Organizational Tools

loop beyond the lower-level development learning cycle: a learning
organization of people that repeatedly re-examine the structures
and policies that define and surround agile product development.
The result of adopting Scrum or lean principles in very large product
groups inevitably leads to this higher-level organizational learning
challenge.

Example: Consider an enterprise whose R&D division tries to be
more adaptive by adopting Scrum. The Sales division continues in
their old mode: Maximize personal commissions and quarterly sales
by promising the moon and the stars to customers, combined with
almost boundless optimism for what “our great people in R&D can
do.” Faced with unattainable ‘commitments’ R&D did not them-
selves design or make, R&D is then blamed for not meeting “our
promises,” and it is concluded that “Scrum doesn’t really help.”

If this were a book about adopting Scrum only in one small 20-per-
son single-product group within a large enterprise, systems thinking
and organizational tools would be interesting but non-vital topics.
But they are vital to a successful adoption when Scrum is being
scaled to a 400-person single-product group, probably within a
larger R&D organization in the thousands that is also making the
transition, with deep connections to the Sales and Delivery groups,
and constrained by traditional Human Resource and Enterprise
Governance policies on team structures, reporting, measurement,
milestones, contracts, and rewards.

Consequently, this book suggests that one cornerstone for large-
scale Scrum and agile development is people who learn and apply
various thinking tools, including (but not limited to) systems think-
ing, mental-model awareness, lean thinking, queueing theory, and
recognition of false dichotomies.3

With those thinking tools in place, it will become increasingly clear
that the existing organizational design inhibits flow of value, lead-
ing to pressure for redesign. Hence, this book suggests a second cor-
nerstone of organizational tools, including feature teams,

3. The term thinking tools was popularized in [Reinertsen97].

https://less.works For Gene Gendel only, id:gene-gendel

4

1 — Introduction

requirement areas, and many other changes in structure, process,
task, people, and rewards.

ACTION TOOLS

In parallel with adopting thinking and organizational tools, many
action tools—specific development practices—help the product
group get going on large, multisite, and offshore agile development.
The effective use of these action tools—shared in the companion
Practices book—is somewhat dependent on organization redesign.
Many practices can be tried without deeper structural change, but
constraints on benefit will be felt.

So the tools in this book could be seen as prerequisites for the
actions tools of the companion book. Yet in reality, practices will be
adopted first—because that is where people want to start. And that
will eventually invite a look back at thinking and organizational
tools.

We suggest that coaches and other change agents involved in the
adoption of large-scale Scrum or lean development acquaint them-
selves early with thinking and organizational tools, while in parallel
helping to introduce action tools. At some point the situation will be
ripe—people will be ready—for a turn in the discussion from “How
do we do large-scale continuous integration?” to “Do existing HR pol-
icies prevent real teams?” and “What is flow of value and what inhib-
its it in our organizational design?”

EXPERIMENTS: TRY… AND AVOID…

Scrum emphasizes empirical process control; there is too much com-
plexity and variability for a cookbook approach to processes for
development. Therefore, the tools in both books are presented as a
series of tips that start with Try… or Avoid… to suggest experi-
ments, nothing more. They certainly may not work in your circum-
stance. The approach both in Scrum and in the lean thinking
practice of kaizen is to first inspect and grasp the existing situation.
Then, second, to adapt with new improvement experiments. The

https://less.works For Gene Gendel only, id:gene-gendel

5

Limitations

attitude of endless experimentation is vigorously encouraged in lean
thinking; perhaps the only bad process-improvement experiment is
the one not tried. At Toyota, Taiichi Ohno—arguably the key con-
tributor to lean thinking—would visit an area and inspect any writ-
ten standards document. If it was covered with dust or otherwise not
recently changed, he would grow quite impassioned and urge people
to always evolve their ‘standards.’

In Scrum this inspect-and-adapt (experiment) cycle repeats every
two- or four-week timeboxed iteration as long as the product exists.
And in lean thinking, this continuous experimentation and improve-
ment cycle applies both to individual products and to the enterprise
as a whole.

LIMITATIONS

There is still much for us to learn about these domains. What we
have written here and in the companion book reflects our current
(limited) experience and understanding, which we hope will evolve
in the coming years. For example, although we have lived for some
years in China and India, we feel we have barely scratched the sur-
face in terms of our multicultural experience and insight in relation
to offshore and multisite agile development. Nevertheless, our sin-
cere wish is that these tips are of some value to you. We welcome
further insights and stories from our readers.

Large-scale Scrum can influence almost all aspects of a product-cen-
tric enterprise. To keep the scope of this material manageable and
because of our limited experience in some of these areas, we
bounded or deferred subjects that are worthy of more discussion.
These include:

Essentially, this book is relevant to general-purpose product devel-
opment. Scrum and lean product development are not limited to

• budgeting and finance

• sales

• marketing

• hardware development

• product development not involv-
ing any software

• deployment/delivery

• field support

https://less.works For Gene Gendel only, id:gene-gendel

6

1 — Introduction

software systems [NT86]. However, the bias is toward software-
intensive systems (usually embedded) because of our background
and because of the ever-growing ubiquity of software in everyday
devices, from washing machines to shoes.

Especially in this book we dissect some assumptions and policies in
traditional organizations that inhibit flow of value and effective
teams. This analysis may come across as startling or challenging at
times. We do not mean to give offense, but organizational redesign to
support lean and agile development will not happen without
increased scrutiny of traditional assumptions and increased trans-
parency. Organizational change can also lead to displacement of tal-
ented people from old roles. As in Toyota, we encourage finding new
areas of contribution for people within a company—both because
skilled people deserve this, and because otherwise it inhibits change.

With both books combined pushing over 700 pages, we regret that
we could not write or think better to make the subject of
large…smaller.

On to thinking tools…

https://less.works For Gene Gendel only, id:gene-gendel

Thinking Tools

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Seeing System Dynamics 13

• Seeing Mental Models 25

• Example: The “Faster is Slower” Dynamic 26

• Seeing Root Causes 29

• Seeing (and Hearing) Local Optimization 32

https://less.works For Gene Gendel only, id:gene-gendel

9

Chapter

2
SYSTEMS THINKING

I took a speed reading course and read “War and Peace”
in twenty minutes. It involves Russia.

—Woody Allen

“No matter what we do, the number of defects in our backlog
remains about the same,” a manager told us; this for a 15 MSLOC C
and C++ product with several hundred developers where we were
working (and adopting lean principles). What’s going on? Systems
thinking may help. In small groups the forces at play are more
quickly seen and informally understood, but in large product devel-
opment—or any large system—it’s tough. Gerry Weinberg high-
lights two decisive factors in this situation:

Weinberg-Brooks’ Law: More software projects have gone awry
from management’s taking action based on incorrect system
models than for all other causes combined.

Causation Fallacy: Every effect has a cause… and we can tell
which is which. [Weinberg92]

These reflect the impact of our mental models on the system, a
subject that will be revisited later in the chapter.

Problems stemming from mental models and assumptions are one
issue. Another is that large-scale adoption of Scrum, lean thinking,
and agile principles is not isolated to the development group. It
bumps into product management, budgeting, beta-testing, launch,
and governance and HR policies. Accordingly, in large-scale agile
adoption it is useful to be able to get together with colleagues and
effectively reason about the mental models, causal relations, feed-
back loops, and control mechanisms (or illusions of control) in a big
system that is about to be seriously perturbed. Systems thinking is
one of those reasoning tools.

https://less.works For Gene Gendel only, id:gene-gendel

10

2 — Systems Thinking

In 1958, the Harvard Business Review published “Industrial
Dynamics: A Major Breakthrough for Decision Makers,” a landmark
paper by Jay Forrester, MIT Sloan School professor [Forrester58].
This paper spurred the movement of systems thinking in business
education, and the MIT Sloan School of Management became known
for educating people in system dynamics. System dynamics is
sometimes treated as a synonym for systems thinking, though the
latter is a more general term.

MIT also attracted other system-dynamics-oriented researchers
such as Peter Senge.1

1. Senge wrote The Fifth Discipline, on systems thinking and learning
organizations, named “one of the seminal management books of the
last 75 years” by the Harvard Business Review. See [Senge94].

It Depends on Common Sense?

“It depends on common sense.”—A statement sometimes heard in Scrum and
common parlance. But what is this? Einstein quipped, “Common sense is the col-
lection of prejudices acquired by the age eighteen.”

Taiichi Ohno, the father of the Toyota Production System, said, “[…] misconcep-
tions easily turn into common sense. When that happens, the debate can become
endless. Or, each side tried to be more outspoken than the other and things do not
move ahead at all. That is why there was a time when I was constantly telling peo-
ple to take a step outside of common sense and think by ‘going beyond common
sense.’ Within common sense, there are things that we think are correct because of
our misconceptions. Also, perhaps a big reason we do some of the general common
sense things we do is that based on long years of experience, we see there are no big
advantages to doing things a certain way but neither are there many disadvan-
tages to it. … we are all human so we’re like walking misconceptions believing
that the way we do things now is the best way. Or perhaps you do not think it is
the best way, but you are working within the common sense that ‘We can’t help it,
this is how things are’” [Ohno07].

“Common sense” is not so reliable when trying to understanding nonlin-
ear systems—such as large-scale product development.

https://less.works For Gene Gendel only, id:gene-gendel

11

Consistent with Weinberg-Brook’s Law, Forrester’s research showed
that decision makers who were given dynamic models of a business
system and asked to improve their output performance, usually
made them run worse [SKRRS94]. The observation was that most
people have weak judgement on how to fundamentally improve sys-
tems, usually applying incorrect “common sense” and quick-fix ‘solu-
tions’ that do not create long-lasting systemic improvement.

Why is the behavior of a large development group (a system) not
understood or guided skillfully? The answer lies, in part, in the
behavior of stochastic systems with queues and variability, as
explored in the Queueing Theory chapter. And the same answer lies
in control theory: Most systems of interest—such as a product devel-
opment group—have complex positive and negative feedback loops
and nonlinear behavior. The behavior of these systems defies our gut
instinct. And then there is the minor issue of people.

In summary, reasons for not being skillful in fathoming or guiding a
big system include (but are not limited to):

❑ lack of knowledge about the system dynamics, feedback loops,
nonlinear systems behavior, and unintended consequences in
workplace systems

❑ not understanding root causes of problems (and how to find)

– causes, not cause; in systems thinking one sees that there
are multiple, indirect, and dynamic causes to problems

❑ not knowing if or why quick-fix or local-department decisions
degraded overall delivery performance.

In short, not being systems thinkers.2

These reasons are consequential at the intersection of management
and large-scale adoption of lean and agile principles. The leadership
team is part of the system being perturbed; if they do not apply sys-
tems thinking, they could really perturb it—and not in a good way.

2. Another reason: Believing more control is possible than actually is.
Complexity science suggests fundamental limits on predicting and
controlling semi-chaotic social systems [Stacey07]. This is a rather
large can of worms that will remain unopened in this book.

https://less.works For Gene Gendel only, id:gene-gendel

12

2 — Systems Thinking

As a summary of systems thinking insight, we like the ‘laws’
described in The Fifth Discipline:

Toyota’s internal motto is “Good thinking, good products.” Systems
thinking is a set of thinking tools to help…

❑ see system dynamics—a development organization is a sys-
tem of people and policies with subtle feedback loops and unin-
tended consequences

– we can learn to see and thus improve the system with
causal loop diagrams created in a workshop

❑ see mental models—one reason behind suboptimal decisions
is mistaken assumptions and faulty reasoning

– casual loop diagramming and Five Whys expose these

❑ see root causes—real improvement requires learning how to
find root causes of problems and see deeper relationships

– causal loop diagrams, 5 Whys, and Ishikawa diagrams
reveal these

❑ see local optimization—another source of suboptimal deci-
sions is local optimization, making the ‘best’ decision from
the viewpoint of a person or department, rather than global
optimization for the lean systems-level goal of deliver value
fast with high quality and high morale.

• Today’s problems come from yes-
terday’s ‘solutions.’

• The harder you push, the harder
the system pushes back.

• Behavior will grow worse before
it grows better.

• The easy way out usually leads
back in.

• The cure can be worse than the
disease.

• Faster is slower.

• Cause and effect are not closely
related in time and space.

• Small changes can produce big
results…but the areas of highest
leverage are often the least obvi-
ous.

• You can have your cake and eat it
too—but not all at once.

• Dividing an elephant in half does
not produce two small elephants.

• There is no blame.

https://less.works For Gene Gendel only, id:gene-gendel

13

Seeing System Dynamics

This chapter is organized around the following areas in systems
thinking: Learning to see (1) system dynamics, (2) mental models, (3)
root causes, and (4) local optimization.

SEEING SYSTEM DYNAMICS

Static versus Dynamic Complexity

Many of us, especially in engineering and finance, are educated to
master complexity of static details—learning to analyze and
manage information (requirements, financial analysis, …), decom-
pose complex structures into simpler ones, and so forth. That is,
complexity of a static, information, or structural nature.

Why do big software systems tend to degrade, with more and more
time spent on defects? What might happen if the USA invades Iraq?
Seeing the dynamics behind these questions involves analysis of the
complexity of dynamics.

In contrast to static-details education, many of us receive no formal
education in analyzing dynamics complexity3, especially workplace
dynamics. Perhaps there is a belief it is sufficient to rely on common
sense in the workplace. Forrester demonstrated that “common
sense” is just not so in complex systems, and showed it is possible to
formally educate people to become better system dynamics thinkers
in the workplace using dynamic system models visualized in flow
diagrams [Forrester61].

Flow diagrams encompass material, financial, and information
flows, stocks (variables with a quantity, such as cash or number of
defects), the impact of decisions and policies, and cause-effect rela-
tions. A popular simplification is the causal loop diagram that
focuses on cause-effect relationships and feedback loops in a system
[Sterman00]. There are a variety of similar notations; they all show
stocks (variables), causal links, and delay. In [Weinberg92] this is
called the diagram of effect.

3. Macroeconomics, psychology, sociology, and biology are exceptions,
among many others.

https://less.works For Gene Gendel only, id:gene-gendel

14

2 — Systems Thinking

The First Law of Diagramming: Model to Have a Conversation

A tool to learn to see system dynamics is a causal loop diagram, ide-
ally sketched on a whiteboard in a Sprint Retrospective with col-
leagues. Before going further, here is the First Law of Diagramming

The primary value in diagrams is in the discussion while dia-
gramming—we model to have a conversation.

When a group gets together to sketch a causal loop diagram on a
whiteboard (Figure 2.1), the primary value is the conversation and
shared understanding they arrive at while creating the model. Its
visualization as an easy-to-see diagram is important to make con-
crete and unambiguous (on the whiteboard) the ideas—the mental
models people have—because words alone can be fuzzy and misun-
derstood. But still, the diagram is secondary to what people take
away: learning and a revised understanding through a discussion.

Figure 2.1 it is the
the acts of
discussing and
thinking that are
most important
when diagramming,
Valtech India

Basic Problems and Simple Enjoyable Tools

Over the years, we have learned sophisticated analysis and design
skills and heuristics for engineering, management, and more. At
first we were inspired and excited to apply and share all these, until
we realized in the course of real-world work…

https://less.works For Gene Gendel only, id:gene-gendel

15

Seeing System Dynamics

The vast majority of problems in business (including develop-
ment) are so basic that a key solution is education in and con-
sistent use of simple, enjoyable thinking and action tools.4

Simple—For example, system dynamics and causal loop modeling
books and courses can get overly complicated, with unnecessary
overhead such as the archetypes idea described in the Fifth Disci-
pline, computer simulation, nonlinear equations, and so forth. In
practice, this serves to intimidate ordinary people from experiment-
ing with—and sticking with—what in essence can be applied as a
simple tool: standing around a whiteboard to sketch, discuss, and
model basic cause-effect dynamics in business.

When considering any thinking or action tools for the workplace
reality, know that

Le mieux est l’ennemi du bien. (The best is the enemy of the
good.)—François-Marie Arouet (Voltaire)

Enjoyable—There are many intricate thinking or action tools that
professors or methodologists bemoan are not used—or at least not
sustainably used. Why, on the other hand, are the practices in
Scrum or Extreme Programming (XP) often adopted and remain
sticky in practice? First, there is quick value to the hands-on worker
participants—the cost/benefit ratio is attractive and pays fast. Sec-
ond, they are not painful; some will even say they are interesting or
enjoyable. It is not uncommon for people in a system dynamics
sketching workshop to say it was interesting (and useful). Humans
are humans; enjoyable practices are important for sustainable use.

Emphasis on such tools is especially important
when scaling to large product development,
because the ability to push practices and pro-
cesses grows very weak as group size increases.
As a bee is attracted to colorful fragrant flowers,
you want to attract people to simple, enjoyable
tools, including…

4. ‘Basic’ does not mean trivial or easy to solve. For example, ‘motiva-
tion’ and ‘quality’ are basic but not easy issues.

https://less.works For Gene Gendel only, id:gene-gendel

16

2 — Systems Thinking

Try…Causal loop
sketching
workshop to see
system dynamics

Causal Loop Diagrams

Causal loop diagrams are presented several times in this book, to
help see the dynamics of what is going on in large-scale develop-
ment. It is useful to understand them for that reason alone. And
more useful to you, we recommend:

Try…Sketch causal loop diagrams at whiteboards with others

The practical aspect of this tip is more important than may first be
appreciated. It is vague and low-impact to suggest “be a systems
thinker.” But if you and four colleagues get into the habit of standing
together at a large whiteboard, sketching causal loop diagrams
together, then there is a concrete and potentially high-impact prac-
tice that connects “be a systems thinker” with “do systems thinking.”

The following examples seem sterile when presented in a book. But
imagine you were at a whiteboard with other people and the dia-
grams were being sketched during a lively conversation. That’s the
way we suggest ‘doing’ systems thinking.

Concrete modeling tip: We start by writing on sticky notes to define
variables. A note might read “feature velocity” or “# defects.” We
place these on a whiteboard. Then we sketch causal link lines
between the sticky notes. There will be (or should be) lots of rewrit-
ing, erasing, and redrawing during the modeling session. The most
meaningful outcome is understanding; in addition, some partici-
pants will want to take a digital photo of the whiteboard sketch.

Notation and Examples

Causal loop diagrams contain many elements; the following common
useful subset is explored through a scenario.

• variables

• causal links

• opposite effects

• constraints

• goals

• reactions; quick-fix reactions

• interaction effects

• extreme effects

• delays

• positive feedback loops

https://less.works For Gene Gendel only, id:gene-gendel

17

Seeing System Dynamics

The following simplified scenario is for a particular organization. It
is not a generalization.

Variables—Causal loop diagrams include variables (or stocks) such
as the velocity (rate of delivery) of software features and number of
defects. Variables have a measurable quantity.

Causal links—An element can have an effect on another, such as if
feature velocity increases, then the number of defects increase; that
is, more new code, more defects.

Now it is time to bump into Weinberg-Brook’s Law and the Causa-
tion Fallacy. It is easy to sketch a diagram; it is something else to
model with insight. For example, consider the relationship between
the number of developers and feature velocity.

The nature of any cause-effect relationship is actually not obvious,
though it is common for people to jump to conclusions such as more
developers means better velocity. Adding people late in development
may reduce velocity (a sub-element of “Brooks’ Law” [Brooks95]). Or,
more bad programmers could really slow you down. An argument
can be made that removing terrible developers can improve velocity.

Opposite effects—A causal link effect may be the same or opposite
direction; if A goes up then B goes up, or vice versa. Opposite effect

defectsfeature
velocity

defects

feature
velocity

defects

feature
velocity

of
developers

?

based upon people’s beliefs (mental model) they will
ascribe some causal link between # of developers and
feature velocity; it may not be accurate

https://less.works For Gene Gendel only, id:gene-gendel

18

2 — Systems Thinking

is shown with an ‘O’ on the line. Suppose defects going up puts a
drag on the system, lowering the velocity of new features because
people spend more time fixing or working around bugs.

Constraints—Unless you can find people to work for free, there is a
constraint on the number of developers, based upon cash supply.

Constraints are not causal links. As cash supply goes up, it is not the
case that the number of developers goes up.

Goals and Reactions—People, departments, and systems have
goals, such as higher feature velocity. Goals often generate pressure
for people to react (or act), with the intent of achieving the goal. But
since there is Causation Fallacy and Weinberg-Brooks’ Law to con-
tend with, people should be cautious about assuming what actions
will help. Now a goal and pressure for reaction is shown:

defects

feature
velocity

O

Opposite effect: as number of defects
goes up, feature velocity goes down

defects

feature
velocity

O

of
developers

cash
supply

C

number of developers is
constrained by the cash supply

?

defects

feature
velocity

O

of
developers

?

Goal: higher
feature
velocity

cash
supply

C

pressure to try
actions for higher
feature velocity

https://less.works For Gene Gendel only, id:gene-gendel

19

Seeing System Dynamics

Not only does a goal with a reward create pressure to act, but also it
creates pressure to appear to be acting and achieving, due to the
measurement dysfunction generated by rewards. And the mea-
surement dysfunction can be proportional to the perceived value of
the reward because people are being motivated to get a reward, not
to improve the system [Austin96]. Notice how rewards can actually
degrade system performance. Visually, the system dynamics may
be…

It is quite interesting that all these dynamics have been added by
introduction of reward, and yet there is no necessary connection
between the top part of this model and the bottom.

There is no guarantee that feature velocity has improved—or even
been worked on.

Go See p. 52Removing the reward system is a root-cause solution to the dysfunc-
tion. Another (lesser) surface countermeasure is the lean Go See
principle and management behavior:

defects

feature
velocity

O

of
developers

?

Goal: higher
feature
velocity

cash
supply

C

pressure to try
actions for higher
feature velocity

Goal: get
rewards

value of
reward

degree of measurement
dysfunction (not seeing

what is really happening)

ability to guide and
improve the system

pressure to
“game the
numbers”

O

https://less.works For Gene Gendel only, id:gene-gendel

20

2 — Systems Thinking

Quick-fix reactions—One difficult and slow solution toward the
goal of higher velocity is to hire great developers, to increase coach-
ing and education of existing staff, and to remove terrible workers.
The alternative is called a quick fix, a reaction that is hoped to
achieve the goal quickly and with less effort. Sometimes a quick fix
works well both in the short and long term, really strengthening the
system. Sometimes not…hence, “faster is slower.” For example, peo-
ple may believe that increasing the number of developers increases
the feature velocity. And they may thereby hope that hiring more
developers will most quickly and easily solve the velocity problem.
‘QF’ indicates the quick fix:

Interaction effects—There is the constraint of cash supply on hir-
ing. One hard and slow solution is to get more cash. A quicker fix is
to hire much cheaper developers. In this case, the level of cash sup-
ply now has an interaction effect with other causal links. Low cash

Goal: higher
feature
velocity

amount and
quality of Go

See behavior by
management

pressure to try
actions for higher
feature velocity

Goal: get
rewards

value of
reward

degree of measurement
dysfunction (not seeing

what is really happening)

ability to guide and
improve the system

pressure to
“game the
numbers”

O

O

defects

feature
velocity

O

of
developers

Goal: higher
feature
velocity

cash
supply

C

pressure to try
actions for higher
feature velocity

hire rate

QF

belief

https://less.works For Gene Gendel only, id:gene-gendel

21

Seeing System Dynamics

tends to strengthen the hire rate of much cheaper developers when
there is pressure to increase hire rates.

One could simply draw an (opposite) causal link directly from cash
supply to hire rate of very cheap developers, but that merely says
that less cash leads to more hiring of extremely cheap developers.
That is not quite what we want to say; rather, we want to show the
interaction effect—that effect A influences effect B. This is done by
showing a causal link entering another causal link. For example,
from cash supply to the quick-fix line going into hire rate of very
cheap developers:

Extreme effects—We have worked with some very inexpensive
developers with excellent skill and some very expensive developers
that are terrible, but on average, you get what you pay for—when
you hire from a large pool of very cheap labor, the average skill level
is lower. In the model we want to show that the impact of hiring very
cheap labor on the number of low-skilled developers is a significantly
greater effect than average.

To show an extreme effect in the model, use a thick line:

defects

feature
velocity

O

of
developers

Goal: higher
feature
velocity

cash
supply

C

pressure to try
actions for higher
feature velocity

hire rate
common

QF

hire rate
very cheap

QF

O

belief

https://less.works For Gene Gendel only, id:gene-gendel

22

2 — Systems Thinking

Delays—One problem in hiring in software development is the fal-
lacy of mild programmer variance—the mistaken belief that pro-
grammer variance (in terms of productivity, code quality, etc.) is
relatively small. However, programmer variance studies suggest an
average of four times faster in the top versus bottom quartile
[Prechelt00]. Rather significant. Also, the COCOMO model—based
on large and longitudinal studies—shows that the capability of the
development personnel is by far the most important factor for pro-
ductivity [Boehm00]. And, on average, very weak programmers cre-
ate poor-quality code (poor design) and more defects, creating
another drag on the system.

But the impacts of these effects are not immediately obvious. For
example, it takes a relatively long time after hiring a large pool of
weak programmers before the impacts of more and more bad code/
design start to be felt. Similarly, the average decrease in feature
velocity (because of the powerful impact of programmer variance)
will not show up immediately.

To show these delayed effects in the model, use a double-line through
the effect line:

defects

feature
velocity

O

Goal: higher
feature
velocity

cash
supply

pressure to try
actions for higher
feature velocity QF

QF

O

of low-skill
developers

hire rate
common

hire rate
very cheap

belief

https://less.works For Gene Gendel only, id:gene-gendel

23

Seeing System Dynamics

Delay has an intriguing influence on the educational or corrective
power in a system. If an impact or unintended consequence is long
delayed, one does not feel the effect (pain or gain) and so does not
clearly see how A influenced B, or more subtly how A influenced B
influenced A.

kaizen p. 53

Therefore, one does not learn from or correct mistakes—in policy,
management actions, tools, and so forth. Likewise, gradual improve-
ment through the lean thinking practice of kaizen can take a long
time; patience and insight are needed to see if and how things
improve.

Try…See the
positive feedback
loops in your
system

Positive feedback loops—Negative or positive feedback loops5

and delays are where things start to get more subtle in a system—
and in understanding a system. For example, how does one become a
better programmer? In part, by mentoring from great programmers
and seeing lots of examples of great code. But an office with a lot of
low-skill developers does not generate a lot of great code examples,

defects

feature
velocity

O

Goal: higher
feature
velocity

cash
supply

pressure to try
actions for higher
feature velocity QF

QF

O

of low-skill
developers

hire rate
common

hire rate
very cheap

code/design
quality

O

O

there is a significant
delay in this effect

O

5. Feedback loops is occasionally used in this book in the colloquial
sense of feedback, rather than this system dynamics sense.

https://less.works For Gene Gendel only, id:gene-gendel

24

2 — Systems Thinking

nor does it attract or retain the small pool of great programmers
who could act as mentors. They would rather work somewhere else.

Now the development group starts to enter a self-reinforcing down-
ward spiral—a set of positive feedback loops. Fortunately, the down-
ward trend is constrained by the supply of cash.

More great programmers—who could craft great code and mentor
others—leave. So there is less and less quality code to look at and to
learn from. The percentage of weak programmers grows even larger
and feature velocity drops further. Code becomes more messy, awk-
ward, and duplication-riddled, so the capacity to swiftly implement
features declines. Since feature velocity is dropping further, there is
more pressure to hire yet more very cheap programmers. All this
leads to multiple positive reinforcement loops in the system, for
example:

defects

feature
velocity

O

Goal: higher
feature
velocity

cash
supply

pressure to try
actions for higher
feature velocity

QF

QF O

of low-skill
developers

hire rate
common

hire rate
very cheap

code/design
quality

O

O

positive
feedback

loop

ability to
improve by
looking at
great code

of, and ability to
attract and retain,

great programmers
who can mentor

ability to
improve by
mentoring

O

O

O

O

positive
feedback

loop

positive
feedback

loop

O

positive
feedback

loop

positive
feedback

loop

C

https://less.works For Gene Gendel only, id:gene-gendel

25

Seeing Mental Models

Tip: You can find positive feedback loops by finding cycles with an
even number of ‘Opposite’ effect relationships. There are several
examples in the model above.

Conclusion

The example scenario is only that—an example. A causal loop dia-
gram can visualize rich dynamics in a workplace system. These are
best created by a group at a whiteboard.

Try…See mental
models and
assumptions
during a causal
modeling
workshop

SEEING MENTAL MODELS

The previous causal loop diagrams reflect people’s mental models of
causation, which may be wrong. It is interesting to note that people’s
models of causation are influenced by the timeliness (delay) and
quality of feedback in the system.

The implication of “mental models” is to improve our meta-cognitive
skill to see and question our own assumptions and chains of reason-
ing. Are we making faulty leaps of logic? It also implies when work-
ing with others to discuss (inquiring rather than abusing) the
mental models of our colleagues.

Seeing these mental models is step one; changing them is the even
harder part of step two. That art is beyond the scope of this introduc-
tion, though large-scale successful agile adoption must involve
changes in mindset and insight among many groups.

A tip to better see the mental models (beliefs, chains of inference, …)
playing out in the system dynamics is to ask the following question
during a modeling workshop and then sketch the answers. “Let’s
talk about the assumptions behind this model. What do we believe or
assume in terms of facts and effects that led us here?”

Answers are sketched on the whiteboard model, for example:

https://less.works For Gene Gendel only, id:gene-gendel

26

2 — Systems Thinking

EXAMPLE: THE “FASTER IS SLOWER” DYNAMIC

With the vocabulary of quick fixes, delays, positive feedback loops,
and mental models, it is fascinating to see that there can be a short-
term apparent improvement in a variable as the result of a quick fix,
but a delayed degradation of the very same variable—the “faster is
slower” dynamic. This is a recurrent dynamic in the workplace and a
cause of weakness. So it is worth another illustration.

The story of Microsoft Word and the secret developer toolbox: A
classic example of the short-term ‘improving’ but long-term degrad-
ing dynamic is the story of the first release of Microsoft Word for
Windows [Spolsky04]. It was released years later than desired.
Why? Because managers tried to follow the original schedule and
pushed developers to meet it.

defects

feature
velocity

O

Goal: higher
feature
velocity

cash
supply

pressure to try
actions for higher
feature velocity QF

QF O

of low-skill
developers

hire rate
common

hire rate
very cheap

code/design
quality

O
O

O

O

C

belief: more developers
makes us go faster

belief: there is only mild
programmer variance

belief: we can evaluate developer
quality without directly inspecting
their code

https://less.works For Gene Gendel only, id:gene-gendel

27

Example: The “Faster is Slower” Dynamic

lean wastes p. 58

misconception
that estimates
are commitments
p. 134

The story illustrates why wishful thinking is identified as one of the
wastes in lean thinking. In this case the wishful thinking of insist-
ing on (apparently) following a schedule, which implies the miscon-
ception or wishful thinking that development estimates are not
estimates but are commitments—a common myth that propels deg-
radation of a system.

Figure 2.2 illustrates a summary of the dynamics of what happened
when the managers pushed people to evidently keep to the original
schedule, and why this quick-fix reaction to slow progress appeared
to make things faster in the short term but actually even slower in
the long term. Figure 2.2 intentionally omits some deeper dynamics
that are expanded and shown in Figure 2.3.

Figure 2.2 the
dynamic of
schedule pressure
and the secret
toolbox

As a quick fix, the Microsoft managers exhorted, bribed (with poten-
tial rewards), and threatened the Word developers to keep to the
original schedule. Consequently, the developers predictably pulled
out their secret developer toolbox—the many practices related to

Goal: conform to
original schedule

actual
variance to

original
schedule

pressure to try
actions to
conform to

original schedule

QF
QF

% use of “secret
toolbox”— hacking to
generate bad code

quickly

exhortations,
bribes, and threats

to developers to
meet schedule

duration and
effort to add
new featuresO

the key dynamic under
discussion: short-term
improvement but long-
term degradation of the
same variable

long
term

short
term

management belief:
exhortations,

bribes, and threats
make things faster

management belief:
estimates are not estimates,

but commitments

management belief:
managers should not be

looking at the code

https://less.works For Gene Gendel only, id:gene-gendel

28

2 — Systems Thinking

hacking out dirty code (no tests, no reviews, ignore known defects,
copy-paste programming, poor design, …) to apparently deliver a
feature faster. You see, developers also have quick-fix reactions for
their problems.

The tactics seemed to have worked like magic. As the managers
pressured the developers, ‘features’ were delivered quicker as people
used the secret toolbox, which reinforced the belief that pressuring
developers helps. But this apparent acceleration actually had a
delayed effect to make things slower, which is explored next. Since
management did not quickly see the delayed effect of the secret tool-
box, and because they believed managers should not be frequently
looking in detail at the source code or themselves be master pro-
grammers, they did not learn from this dynamic.

A closer exploration of the system dynamics shows why things went
slower in the long term and why the first Word for Windows release
was years later than desired, illustrated in the model in Figure 2.3.

Figure 2.3 deeper
dynamics of
schedule pressure
and the secret
toolbox

Naturally, lots of dirty code eventually slowed things down. More
subtly, developers would ignore the bug list of ever-increasing open

Goal: conform to
original schedule

actual
variance to

original
schedule

pressure to
try actions to
conform to

original
schedule

QF

% use of “secret
toolbox”—
hacking to

generate bad
code quickly

exhortations,
bribes, and threats

to developers to
meet schedule

duration and
effort to add
new featuresO

% of clean code
with good design

of defects

O

O
duration between creating

and fixing a defect

duration and correctness
in fixing a defect

short
term
only

QF

https://less.works For Gene Gendel only, id:gene-gendel

29

Seeing Root Causes

defects to—instead—generate new features. This led to a long delay
between the creation of a defect and its correction. It turns out that
this significantly increases variability and time to fix a defect
because of the compounding negative effect of a long-lived bug (for
example, due to workarounds and coupling) and because developers
have long forgotten the detailed context of code related to the defect
and therefore need to slowly rediscover that context—with more and
more dirty confusing code surrounding them.

The astute reader may also notice the several positive feedback
loops that reinforce the degradation cycle; this is one reason the
product was years later than intended.

stop and fix p. 70
Go See p. 52

Solution? The lean thinking stop and fix and Go See principles.
First, rather than trying to go faster when there are problems, man-
ager-teachers encourage people to go slower and help them learn to
see system dynamics and root causes, and to fix these—to improve
the system of development. By going slower, Toyota—the masters of
lean thinking—has become one of the fastest companies around.
Second, for managers to go see at the real place of work to learn what
is going on. The “real place” in software development is the code,
which suggests that first-level managers are master programmers
who are frequently evaluating the code.

Microsoft people did not reflect on the situation until after release.
When they did finally hold a retrospective, it led to a company-wide
zero-defects policy, meaning that the first priority was to fix known
bugs in the code under development—to drive down to zero the
open-defects list before writing more new-feature code.

Try…See root
causes during
causal modeling
and retrospective
workshops, with
5 Whys and
Ishikawa
diagrams

SEEING ROOT CAUSES

“We’ve been trying to adopt Scrum for the last year, but haven’t seen
much improvement. Why not?” Seeing root causes can help answer.
Systems thinking calls upon all of us to develop thinking skills in
seeing root causes and deeper forces. Unintended consequences and
quick fixes can be symptoms of people not grasping the essence.

Continuous improvement is one of the two pillars of lean thinking.
Toyota has a “stop and fix” culture that involves:

1. people stopping when they see a problem to…

https://less.works For Gene Gendel only, id:gene-gendel

30

2 — Systems Thinking

2. do root cause analysis to find the real issues and then…

3. introduce process-change experiments to fix and improve

Try simple tools to discuss and see root causes, such as

Five Whys p. 57 ❑ Five Whys—introduced in the Lean Thinking chapter

❑ Ishikawa (fishbone) diagrams

Both are applied collaboratively in a team workshop—usually dur-
ing the Scrum Retrospective.

Figure 2.4 5 Whys
sketch during a
Retrospective

Seeing Root Causes with Ishikawa Diagrams

Five Whys is relatively unstructured; it can be combined with Ish-
ikawa diagrams (fishbone diagrams) [Ishikawa86] to organize and
relate the causes behind a problem, such as ineffective ScrumMas-
ters. Step one is to brainstorm causes of the problem; we suggest
brainwriting, in which each person writes ideas on pieces of paper,
one per paper, and immediately shares them on a common table.
Step two is affinity clustering, grouping the papers into families of
related causes and giving a name to each group (Figure 2.5). Step
three is to sketch the skeleton of an Ishikawa diagram with these
group names as the ‘bones’ of the diagram. Step four is to apply 5
Whys for each group or noteworthy sub-elements under each group,
to grasp and write down the deeper causes. The results are sketched
onto the evolving diagram (Figure 2.6).

https://less.works For Gene Gendel only, id:gene-gendel

31

Seeing Root Causes

Figure 2.5 brain-
writing and affinity
clustering, Valtech
India

Figure 2.6 Ishikawa
diagram, built from
brainwriting and
affinity clustering,
and improved with 5
Whys

Figure 2.7 using
Ishikawa diagrams
in a workshop for
root cause analysis

observed problem:
ineffective

ScrumMasters

5 Whys can be applied in
each group to replace/
evolve superficial answers
with deeper causes

organization

knowledgemotivation

...

...

......

...

...

managers were
relabeled

�ScrumMasters�

https://less.works For Gene Gendel only, id:gene-gendel

32

2 — Systems Thinking

After Root Cause Analysis: Try a Corrective Experiment

Root-cause analysis is step two of three—it is not done just to have
fun in a complaint session. Once the root causes are grasped, then
the next major action step in the retrospective workshop is to gener-
ate an improvement experiment [Vodde07].

Try…See and
hear local
optimizations;
these are
endemic in large
product groups

SEEING (AND HEARING) LOCAL OPTIMIZATION

“Everyone is doing their best yet overall systems throughput is
degrading. How can that be?” This is the paradox of local optimiza-
tion—when a person or departmental decision maker optimizes for
the local view or self-interest. The party making the decision fre-
quently believes they are making the best decision, but because ‘best’
is a local optimization, in fact it sub-optimizes overall system
throughput. This is a result of “silo mentality,” misunderstanding,
fear, limited information, delayed feedback, ignorance, careerism,
avarice, and other common organizational learning disorders.

A small product group of 30 people does not have the time or money
to engage in much nonsense or waste. But large companies, with
large product groups, centralized process and tool groups, a central-
ized “project management office,” and so forth, seem to have raised
local optimization and waste to an art form. Government bureaucra-
cies are the quintessential example, of course. As such, when you
serve as a guide in large-scale agile adoption, seeing (or hearing) and
dealing with local optimization is singularly vital.

For example, the legal and corporate security departments put in
place a policy that seems terribly important from their perspective.
In the aim of preventing loss of intellectual property (IP), the legal
department decrees “no one shall put any information on the walls.”
Or, in response to cost-cutting pressure, the facilities management
says, “It is important to ensure our walls are not dirty or damaged.”
And thus they shut down a practice in lean thinking, visual manage-
ment (which is usually done on walls), and they inhibit a well-known
innovation practice, group whiteboard work. The lawyers may suc-
ceed in reducing loss of IP (actually, that is questionable), and the
facilities people will succeed in keeping the walls clean—at the cost
of inhibiting the product development group from innovating and
collaborating. Finally, the company falls behind with less and less IP

https://less.works For Gene Gendel only, id:gene-gendel

33

Seeing (and Hearing) Local Optimization

even worth protecting because tools for innovation and delivering
fast have been disallowed, but the lawyers have successfully fulfilled
their mandate from the executive team to “ensure our IP is pro-
tected.” And the furniture police have clear walls. They have done
their best.

The following is a real e-mail quote from the furniture police in one
organization that dissallowed visual management on the walls. Can
you identify the local optimizations and mental models driving this?

Individual work cubic partition can be personalized. But things
obvious higher than the partition or harming the office environ-
ment’s harmony are restricted.

We also see local optimization in centralized groups that make soft-
ware tool choices for others. The common mindset is to choose a tool
that is best at reducing some supposed cost (curiously, these groups
seldom recommend free open source tools) or best at doing some-
thing complicated or best for the work of one specialized worker role
(even though everybody has to use the tool), rather than maximizing
the global goal of faster system throughput of value to customers.

watch the baton
p. 39

Most examples of local optimization can be seen as variants of fol-
lowing the runners rather than following the baton.

In large-scale adoption of Scrum or agile principles, most of the “Yes,
but …” issues that are raised are examples of local optimization,
such as, “Yes, but…what about management reporting?” or more gen-
erally, “Yes, but…what about <special case>?” Then, policies and
practices are twisted around, serving the goal of reporting or some
other secondary aim rather than the primary goal of optimizing for
fast value throughput. Sometimes we see local optimization for the
extreme or rare case. For example, a person responsible for making a
centralized tool choice for the enterprise presents a scenario for a
complex or rare case of use, and then chooses the tool that fits that,
sub-optimizing for a 5 percent case instead of optimizing for ease
and speed for the 95 percent case.

https://less.works For Gene Gendel only, id:gene-gendel

34

2 — Systems Thinking

component teams
p. 155

Other local optimizations are due to ignorance of new ways of work-
ing. This is especially common in large-scale product groups. For
example, we once helped a large networking product group in
Europe adopt Scrum and the practice of continuous integration (CI)
combined with a CI system that continually integrated, built, and
automatically tested the product. After some time, an outside tradi-
tional manager inspected what was going on, and recommended the
integration practices should be changed—because there was no writ-
ten integration plan for how a human integration manager should
manually integrate all the software, and of course, there was no
integration manager. They wanted to ‘optimize’ around the work of
an integration manager that was no longer needed. They could not
see that their entire old-fashioned model of work had been elimi-
nated with CI. This story repeats in all the departments of a large
established product: local optimization around the existing ways of
work, such as manual test, a separate architecture department,
component teams, and so on. A coach working to introduce large-
scale Scrum at the enterprise level has a mountain of similar local
optimization thinking to deal with.

In lean thinking and agile methods, the focus is on global systems
goals: Deliver value fast with high quality and morale—global
optimization. Try to consider decisions in light of this goal. To
develop and “optimize the whole” culture, challenge all decisions and
policies with the question:

Does this decision or policy focus on delivering value to the
external customer fast, or does it focus on the interests of a
department, person, internal policy/practice, or rare case?

In Scrum, the Product Owner is responsible for choosing high-value
goals that could lead to potentially shippable product (at the end of
the iteration) and that maximize return on investment and delight
the customer, while maintaining a sustainable pace and high engi-
neering quality. That explicit Scrum goal is meant to orient the sys-
tem toward global rather than local optimization.

https://less.works For Gene Gendel only, id:gene-gendel

35

Seeing (and Hearing) Local Optimization

CONCLUSION

In addition to becoming a systems thinker yourself, encourage oth-
ers to learn more about this topic. We suggest you to try getting
together at a whiteboard with colleagues to sketch a causal loop dia-
gram, so that being systems thinkers and doing systems thinking
are connected at the workplace.

RECOMMENDED READINGS

❑ W. Edwards Deming’s Out of the Crisis is a master work by
arguably the most well-known systems thinker and quality
expert. It opens with the modest goal, “The aim of this book is
transformation of the style of American management… It
requires a whole new structure, from foundation upward.”
Deming also advocates the System of Profound Knowledge in
which managers (1) appreciate there is a system, (2) under-
stand common-cause and special-cause variation (queueing
theory is related to variation), (3) understand limitations of
knowledge and reasoning mistakes, and (4) know credible psy-
chology and social research results so that behavior- or motiva-
tion-related policies are not based on “common sense.” The core
of the book centers around his famous 14 Points for Manage-
ment, including (for example), “Eliminate management by
objective. Eliminate management by numbers, numerical goals.
Substitute leadership.”

❑ Jay Forrester’s Industrial Dynamics is the classic text on sys-
tem dynamics—well written and insightful. Although written
in the early 1960s, it is as relevant today as when published. It
goes beyond cause-effect modeling to also model the flow and
inventories of information, money, and material in systems.
The book includes formal mathematical modeling but this is
not obligatory to appreciate system dynamics.

❑ Weinberg’s Quality Software Management: Systems Thinking
and An Introduction to General Systems Thinking are worth-
while. Written from the perspective of an experienced consult-
ant in systems development.

https://less.works For Gene Gendel only, id:gene-gendel

36

2 — Systems Thinking

❑ Senge’s The Fifth Discipline is a classic that advocates the need
for leadership to apply systems thinking (it is the fifth disci-
pline) and other key disciplines for a great, sustainable enterp-
ise. The others include leaders with (1) personal mastery and
(2) reflection on their beliefs and faulty reasoning, the (3) defi-
nition and communication of a meaningful shared vision, and
(4) the ability of teams to learn. We recommend ignoring—at
least during the first few years of practice—the ‘archetypes’
notion presented in the book. It was well meant as a learning
aid but has been observed to distract and intimidate people
from learning and applying basic system dynamics modeling.
The ‘archetypes’ are not part of original system dynamics.

❑ The Fifth Discipline Fieldbook is an in-depth resource, written
from the viewpoint of many practitioners and consultants.

❑ The organizational-learning writings from Argyris, Putnam,
McLain, and Schön. Important concepts include double-loop
learning and high-advocacy/high-inquiry dialogue. Classic
works include Action Science and Organizational Learning.

❑ The publications and resources available through the Society
for Organizational Learning (www.solonline.org).

https://less.works For Gene Gendel only, id:gene-gendel

www.solonline.org

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Lean Thinking: The Big Picture 40

• Background 44

• Lean Summary: The Lean Thinking House 46

• Lean Goal: Sustainably Deliver Value Fast 46

• Lean Foundation: Lean Thinking Manager-
Teachers 48

• Pillar One: Respect for People 50

• Pillar Two: Continuous Improvement 50

• 14 Principles 65

• Lean Product Development 73

• Example: “Kanban System” Analysis 84

https://less.works For Gene Gendel only, id:gene-gendel

39

Chapter

3
LEAN THINKING

I have enough money to last me the rest of my life,
unless I buy something.

—Jackie Mason

Lean thinking is a proven system that scales to large development,
as evidenced by Toyota and others. Later chapters explore more con-
nections of lean, agile, and scaling; this one lays out core concepts.

The image and metaphor we like to convey an
aspect of lean thinking is the sport of relay rac-
ing.

Consider the relay racers standing around wait-
ing for the baton from their running colleague.
The accountant in the finance department, look-
ing aghast at this terrible underutilization
‘waste’ indicated in some report, would probably

mandate a policy goal of “95% utilization of resources” to ensure all
the racers are busy and ‘productive.’ Maybe—he suggests—the wait-
ing runners could run up a mountain while they are not busy.

Funny…but this kind of thinking lies behind much of traditional
management and processes in product development.1 Of course, in
contrast, here is a central idea in lean thinking:

1. See, for example, PRTM [McGrath96, McGrath04] for collections of
very traditional—and un-lean—product development ideas.

Watch the baton, not the runners.

https://less.works For Gene Gendel only, id:gene-gendel

40

3 — Lean Thinking

LEAN THINKING: THE BIG PICTURE

Lean (or lean thinking) is the English name—given by MIT
researchers—to describe the system now known as the Toyota Way
inside the company that created it.2 Toyota is a strong, resilient,
company that seems to improve over time:

This is a sample; Extreme Toyota [OST08] dedicates a chapter com-
paring their sustainably robust performance compared to others in
their industry. That said, Toyota is far from perfect and there are
unique things to learn from agile methods and other systems that
are not found in lean thinking. We are not suggesting that Toyota or
lean thinking is the only model to learn from, or to simply emulate
it. Nevertheless it is a long-refined meritorious system from a robust
and sustainably profitable company. We suggest understanding it
when scaling to large product development.

The Pillars of Lean Are Not Tools and Waste Reduction

Avoid…Lean
misconceptions

There are some common misconceptions about lean. This chapter
starts with clearing these away.

What is the essence and power of lean thinking and Toyota?

2. The original name was Respect for Humanity System. Some called it
The Thinking Way. These emphasized a Toyota culture of mentoring
people to think through and resolve root causes to problems, to help
society, and to humanize work [Fujimoto99, WJR90].

– In 2008 surpassed GM to
become the largest company
by sales, while being much
more profitable.

– Market capitalization in May
2007 was over 1.5 times that
of GM, Ford, and Daimler-
Chrysler combined.

– J.D. Power (etc.) consistently
rate Toyota, Lexus, and Scion
among the top in quality.

– Innovative with social and
environmental awareness—for
example, creator of the Prius
and hybrid technology.

– Very profitable. In 2006 profit
was $13.7 USD billion, while
GM and Ford reported losses.

– Product development at levels
up to twice as fast as some
competitors.

https://less.works For Gene Gendel only, id:gene-gendel

41

Lean Thinking: The Big Picture

When I first began learning about TPS3, I was enamored of the
power of [one-piece flow, kanban, and other lean tools]. But
along the way, experienced leaders within Toyota kept telling me
that these tools and techniques were not the key to TPS. Rather
the power behind TPS is a company’s management commit-
ment to continuously invest in its people and promote a
culture of continuous improvement. I nodded like I knew
what they were talking about, and continued to study how to
calculate kanban quantities and set up one-piece flow cells.
After studying for almost 20 years and observing the struggles
[other] companies have had applying lean, what these Toyota
teachers told me is finally sinking in. [Liker04] (emphasis
added)

Wakamatsu and Kondo, Toyota experts, put it succinctly:

The essence of [the Toyota system] is that each individual
employee is given the opportunity to find problems in his own
way of working, to solve them and to make improvements.
[Hino06]

Management Tools Are Not a Pillar of Lean

Avoid…Thinking
that queue
management,
kanban, and
other tools are
pillars of lean

The above quotes underscore a vital point because over the years
there have been some ostensibly ‘lean’ promoters that reduced lean
thinking to a mechanistic superficial level of management tools such
as kanban (a visual management technique) and queue manage-
ment. These derivative descriptions ignore the central message of
the Toyota experts who stress that the essence of successful lean
thinking is “building people, then building products” and a culture of
“challenge the status quo” continuous improvement [Hino06].

Reducing lean thinking to kanban, queue management and other
tools is like reducing a working democracy to voting. Voting is good,
but democracy is far more subtle and difficult. Consider the internal
Toyota motto shown in a photo we took when visiting Toyota in

3. Toyota Production System (TPS) is the precursor to the Toyota Way
[Ohno88].

https://less.works For Gene Gendel only, id:gene-gendel

42

3 — Lean Thinking

Japan some years ago; it captures the heart of lean, summarizing
their focus on educating people to become skillful systems thinkers:

To simplify lean thinking to tools is to fall into a trap repeated many
times before by companies superficially and unsuccessfully attempt-
ing to adopt what they thought was lean.

... it was only after American carmakers had exhausted every
other explanation for Toyota’s success—an undervalued yen, a
docile workforce, Japanese culture, superior automation—that
they were finally able to admit that Toyota’s real advantage
was its ability to harness the intellect of ‘ordinary’
employees. [Hamel06]

Consequently, Lean Six Sigma4 is viewed by Toyota people to rep-
resent Six Sigma tools but not to represent real lean thinking. A
former Toyota plant and HR manager explains:

Lean six sigma is a compilation of tools and training focused on
isolated projects to drive down unit cost… The Toyota approach
[…] is far broader and far deeper. The starting point is the Toy-
ota Way philosophy of respect for people and continuous
improvement. The principle is developing quality people who
continually improve processes… The responsibility lies, not with
black belt specialists, but with the leadership hierarchy that
runs the operation and they are teachers and coaches. [LH08]

Waste Reduction Is Not a Pillar of Lean

The book Lean Thinking [WJ96] was justifiably popular and intro-
duced some Toyota ideas to a much wider audience. We recommend
it—while observing that it presents a condensed view of the Toyota

4. Lean Six Sigma is an amalgam of tools promoted in the Six Sigma
movement [George02].

https://less.works For Gene Gendel only, id:gene-gendel

43

Lean Thinking: The Big Picture

system. Lean Thinking draws significantly on research from the
1980s and early 1990s that focused on Toyota’s production system
[WJR90], and was published before Toyota’s own Toyota Way 2001
“Green Book,” that summarized the priority of the broader princi-
ples from an insider’s perspective. The subtitle of Lean Thinking is
Banish Waste and Create Wealth in Your Organization, and so not
surprisingly, those who have read only that one book often summa-
rize lean as “removing waste.”

Although useful, waste reduction is not a pillar of lean; it is only
mentioned several levels deep within the Toyota Way 2001. Plus,
some preeminent lean principles such as Go See (genchi genbutsu)
that Toyota highlights are treated in Lean Thinking in an entertain-
ing but anecdotal style that make it possible to miss the relative
importance of some lean principles. Study Lean Thinking, and study
more of the Recommended Readings.

The Two Pillars of Lean

Try…Reflect on
the two pillars of
lean: respect for
people and
continuous
improvement

What are the pillars of lean? Toyota president Gary Convis:

The Toyota Way can be briefly summarized through the two pil-
lars that support it: Continuous Improvement and Respect
for People. Continuous improvement, often called kaizen,
defines Toyota’s basic approach to doing business. Challenge
everything. More important than the actual improvements that
individuals contribute, the true value of continuous improve-
ment is in creating an atmosphere of continuous learning and
an environment that not only accepts, but actually embraces
change. Such an environment can only be created where there
is respect for people—hence the second pillar of the Toyota Way.
(emphasis added)

And from Toyota CEO Katsuaki Watanabe:

The Toyota Way has two main pillars: continuous improvement
and respect for people. Respect is necessary to work with people.
By “people” we mean employees, supply partners, and custom-
ers. …We don’t mean just the end customer; on the assembly line
the person at the next workstation is also your customer. That
leads to teamwork. If you adopt that principle, you’ll also

https://less.works For Gene Gendel only, id:gene-gendel

44

3 — Lean Thinking

keep analyzing what you do in order to see if you’re doing
things perfectly, so you’re not troubling your customer.
That nurtures your ability to identify problems, and if you
closely observe things, it will lead to kaizen—continuous
improvement. The root of the Toyota Way is to be dissatis-
fied with the status quo; you have to ask constantly, “Why
are we doing this?” (emphasis added)

Respect for people and continuous improvement “challenge every-
thing” “embrace change” mindset, the pillars of lean, are expanded
later in this chapter. If a lean adoption program ignores the impor-
tance of these—a cargo cult lean adoption5—then the essential
understanding and conditions for sustainable success with lean will
be missing.

BACKGROUND

The English term ‘lean’ was chosen for the Toyota system—by MIT
researchers of Toyota in The Machine That Changed the World
[WJR90]—to contrast their lean production with the alternative of
mass production. The implication was a dramatic reduction in work-
package or batch size, and no longer competing on economies of scale
but rather competing on the ability to adapt, avoid inventory, and
work in very small units—themes also found in agile methods such
as Scrum. The term lean is now also used within Toyota; for exam-
ple, in their Toyota Way 2001 internal booklet.

Two of the authors of the The Machine That Changed the World
went on to write Lean Thinking, a popular introduction that sum-
marized five principles.

In their excellent books on lean software development
([Poppendieck03, Poppendieck06]), Mary—who applied lean think-
ing at 3M—and Tom Poppendieck raised awareness of the corre-
spondence and complementary qualities of lean to agile software

5. A cargo cult in a tribal society performed rituals imitating the
behavior of non-native visitors (often from Europe). By analogy,
cargo cult process adoption suggests ritualism and superficiality.

https://less.works For Gene Gendel only, id:gene-gendel

45

Background

development methods. And Jeff Sutherland and Ken Schwaber, co-
creators of Scrum, have studied Toyota and lean thinking.

Relatively broad descriptions of the lean system are The Toyota Way,
The Toyota Product Development System, Inside the Mind of Toyota,
Extreme Toyota, and Lean Product and Process Development. All are
based on long study of Toyota. The Toyota Way [Liker04] text is used
by Toyota for education, in addition to their internal Toyota Way
2001. This introduction to lean is similar to these descriptions.

Figure 3.1 the lean-
thinking house

Management applies and teaches lean thinking,
and bases decisions on this long-term philosophy

Respect
for People

- don�t trouble
 your �customer�

- “develop people,
 then build products”

- no wasteful work

- teams & individuals
 evolve their own
 practices and
 improvements

- build partners with
 stable relationships,
 trust, and coaching
 in lean thinking

- develop teams

Sustainable shortest lead time, best quality and value (to people
and society), most customer delight, lowest cost, high morale, safety

Product Development
- long-term great engineers
- mentoring from manager-
 engineer-teacher
- cadence
- cross-functional
- team room + visual mgmt
- entrepreneurial chief
 engineer/product mgr
- set-based concurrent dev
- create more knowledge

14 Principles
long-term, flow, pull, less
variability & overburden,

Stop & Fix, master norms,
simple visual mgmt, good
tech, leader-teachers from
within, develop exceptional

people, help partners be
lean, Go See, consensus,

reflection & kaizen

Continuous
Improvement

- Go See

- kaizen
 - spread knowledge
 - small, relentless
 - retrospectives
 - 5 Whys
 - eyes for waste
 * variability, over-
 burden, NVA ...
 (handoff, WIP,
 info scatter,
 delay, multi-
 tasking, defects,
 wishful thinking..)

- perfection challenge

- work toward flow
 (lower batch size,
 Q size, cycle time)

https://less.works For Gene Gendel only, id:gene-gendel

46

3 — Lean Thinking

LEAN SUMMARY: THE LEAN THINKING HOUSE

Figure 3.1 summarizes the modern Toyota Way in a “lean thinking
house” diagram, because an earlier version of the Toyota system was
first summarized within Toyota by a similar house diagram. This
house also defines the major sections of this chapter, such as Respect
for People and Continuous Improvement. The remainder of the chap-
ter follows the major elements of the diagram in the following order:

LEAN GOAL: SUSTAINABLY DELIVER VALUE FAST

Try…Know
system goals in
lean thinking

Sustainable shortest lead time, best quality and value (to people
and society), most customer delight, lowest cost, high morale,
safety.

Broadly, the global or system goal of
lean thinking at Toyota is to go from
“concept to cash”6 or “order to cash” as
fast as possible at a sustainable pace—
to quickly deliver things of value (to the
customer and society) in shorter and
shorter cycle times of all processes,
while still achieving highest quality and
morale levels. Toyota strives to reduce
cycle times, but not through cutting cor-

ners, reducing quality, or at an unsustainable or unsafe pace; rather,
by relentless continuous improvement, that requires a company cul-
ture of meaningful respect for people in which people feel they have
the personal safety to challenge and change the status quo.

1. goal (roof)

2. foundation

3. pillar—respect for
people

4. pillar—continuous
improvement

5. 14 principles

6. lean product development

6. A phrase coined in [Poppendieck06].

Foundation

Goal

Product
Develop-

ment

14
Principles

C
o

n
ti

n
u

o
u

s
Im

p
ro

ve
m

en
t

R
es

p
ec

t
fo

r
P

eo
p

le

https://less.works For Gene Gendel only, id:gene-gendel

47

Lean Goal: Sustainably Deliver Value Fast

We see echoes of this goal in the words of the creator of the Toyota
Production System (TPS), Taiichi Ohno:

All we are doing is looking at the time line, from the moment the
customer gives us an order to the point where we collect the
cash. And we are reducing the time line by reducing the non-
value-adding wastes.7 [Ohno88]

So, a focus of lean is on the baton, not the runners—removing the
bottlenecks to faster throughput of value to customers rather than
locally optimizing by trying to maximize utilization of workers or
machines. This is the focus of Scrum as well—delivering valuable
features each short timeboxed iteration.

Not only does Toyota (and their Lexus and Scion brands) manufac-
ture vehicles, but also successfully and efficiently develop new prod-
ucts—lean principles apply to product development. How does
Toyota achieve the “global goal” in their two main processes, product
development and production?

❑ Development—out-learn the competition, through generating
more useful knowledge and using and remembering it effec-
tively.

❑ Production—out-improve the competition, by a focus on short
cycles, small batches and queues, stopping to find and fix the
root cause of problems, relentlessly removing all wastes (wait-
ing, handoff, …).

This chapter returns to out-learn and out-improve later on. Of
course, these approaches are not mutually exclusive. Toyota Devel-
opment improves and Production learns.

7. This allusion to wastes is explored later. ‘Waste’ has an important
and specific meaning in lean thinking.

https://less.works For Gene Gendel only, id:gene-gendel

48

3 — Lean Thinking

LEAN FOUNDATION: LEAN THINKING MANAGER-TEACHERS

Try…Foundation
of lean thinking
manager-
teachers

Management applies and teaches lean thinking, and bases deci-
sions on this long-term philosophy.

When we first visited Toyota in Japan,
we interviewed people to learn more
about their management culture and
education system. One of the things we
learned is that most new employees
first go through several months of edu-
cation before starting other work. Dur-
ing this period they learn the
foundations of lean thinking, they learn
to see ‘waste’ (a subject we will return

to), and they do hands-on work in many areas of Toyota. In this way,
new Toyota people…

❑ learn to “see the whole” [Poppendieck03]

❑ learn to see how lean thinking applies in different domains

❑ learn kaizen mindset (continuous improvement)

❑ appreciate a core principle in Toyota called Go See and gemba

Go See means people—especially managers—are expected to “go see
with their own eyes” rather than sit behind desks or believe that the
truth can be learned only from reports or numbers. It is related to
appreciating the importance of gemba—going to the physical front-
line place of value work where the hands-on value workers are.

We also learned that potential executive managers have worked
their way up through years of hands-on lean thinking practice and
mentoring to others. When Eiji Toyoda was president, he said to the
management team, “I want you actively to train your people on how
to think for themselves” [Hino06]. Note that this is not simply a
message of let people think for themselves. Rather, the management
culture is managers act as teachers of thinking skills. Toyota man-
agers are educated in lean thinking, continuous improvement, root
cause analysis, the statistics of variability, and systems thinking—
and coach others in these thinking tools.

Foundation

Goal

Product
Develop-

ment

14
Principles

C
o

n
ti

n
u

o
u

s
Im

p
ro

ve
m

en
t

R
es

p
ec

t
fo

r
P

eo
p

le

https://less.works For Gene Gendel only, id:gene-gendel

49

Lean Foundation: Lean Thinking Manager-Teachers

From this, we came especially to appreciate that for successful adop-
tion of lean, there are management qualities needed for any mean-
ingful, sustained success—the leadership team cannot “phone in”
their lean support. Toyota is one of few companies that seems to
demonstrate these qualities; to summarize [OST08]:

❑ Long-term philosophy—many in the company are educated in
lean thinking through courses and mentoring from manager-
teachers.

❑ Long-term philosophy—virtually all management, including
the executive level, must have a solid understanding of lean
principles, have lived them for years, and teach them to others.

❑ Long-term philosophy—manager-teachers have cultivated sys-
tems thinking and process-improvement problem-solving
thinking skills, and they teach it to others. The culture is
imbued with the mentality and behavior, “Let’s stop and under-
stand the root causes of problems.”

Manager-teachers—the
internal motto is Good Think-
ing, Good Products. How do
they achieve this “good think-
ing” which forms the founda-
tion of their success? It is

through a culture of mentoring. Managers are expected to be hands-
on masters of their domain of work (the saying is, “my manager can
do my job better than me”), are expected to understand lean think-
ing, and are expected to spend time teaching and coaching others. We
learned during an interview in Japan that Toyota HR policies
include analysis of how much time a manager spends teaching. In
short, managers are less directors and more teachers in the princi-
ples of lean thinking, “stop and fix right,” and kaizen mentality. In
this way, the Toyota DNA is propagated [LH08].

Aushi Niimi, Toyota North America president, said that the greatest
challenge in teaching the Toyota Way to foreign managers was,
“They want to be managers, not teachers.”

The more one learns about lean, the more one appreciates that the
foundation is manager-teachers who live and teach it and have long
hands-on experience. The foundation is not tools or waste reduction.

https://less.works For Gene Gendel only, id:gene-gendel

50

3 — Lean Thinking

Any company executive team that wants to succeed with lean devel-
opment will need to pay attention to this basic lesson—that they
cannot “phone in” their support to “do lean.”

PILLAR ONE: RESPECT FOR PEOPLE

Respect for people sounds nebulous, but
includes concrete actions and culture
within Toyota. They broadly reflect
respect for and sensitivity to morale,
not making people do wasteful work,
real teamwork, mentoring to develop
skillful people, humanizing the work
and environment, safe and clean envi-
ronment (inside and outside of Toyota),
and philosophical integrity among the
management team. Figure 3.2 illus-
trates some implications.

The 11th agile principle and a theme in Scrum is self-organizing
teams (self-directed work teams), supporting this pillar. Some of the
deeper implications of the lean Respect for People pillar are covered
in the Teams and Organization chapters.

PILLAR TWO: CONTINUOUS IMPROVEMENT

14 Principles
p. 65

Continuous improvement is based on
several ideas:

❑ Go See

❑ kaizen

❑ perfection challenge

❑ work toward flow (covered in the
14 Principles)

Foundation

Goal

Product
Develop-

ment

14
Principles

C
o

n
ti

n
u

o
u

s
Im

p
ro

ve
m

en
t

R
es

p
ec

t
fo

r
P

eo
p

le

Foundation

Goal

Product
Develop-

ment

14
Principles

C
o

n
ti

n
u

o
u

s
Im

p
ro

ve
m

en
t

R
es

p
ec

t
fo

r
P

eo
p

le

https://less.works For Gene Gendel only, id:gene-gendel

51

Pillar Two: Continuous Improvement

Figure 3.2 respect
for people

Lean “Respect
for People”

Don�t Trouble Your �Customer�
- your customer is anyone who
 consumes your work or decisions

- relentlessly analyze and change to
 stop troubling them

- don�t force people to do wasteful work

- don�t give them defects

- don�t make them wait

- don�t impose wishful thinking on them

- don�t overload them

“Develop People and Then
Build Products”

- managers act as teachers, not
 directors

- mentor people closely, for years, in
 engineering and problem solving

- teach people to analyze root
 causes and make problems visible;
 then they discover how to improve

Teams & Individuals Evolve
Their Own Practices &

Improvements
- management challenges
 people to change and may
 ask what to improve , but…

- workers learn problem solving
 and reflection skills and then...

- decide how to improve

Managers
“Walk the Talk”

managers understand and
act on the goal of
“eliminating waste” and
“continuous improvement”
in their own actions and
decisions—and
employees see this

Develop Teams
- real, jelled teams of 5-6 people

- team-work, not group-work, culture

Build Partners
- form long relationships based on trust

- help partners improve and stay profitable

https://less.works For Gene Gendel only, id:gene-gendel

52

3 — Lean Thinking

Go See for Yourself (Go See)

Try…Continuous
improvement
with Go See,
kaizen, perfection
challenge, and
working towards
flow

Go to the source [the place of real value work—gemba] to find
the facts to make correct decisions, build consensus, and achieve
goals at our best speed. [Toyota01]

Go See is a principle not found in many management cultures. This
principle is described as critical and fundamental. In the internal
Toyota Way 2001 it is highlighted as the first factor for success in
continuous improvement. Go See shows up repeatedly in Toyota
manager quotes, in Toyota culture and habits [LH08], in education
on the Toyota Way, and in the research done by Japanese analysts of
lean thinking (for example, [OST08]). All that said, it is missing
from some derivative ‘lean’ descriptions and so—unfortunately—
some are unaware of its vital role.

In a lean-thinking culture, all people, but especially managers—
including senior managers—should not spend all their time in sepa-
rate offices or meeting rooms, receiving information via reports,
computers, management reporting tools, and status meetings.

Rather, to know what is going on and help improve (by eliminating
the distortion that comes from indirect information), management
should frequently go to the place of real work and see and understand
for themselves. This “real front-line place of work” (gemba) does not
mean proximity to the building where work happens, nor does it
mean going to visit other managers. It implies to be as physically
close to the real front-line work as possible—not sitting in an office
nearby, but “breathing the same air.” ‘Work’ in lean does not prima-
rily mean the overhead or secondary work of accounting and so on,
but the value-adding work that the customer cares about—engineer-
ing, designing a car, producing things, delivering customer service.

An example of Go See is for managers to regularly visit and then sit
with software developers or engineers while they are working, with
the aim of understanding problems and opportunities to improve. It
is similar to the unfortunately now-lost HP practice of “management
by walking around.”

In an interview, Toyota’s chief engineer quoted Taiichi Ohno, who
insisted on managers practicing Go See at gemba:

https://less.works For Gene Gendel only, id:gene-gendel

53

Pillar Two: Continuous Improvement

Don’t look with your eyes, look with your feet… people who only
look at the numbers are the worst of all. [Hayashi08]

The Japanese term for Go See, genchi genbutsu, has also been
broadly rendered as implying solve problems at the source instead of
behind desks. Go See not only implies walking to the source to find
facts and decide with direct insight; it means—once you are there—
to build consensus for goals and experiments to change. The full
implication of Go See is for people—especially managers—to fre-
quently spend time at the real place of value work, build relation-
ships of trust with the people there, and help them fix things.

For example, Figure 3.3 shows a picture of Craig’s ‘office’ in Banga-
lore, Valtech India: a little desk physically among the development
teams. He has spent time sitting with developers while they pro-
gram, pair programming with them, attending their Scrum Sprint
Retrospectives and Sprint Planning meetings. In this way, getting a
direct understanding of what’s working and what’s not—and how to
better help.

Figure 3.3 ‘office’—
Go See attitude

Kaizen

Improve for improvements’ sake, endlessly.

Kaizen is sometimes translated as simply “continuous improve-
ment” but that confuses it with the broader lean pillar of “continu-
ous improvement” and does not capture the full flavor. So, we will
stick with the Japanese term.8

https://less.works For Gene Gendel only, id:gene-gendel

54

3 — Lean Thinking

Kaizen is both a personal mindset and a practice. As a mindset, it
suggests “My work is to do my work and to improve my work” and
“continuously improve for its own sake.” More formally as a practice,
kaizen implies:

1. choose and practice techniques the team and/or product group
has agreed to try, until they are well understood

2. experiment until you find a better way

3. repeat forever

Step 1—Choose and practice techniques the team and/or prod-
uct group has agreed to try, until they are well understood.
The idea is for a group to first find (hopefully) skillful baseline prac-
tices and learn to do them well. A novice team follows the Scrum
description with good coaching. The group’s working agreements,
such as coding standards and “definition of done”9 are followed. Peo-
ple learn to do test-driven development with plenty of practice,
coaching, and good education. Step one in kaizen implies having
patience through the awkward learning phase and not abandoning
new techniques quickly. People need a valid baseline to improve
against. And in Deming’s terminology, they need to be able to distin-
guish between common-cause and special-cause variability.

This step-one point of kaizen is that a person or team cannot accu-
rately see if they need to improve or change a practice unless they
have first mastered the basics, understood its subtle points, and can
do it well. Have you ever seen, “Oh, <X> doesn’t work” comments
that were based on insufficient skill, practice, or education? There is
no point in ‘improving’ or rejecting based on misunderstanding.

Try…Spread
knowledge rather
than force
conformance to
central processes

Share rather than enforce practices—The working-agreements
or norms should not be misconstrued to mean a rigid practice to fol-
low “until notified otherwise” or a centralized top-down ‘standard’
from a central process group that is forced on people—ideas contrary
to the lean pillar of continuous improvement. Toyota people promote
yokoten—spread knowledge laterally that may evolve uniquely
in different locations, like a graft from a tree. Yokoten means liter-

8. We avoid Japanese terms unless no English term works.
9. The Scrum rule of ‘Definition of Done’ is an important working

agreement. See p. 313.

https://less.works For Gene Gendel only, id:gene-gendel

55

Pillar Two: Continuous Improvement

ally to unfold or open out sideways. Spread knowledge implies a
culture that emphasizes horizontal knowledge sharing, but not
being forced to conform to central processes pushed top-down.10

Some quotes from Toyota people:

If we try to simply get everyone to the current standard you are
missing opportunities to get better. You are not taking into
account how times are changing. There has to be lots of flexibil-
ity in allowing creativity along the way… Standards are not
developed and then communicated from headquarters to all the
plants. Rigid standards will only kill kaizen… It is yokoten
every time—share best practices. …We must let individuals
from plants decide what they will do to fix their problems and
close gaps. We cannot have someone from corporate saying you
need to do X, Y, Z, because this is completely contrary to Toyota
problem solving. [LH08]

CoP p. 252Communities of practice—something we recommend in large-
scale Scrum—are created to spread knowledge laterally.

Steps 2 and 3—Small, incremental, relentless change of any-
thing. Kaizen is an on-going activity by all people (including man-
agers) to relentlessly and incrementally change and improve
practices, usually in small experiments, though large-scale system
kaizen is also an option. Almost no practice, process, or existing pol-
icy is sacred—anything can go. “Challenge everything,” in the words
of Toyota President Convis. Also, a kaizen culture is not one where
only big improvement projects by process experts are initiated.
Rather, each team does it regularly themselves.

Learn process improvement by doing—Kaizen implies, by ceaseless
repetition and mentoring, people learn by themselves how to make
problems visible, analyze their root causes, and improve by experi-
menting. And ‘failure’ of experiments is OK. The only failure in kai-
zen is to not continuously experiment.

In Kaizen by Masaaki Imai, he shares:

The essence of Kaizen is simple and straightforward: Kaizen
means improvement. Moreover, Kaizen means ongoing improve-

10. There are exceptions, such as safety and accounting standards.

https://less.works For Gene Gendel only, id:gene-gendel

56

3 — Lean Thinking

ment involving everyone, including both managers and workers.
The kaizen philosophy assumes that our way of life—be it our
working life, our social life, or our home life—deserves to be con-
stantly improved. [Imai86]

Kaizen reflects the Plan-Do-Check-Act (PDCA) Shewhart improve-
ment cycle (also known as the Deming cycle) [Deming67]. In fact
many people within Toyota formally know PDCA and sometimes
describe what they are doing as “endless PDCA” [LH08].

Shu Ha Ri

Shu Ha Ri is a model of progressive learning discussed in martial
arts; its connection to kaizen and agile methods has been noted in
[Cockburn01]. In phase one, Shu, a person follows rules until they
sink in and become automatic. In phase two, Ha, a person reflects on
the rules, looks for exceptions, and ‘breaks’ the rules. In phase three,
Ri, the rules are essentially forgotten as the person has developed
mastery, and grasped the essence and underlying forces.

Retrospectives

Kaizen most often happens during repeating team events such as
retrospective workshops. Note that team kaizen is encouraged.

Connection to Scrum—Agile principle 12, at regular intervals, the
team reflects on how to become more effective, then tunes and adjusts
its behavior accordingly, echoes the kaizen mindset. In Scrum, each
team is required to hold a maximum-three-hour kaizen event retro-
spective workshop (see Figure 3.4) at the end of each iteration, in
which they inspect their practices and create new process experi-
ments for the next short iteration. Scrum has a strong and institu-
tionalized practice for continuous improvement.

https://less.works For Gene Gendel only, id:gene-gendel

57

Pillar Two: Continuous Improvement

Figure 3.4 Scrum
Retrospective, a
kaizen event,
Valtech India

Five Whys

Five Whys (usually written 5 Whys) is a simple and widely used tool
used in kaizen. It helps develop problem solving and root cause anal-
ysis skills. In response to a problem or defect, a team considers
“why?” at least five times.11 For example:

Problem: Developers are not refactoring code to be maintainable.

1. Why? We feel pressured to go faster. (first why)

2. Why do we feel pressured? Because we are going slow. (second
why)

3. Why going slow? Because the code is complicated and hard to
work with.

4. …

fishbone
diagram p. 30

These questions may have multiple and related answers, so some
teams create a “5 Whys graph” of branching answers (see
Figure 3.5), or a more structured fishbone (Ishikawa) diagram.

In Scrum there is a retrospective workshop each iteration. This is an
excellent time for a team to try 5 Whys.

The important point of 5 Whys is not the technique or the number 5,
but that it is part of the “stop and fix” root-cause problem-solving
mindset and culture pervasive at Toyota. People are taught to
become deep problem solvers; to not live with problems, but to think

11. ‘Five’ is not a magic number; it is meant to imply “dig deep.”

https://less.works For Gene Gendel only, id:gene-gendel

58

3 — Lean Thinking

things through deeply. There is also a connection between Go See
and 5 Whys: It is easy for people to guess wrong or weak answers
unless they see the facts at the real place of the problem.

Figure 3.5 5 Whys
graph—changing
teams

Value and Waste

Try…Study the
lean meaning of
value and waste;
learn to see them

What to improve during kaizen? In lean thinking the answer
requires an understanding of value and waste.

Value—The moments of action or thought creating the product that
the customer12 is willing to pay for. In other words, value is defined
in the eyes of the external customer.13 Imagine a customer was
observing the work in your office. At what moments would they be
willing to reach into their pocket, pull out money, and give it to you?

Waste—All other moments or actions that do not add value but con-
sume resources. Wastes come from overburdened workers, bottle-
necks, waiting, handoff, wishful thinking, and information scatter,
among many others.

12. “Value in the eyes of the customer” posits an idealized customer.
13. There are some quasi-lean descriptions that introduce the idea of

internal business value. This is not part of lean thinking, and its
application can lead to a distortion of improvement because things
that are waste can be mislabeled as value.

https://less.works For Gene Gendel only, id:gene-gendel

59

Pillar Two: Continuous Improvement

One kind of analysis in lean thinking is to estimate all waste and
value moments “from concept to cash.”14 From such a time line one
can sum the value time and lead time (concept to cash), and then
calculate

value ratio = total-value-time / total-lead-time

We have done many time lines with product development groups
and have not seen a value ratio in a development organization higher
than 7 percent. In other words, 93 percent or more of the time in
development was waste time.15

Try…Improve by
removing waste

Improvement by Banishing Waste—After having defined value
and waste, we come to a noteworthy difference in lean improvement.
Other systems focus on refining existing value actions; for example,
improving skill in software design. A worthy goal no doubt.

However, since there are typically few value-adding moments in the
time line—maybe 5 percent—then improving those does not amount
to much. But with a mountain of waste time in the process, there are
big opportunities to improve the value ratio by eliminating waste.

For example, a common waste in development is the waste of over-
production—creating things not really wanted by the customer. One
study estimated that on average 45 percent of features created in
software products are never used [Johnson02]. It makes little sense
to focus on measuring and improving programmer efficiency by 2
percent if there is a mountain of unused-feature waste.

As another example, one of the wastes is waiting or delay—custom-
ers do not pay for that. Have you ever seen the waste of waiting…

❑ for requirements or designs or clarification?

❑ for approval?

❑ for another development team to finish their part?

14. This is part of the lean practice value stream mapping [RS99].
15. This is consistent with observation by others, such as [Ward06] who

estimates an average 5% value ratio in product development.

https://less.works For Gene Gendel only, id:gene-gendel

60

3 — Lean Thinking

Try…Learn, see,
and eliminate
NVA actions
including
handoff,
overproduction,
and waiting

Non-Value-Adding Action Categories—Within Toyota people are
educated to develop “eyes for waste.” As a learning aid, lists of non-
value-adding (NVA) actions have been created. There is not one cor-
rect list—the point is not the categories, but to learn to see and ban-
ish waste from the customer perspective. The following product-
development NVA action categories are drawn from The Toyota Way,
Implementing Lean Software Development, and Lean Product and
Process Development.

Non-Value-Adding
Action Example or Comment

1. Overproduction of
features, or of ele-
ments ahead of the
next step; duplication

• features the customer doesn’t really want

• large requirements document—more detailed
requirements than can be quickly implemented

• duplication of data or code

2. Waiting, delay • …for clarification, documents, approval, compo-
nents, other groups to finish something

3. Handoff, convey-
ance, moving

• giving a specification from an analyst to a devel-
oper

• giving code from a developer to a tester

4. Extra processing
(includes extra pro-
cesses), relearning,
reinvention

• forced conformance to centralized process check-
lists of ‘quality’ tasks

• recreating a component another developer has
made

5. Partially done
work, work in
progress (WIP)

• requirements written but not coded

• software coded but not tested

6. Task switching,
motion between
tasks; interrupt-based
multitasking

• interruption to handle hot defects

• multitasking on 3 projects

• partial allocation of a person to many projects

7. Defects, testing and
correction after cre-
ation of the product

• testing and correction at-the-end to find and
remove defects is not a value action; it may be a
temporarily necessary waste

https://less.works For Gene Gendel only, id:gene-gendel

61

Pillar Two: Continuous Improvement

Improving through Removing NVAs—The focus on delivering value
through waste reduction orients a lean organization toward follow-
ing the baton rather than the runners. Notice that the improvement
strategy is subtractive rather than additive. Rather than (for exam-
ple), “What can we get the workers to do to increase utilization?”,
the question is “What can we remove or stop doing?” In our consult-
ing we have found this to be a mindset change for traditional qual-
ity-assurance people in large organizations who focus on
conformance to checklists and adding activities for ‘improvement.’

Temporarily Necessary Waste versus Pure Waste—Not every
waste battle can be won given current capabilities and constraints.
For example, it is wickedly hard or virtually impossible to create a
software-intensive system that never had a defect to begin with.
Plus there are many cases where it is cheaper to resolve defects
through feedback loops with test-at-the-end in small batches and
short cycles, especially as modern testing tools and techniques
reduce the cost and cycle time of a test.16 To be clear: This is not a
recommendation to wait and only test at the end of development.
However, many short and cheap iterations of small batches with
automated testing may—not always—be the cheapest solution to the
“build quality in” problem. Thus it is sometimes prudent or neces-

8. Under-realizing
people’s potential and
varied skill, insight,
ideas, suggestions

• are people only working to their single-speciality
job title, or …?

• do people have the chance to change what they
see is wasteful?

9. Knowledge and
information scatter or
loss

• information in many separate documents rather
than a central wiki with hypertext

• communication barriers such as walls between
people, or people in multiple locations

10. Wishful thinking
(for example, that
plans, estimates, and
specifications are ‘cor-
rect’)

• “The estimate cannot increase; the effort esti-
mate is what we want it to be, not what it is now
proposed.”

• “We’re behind schedule, but we’ll make it up
later.”

Non-Value-Adding
Action Example or Comment

https://less.works For Gene Gendel only, id:gene-gendel

62

3 — Lean Thinking

sary, given today’s capabilities, to test and correct after creation of a
small item in a very short cycle—the waste of defects. Even Toyota
does this ‘waste’ step, but only in short cycles with small batch sizes
so that defects do not linger, replicate, or pile up.

Because of this, Toyota recognizes two types of waste:

1. temporarily necessary waste… a future battle; for example,
testing at the end of a short cycle

2. pure waste… in principle can and should be eliminated now

Is Inventory Always Pure Waste?—A common view among those new
to lean thinking is that inventory is pure waste and should always be
eliminated. Inventories of physical things or of intangible WIP—
such as requirement specifications—imply investment without
profit and hidden defects. That’s not good. However, a common prac-
tice in lean improvement is to create level pull, removing variabil-
ity (one of the sources of waste) in a downstream process step by
inserting a small buffer of high-quality “equally sized” inventory
items before that downstream step.

Product Backlog
and queues
p. 115

This is one purpose of the Scrum Product Backlog. It acts as a tool
for leveling or smoothing the introduction of work to feature teams.
A small buffer of high-quality inventory created to support level pull
is another example of useful temporarily necessary waste.

Try…Reduce the
three sources of
waste:
variability,
overburden, NVA
actions

Focus on Variability, Overburden, and NVA Actions—In addi-
tion to NVA actions, in the Toyota Way people are taught three
sources of waste, illustrated and commented with resolution ideas in
Figure 3.6.

16. Acceptance test-driven development (see Test chapter in companion
book), an agile practice, combines both the value act of defining exe-
cutable tests before development, and the “temporarily necessary
waste” act of re-executing these each development cycle.

https://less.works For Gene Gendel only, id:gene-gendel

63

Pillar Two: Continuous Improvement

Figure 3.6 three
sources of waste

Toyota people who observe outside attempts to adopt lean note a
common mis-education about waste—the mis-education to only focus
on eliminating NVA actions [LM06a]. Within Toyota, all three weak-
nesses are given importance, and in fact variability and overburden
are viewed as frequent root causes that give rise to NVA actions. For
example, overburdened programmers create more defects.

3 Sources
of

Waste

Variability
varying iteration lengths, varying batch sizes
of features, varying size of one feature,
varying team members or size, varying
delivery times, defects (these introduce much
variability), interruption to handle hot
defects, irregular arrival of requests

Resolution?
- leveling the work

- cadence; for example, timeboxed
 iteration such as 2 weeks

- decompose a few large-effort customer
 features into many smaller-effort
 features, so that a more consistent
 amount of work is taken on each iteration

Overburden
- overtime for arbitrary deadlines

- one Product Manager having to know
 hundreds of features in detail

- often seen with specialist bottlenecks
 and over-dependence on super-
 specialists

Resolution?
- develop “eyes to see” queues &
 bottlenecks and those who are doing
 too much

- take on less work in iteration; descope

- spread the work and skill—cross-train

NVA actions
- for example, handoff, waiting, scattered information, partially done work, task switching

Resolution?
- kaizen events such as Scrum Retrospective to learn to see it and experiments to reduce

https://less.works For Gene Gendel only, id:gene-gendel

64

3 — Lean Thinking

Perfection Challenge

This is the third element of continuous improvement in lean.

During a visit to Toyota we invited a retired engineer to dinner in
Nagoya. After several rounds of sake, we asked, “What do you miss,
no longer working at Toyota?” He replied, “No longer discussing per-
fection with people.”

We sometimes visit an organization interested in adopting agile or
lean methods and someone resists with essentially the argument,
“We’re shipping products, making good money, and have established
processes. Why should we change our practices?” We do not think
you would hear that question in Toyota. They are far from perfect
and we are not suggesting simply copying them, but their culture is
to have a kaizen mindset—to have high expectations and to chal-
lenge ourselves, team members, and partners to levels of skill, mas-
tery, waste reduction, and vision beyond the status quo.

That’s powerful.

No Final Process

In 2001, Toyota created an internal Toyota Way booklet summariz-
ing the lean principles. On hearing the proposed title, chairman Toy-
oda suggested renaming the booklet Toyota Way 2001. Why? To
emphasize that there is no final process in Toyota (which would sti-
fle kaizen), but rather, continuous improvement and change.

The implication of kaizen and spread knowledge laterally is that
there is not a final or correct ‘defined’ process to follow everywhere
that is communicated from a central process group. Kaizen does
include learning and mastering working agreements, but they travel
and evolve by the spread knowledge laterally model. People who
have the mindset “let’s define (or buy) the central process, write it
down, and then we should focus on conformance to it” will not be
comfortable with lean thinking. To quote the Toyota CEO, “The root
of the Toyota Way is to be dissatisfied with the status quo; you have to
ask constantly, “Why are we doing this?” Lean and agile values—and
the Scrum method—are based on the idea of empirical process:
there is no fixed or final process or cookbook that people can follow

https://less.works For Gene Gendel only, id:gene-gendel

65

14 Principles

given the reality of dynamically changing systems, and given the
goal of continuous improvement. Instead, in Scrum we are left with
the hard work of kaizen—to relentlessly, every two-week iteration,
inspect and adapt the process and create yet another “two-week pro-
cess experiment.” In Toyota and in Scrum, the idea is to repeat this
cycle until retirement.

14 PRINCIPLES

Try…Apply the
14 principles,
including
exceptional
people, stop and
fix, leveling, and
pull

The two pillars, respect for people and
continuous improvement, are not the
entire picture—literally or figuratively.
There are other potent lean principles
that form the overall system of lean,
some of which recapitulate elements in
the two pillars.

To quote Fujio Cho, chairman of Toyota:

Many good American companies have respect for individuals,
and practice kaizen and other [Toyota] tools. But what is impor-
tant is having all the elements together as a system. It must be
practiced every day in a very consistent manner. [Liker04]

Part of this broader system is covered in the 14 principles described
in the Toyota Way book that comes out of decades of direct observa-
tion and interviews with Toyota people. Table 3.1 summarizes the
principles, some of which are further discussed after the table.

Table 3.1 14
principles

Foundation

Goal

Product
Develop-

ment

14
Principles

C
o

n
ti

n
u

o
u

s
Im

p
ro

ve
m

en
t

R
es

p
ec

t
fo

r
P

eo
p

le

Principle Comment/Reference

1. Base management decisions on a
long-term philosophy, even at the
expense of short-term financial goals.

see local optimization p. 32

2. Move toward flow; move to ever-
smaller batch sizes and cycle times to
deliver value fast & expose weakness.

see p. 67

https://less.works For Gene Gendel only, id:gene-gendel

66

3 — Lean Thinking

3. Use pull systems; decide as late
as possible.

see p. 68

4. Level the work—reduce variability
and overburden to remove unevenness.

see p. 117 (in Queuing Theory);
see also p. 62

5. Build a culture of stopping and
fixing problems; teach everyone to
methodically study problems.

not only fix, but apply 5 Whys
analysis to understand the root
causes, and really fix it; see p. 57

6. Master norms (practices) to enable
kaizen and employee empowerment.

these are changeable working
agreements, not rigid organiza-
tion standards; see p. 53

7. Use simple visual management to
reveal problems and coordinate.

see p. 71

8. Use only well-tested technology
that serves your people and process.

open-source software tools often
help

9. Grow leaders from within who
thoroughly understand the work, live
the philosophy, and teach it to others.

leaders from within may not be a
good idea if your existing culture
is not lean—the point is educated
lean-thinking leaders; see p. 48

10. Develop exceptional people and
teams who follow your company’s
philosophy.

this reflects the Toyota “build
(lean thinking) people, then prod-
ucts” message; it includes “tower-
ing technical competence”

11. Respect your extended network of
partners by challenging them to grow
and helping them improve.

bring partners into lean thinking
as well; there is an emphasis on
sharing knowledge and openness

12. Go see for yourself at the real
place work to thoroughly understand
the situation and help.

see p. 52

13. Make decisions slowly by con-
sensus, thoroughly considering all
options; implement rapidly.

activities such as the Scrum Ret-
rospective support this

Principle Comment/Reference

https://less.works For Gene Gendel only, id:gene-gendel

67

14 Principles

Flow

Flow suggests making value flow without delay to the customer. As
a counter example, a customer request waits in a queue waiting to
be approved, analyzed, implemented, reworked, or tested. That is
not flow. Rather, as value is created—in products, software, informa-
tion, decisions, service—it flows immediately to the customer. It is
related to the follow the baton metaphor and to the goal of faster
“concept to cash.” Flow is a perfection challenge; zero waste in the
system and immediate continuous flowing delivery of value are pro-
found challenges, probably never achieved. The journey is usually
moving toward flow.

In the lean ‘house’ diagram (Figure 3.1), flow is included in both the
14 principles and in the key elements of continuous improvement.
Why? Because to move toward flow it is necessary to reduce batch
size, cycle time, delay, WIP, and other wastes. And this has the bene-
ficial side effect of revealing more weaknesses and waste, providing
new opportunities for continuous improvement. This is an important
but subtle point, expanded in the “Indirect Benefits of Reducing
Batch Size and Cycle Time” section on page 112.

Moving toward flow is associated with applied queueing theory, pull
systems, and more. By understanding these, people can move the
system toward flow by smaller work package sizes, smaller queue
sizes, and reduction in variability. This is explored in the Queueing
Theory chapter.

14. Become and sustain a learning
organization through relentless
reflection and kaizen.

see p. 53

Principle Comment/Reference

https://less.works For Gene Gendel only, id:gene-gendel

68

3 — Lean Thinking

Pull Systems

Pull versus push. Consider a process for manu-
facturing and storing laptop computers. In a pure
pull system17 no laptop is built or stored in inven-
tory until there is a customer order. Zero inven-
tory18 is a goal, and work is done only in response
to a ‘pull’ signal from the customer. That is the key
meaning of pull: Build in response to a signal from
the ‘customer,’ and otherwise rest or improve. Pull

examples? Printing just the twenty-book order or preparing just one
restaurant dish.

But a pull system goes deeper than that—the ‘customer’ is not just
the final customer. Rather, in a multi-stage process with an
upstream team doing partial work before a downstream team, a
downstream team is the customer to their upstream team. In a pure
pull system the upstream team does not create anything unless
pulled from downstream request.

On the other hand, in a push system, one
speculatively builds and stores laptops in
the hope of orders, and then tries to push
them to customers. In a multi-stage pro-
cess, upstream teams create an inventory
of partially done work for downstream
teams. Any kind of speculative inventory—
pizzas, big detailed plans, books, specifica-

tions for many features whose value is uncertain—are related to
push systems.

Resource management strategies that focus on high utilization of
workers—a focus on watch the runners rather than watch the
baton—create an environment in which people will create a large
inventory of things (requirements, designs, code) in a push model.

Expose defects—If you only create one thing in response to pull
from a ‘customer’ request (in this context, your customer is anyone

17. Pull is related to a Just-in-Time system—JIT implements pull.
18. In pull systems for development, low or zero inventory means less

inventory of detailed specifications, plans, untested code, and so on.

https://less.works For Gene Gendel only, id:gene-gendel

69

14 Principles

downstream) and the customer consumes it quickly, any defects in
that one thing—created either by accident or design—are quickly
discovered. That can lead to further systemic improvement if people
have “stop and fix” mindset. On the other hand, in push systems,
defects are hidden in an unconsumed inventory (of requirements,
code, …). For example, pushing a large batch of requirements will
delay the discovery of misunderstandings or problems, because it is
a long time before they are implemented and evaluated (as running
software) by a customer.

Decide as late as possible—In pull systems, you do not decide
early, quite the opposite—you “decide as late as possible” and
“commit at the last responsible moment” [Poppendieck03,
Smith07]. In this way, you have the most information to make an
informed decisions. You do not waste resources making unnecessary
inventory or early decisions that will have to—or at least should—
change in response to discovery.

Small batches can lead to radical improvement—A pull system
implies smaller batches in frequent short cycles. Using the old large-
batch push-based processes (based on economies-of-scale thinking
that avoided change), more short cycles may increase overall over-
head or transaction cost, and hence be viewed as inefficient. The way
out of that conundrum is an out-of-the-box radical improvement in
processes that can embrace change and small batches efficiently.
This is a secret behind Toyota’s efficiency—pull systems with small
batches combined with kaizen drive new ways of working that lower
the transaction cost of a process cycle. This improvement dynamic is
explored in the “Indirect Benefits of Reducing Batch Size and Cycle
Time” section on page 112.

Thus, in several ways, pull systems support moving towards flow.

false dichotomy
p. 125

waste p. 58

Avoid a false dichotomy—To categorically state that pull is good
and push is bad would be a false dichotomy. Usually because of hard
constraints (for example, the speed of transportation), some inven-
tory and some push may be useful—a temporarily necessary waste.
Toyota speculatively creates vehicles for overseas shipment—some-
times to their advantage, sometimes not. In Scrum, the group
pushes a small inventory of well-analyzed and small equally-sized
requirements to the top of the Product Backlog to reduce variability.

https://less.works For Gene Gendel only, id:gene-gendel

70

3 — Lean Thinking

How do pull systems apply to product development? For example,
compare pull planning with push planning:

❑ In push planning, a large, upfront, detailed plan is created of
what requirements will be done and when, and all tasks for
these are estimated, sequenced, and assigned to people or
teams—from the beginning until delivery. Then the tasks are
pushed to the workers and there is an attempt to control
toward the original speculative plan. Note that push planning
requires that all requirements are therefore elaborately ana-
lyzed and detailed before planning (at least if done rationally),
and it assumes low or no change, and no surprises.

❑ In pull planning, or adaptive iterative planning, a Prod-
uct Backlog of high-level requirements or goals is created. At
“the last responsible moment”—the first day of a short time-
boxed iteration—the Product Owner selects a list of small goals
for the iteration, from a slightly larger set that was analyzed
and estimated in the last one or two iterations. In response to
this pull signal, the team builds and delivers what they can.
Note that since the decision was made as late as possible, with
fresh insight and maximum information in a variable world,
more informed choices are made. Pull planning is related to
what is also known as rolling wave planning.

Stop and Fix

Toyota people are coached by manager-teachers to take the time to
pause when defects or problems arise. Rather than creating only a
quick fix response (or no response), a team will hold a kaizen event
to grasp the root causes, and then initiate steps toward a deep solu-
tion—one that ideally prevents the defect or weakness from being
possible and thus building quality in.

For example, Toyota is famous for their “stop the line” practice in
which anyone can pull a cord when they see a defect, to stop all work
on the line. This is step one in a systematic response toward build-
ing quality in. Another example: Toyota encourages human-friendly
manufacturing devices that themselves detect a failure, automati-
cally stop, and alert people to the problem. This was inspired by
Sakichi Toyoda who made his original fortune by designing a weav-

https://less.works For Gene Gendel only, id:gene-gendel

71

14 Principles

ing loom that automatically detected a failure and then stopped
[Hino06]. This is the lean practice of jidoka.19

Similarly, agile software development recommends a “stop the line”
mentality as part of continuous integration: If the build breaks (due
to compile, link, or test failure), it is considered a minor crisis and
those responsible for the failure should relatively quickly work to
bring the build back to health. Perhaps at the next Sprint Retrospec-
tive they will explore the root causes of why the build is breaking
and experiment with ways to improve.

Simple Visual Management

Try…Visual
management

Toyota emphasizes simple and BIG visual tools to signal problems,
communicate, and coordinate a pull system. There are big displays
on walls, bright and big physical color-coded cards that people can
touch and move, and so forth. Key themes are ease of viewing from a
distance, physical tokens (such as cards), color, and simplicity. This is
the opposite of displaying many little or detailed elements of infor-
mation on small computer displays from software-based systems;
however, a computer display that is simply filled with a blob of red
color to show a broken build is in the spirit of visual management.

These information radiators for visual management are appli-
cable to product development, to show tasks, software build status,
and so on; they were first widely promoted in software development
in the XP agile method and its Big Visible Charts practice [JAH00].

visual
management and
queues p. 111

The Queueing Theory chapter explores queues in more detail, and
the value in making visible the normally invisible queues of product
development through physical tokens.

Visual management implies physical tokens (not tokens in a com-
puter program20) for queues of stuff. For example, in Scrum and
other agile methods, it is common to represent all the tasks for the
iteration on paper cards (task cards) that are placed on the wall and

19. Jidoka is difficult to rename in English; it is sometimes described as
“automation with a human touch.”

20. Physical tokens are an aspect of lean visual management that is not
always appreciated.

https://less.works For Gene Gendel only, id:gene-gendel

72

3 — Lean Thinking

moved around as tasks are completed (Figure 3.7)—a task board.
Physical tokens. Putting these tasks into a computer program
defeats the purpose of lean visual management and the way
humans—with countless eons of evolutionary instinct working with
concrete things—need to see and feel tangible queues.

Figure 3.7 lean
visual management
creates physical
tokens, such as task
cards on a task
board and paper
charts on a wall, so
that invisible queues
can become
tangible—really
seen and felt

An error display (andon) is a common visual aid in Toyota to signal
defects in things. In agile software development, a common error
display is a light or webpage that turns red when the automated
build (compile and tests) fails, so that people can see the failure.

Kanban is one type of visual management to
signal a pull event (a replenishment request)
in a pull system. The classic example is a store
with something for sale on a shelf, such as one
pie. Behind the pie on the shelf is an orange
card labeled “one pie”—the withdraw kan-
ban. When the pie is eventually taken off the
shelf by a customer, the withdraw kanban is
revealed and taken to the bakery to get

another pie to refill the shelf. This is possible because there is one
finished pie in inventory in the bakery waiting for this event.

Also at this time, a creation kanban is sent to the baker to start-
ing baking one more pie. A single pie is pulled onto the shelf by the
withdraw kanban, rather than pies being pushed.

https://less.works For Gene Gendel only, id:gene-gendel

73

Lean Product Development

Of course, product development is not a manufacturing process like
baking pies, and concurrent engineering with cross-functional teams
(with virtually no handoff between processes) does not require this
production use of kanban and pull. However, the terms kanban card
(or agile kanban card) and kanban board have been co-opted by
product development people with somewhat different meaning
[Poppendieck03, Hirinabe08]. Agile kanban means a task or
requirement card that someone may volunteer to fulfill. The cards
are shown on a task board also known as the kanban board
(Figure 3.7). This visual management practice was popularized in
XP [Beck99], but it has been overlaid more recently with lean termi-
nology.

self-organizing
teams p. 194

Self-directed work—This is a theme found in effective-team
research. Notice that visual management supports self-directed
work because people can easily see what is going on, to coordinate.
Also, the work of a kanban card is self-explanatory, such as “one pie”
or “change style of webpage.”

LEAN PRODUCT DEVELOPMENT

Try…Outlearn
the competition

The two pillars and 14 principles are
core to lean thinking. However, there
are other principles and practices to
outlearn the competition, specific to lean
product development.

Toyota people execute two key processes
well, (1) product development and (2)
production. University of Michigan
researchers did a three-year study of

Toyota and North American companies product development effec-
tiveness [LM06b]. Results? …

For example, the average die21 design-to-complete duration was five
months for Toyota engineers and twelve months for the competition.
All this, while maintaining the lowest R&D-to-sales ratio of any

21. A die is a template for stamping or molding metal or plastic parts.

Foundation

Goal

Product
Develop-

ment

14
Principles

C
o

n
ti

n
u

o
u

s
Im

p
ro

ve
m

en
t

R
es

p
ec

t
fo

r
P

eo
p

le

https://less.works For Gene Gendel only, id:gene-gendel

74

3 — Lean Thinking

major automotive company in the world, due to the effectiveness of
their development practices.

How do they do it? What is a focus of lean product development?
Answer:

“Outlearn the competition” 22

When Toyota developed the hybrid Prius, what did they create?

❑ the design of the car (and implementation of embedded soft-
ware); in development they have a knowledge value stream to
create a profitable production value stream

❑ knowledge or information—about customers, alternatives, …

Try…Long-term
hands-on
engineers

Lean product development (LPD) focuses on creating more useful
knowledge and learning better than the competition.

Also, leveraging that knowledge and not wasting the fruits of the
effort by forgetting what has been learned. Figure 3.8 and Figure 3.9
illustrate some of the lean practices to outlearn the competition in
LPD; follow-up sections elaborate a few items.

More-Valuable, Lower-Cost Learning

Not all new knowledge or information is valuable; the ideal is to cre-
ate economically useful new information [Reinertsen97]. This is
challenging because it is a discovery process—you win some, you
lose some.

Try…Increase
the value and
lower the cost of
information

A general lean (and agile) strategy, based on a simple insight from
information theory, is to increase the value of information created
and lower the cost of creating knowledge.

22. Coined by Toyota product development researcher Dr. Allen Ward.

https://less.works For Gene Gendel only, id:gene-gendel

75

Lean Product Development

Figure 3.8 how to
outlearn the
competition

Higher-value information—Several ideas in lean and agile devel-
opment help. For example:

❑ Focus on uncertain things—In Scrum, one prioritization guide-
line is to choose to implement and test unclear or risky things
early. The value of the feedback is high precisely because the

Lean Product
Development

—“Outlearn the
Competition”

New Knowledge
- intensive customer
 investigation

- concurrent set-based
 development

Learn from Feedback
- “challenge everything”
 process culture

- systematic, repeating
 reflection and improvement

Data-Driven
- experiment, collect data,
 adapt based on data—
 including management

- avoid wishful thinking
 and speculation of plans
 and specifications

Reuse Knowledge

- long mentoring from
 manager-teachers
 who are also master
 engineers

- record experiments in
 brief, standard format

- teach and require
 people to use the
 records

Value of Info
- focus on uncertain
 things

- focus on lowering the
 cost of delayed info

Cost of Info
- test (etc.) automation

- continuous integration

- ...

https://less.works For Gene Gendel only, id:gene-gendel

76

3 — Lean Thinking

outcomes are less predictable—predictable things do not teach
us much.

❑ Focus on early testing and feedback—Information has a real
cost of delay, which is one reason why testing only once at the
end of a long sequential cycle—motivated by the misguided
local optimization of believing that it will lower testing costs—
is almost always unskillful. It can be very costly to discover
during stress performance testing, after 18 months of develop-
ment, that a key architectural decision was flawed. In lean
(and in Scrum), short cycles with early feedback loops are criti-
cal; by implementing less predictable things early and in short
cycles that include testing, the cost of delay is reduced.23

Lower-cost information—The “Indirect Benefits of Reducing
Batch Size and Cycle Time” section on page 112 examines how
adopting lean and agile principles ends up reducing the overhead
cost of processes. In fact, one can broadly look at these methods as
succeeding by lowering the cost of change—competing on agility. And
that includes lowering the cost of learning. For example:

see Test in
companion book

❑ Focus on large-scale test automation—to learn about defects
and behavior. The setup costs are non-trivial (if you are cur-
rently doing manual testing) but the re-execution costs are
almost zero.

see Continuous
Integration in
companion

❑ Focus on continuous integration—to learn about defects and
lack of synchronization. By integrating frequently in small
batches, teams reduce the average overhead cost due to the
nonlinear effort-impact of integrating larger sets of code.

❑ Focus on mentoring from experts and spreading knowledge—to
reduce the cost of rediscovery.

23. Note that reducing the cost of delay of information in product devel-
opment almost always requires building and testing something.

https://less.works For Gene Gendel only, id:gene-gendel

77

Lean Product Development

Figure 3.9 LPD
practices

Lean Product
Development

—“Outlearn the
Competition”

Develop Long-Lasting Engineers
with Highest Skill and

Craftsmanship
- work as hands-on engineers for
 years; not encouraged to
 enter management early

- mentored closely in engineering
 and deep problem-solving skills

Cross-Functional and
Product Mindset

- people and teams
 emphasize cross-
 functional integration

- focus on product
 success over
 departmental or
 functional (e.g., test,
 design) goals

Managers Who Are Master
Engineers and Teachers

- a key role of �manager� is
 teacher

- “at Toyota, your boss can
 always do your job better
 than you”

- apprenticeship model

Entrepreneurial Hands-on Chief
- engineer responsible for technical and
 business success

- an up-to-date great engineer with
 entrepreneurial spirit is given not
 only technical control, but project
 and business control

- rather than a marketing or other
 non-engineering specialist

Team Room
with Visual Management

- chief engineer and others meet
 and work face-to-face in a large
 common room, not separate
 offices; cross-functional members

- visual management: display
 engineering/ project data on walls

- see pictures in this chapter

Cadence
- with short
regularly-timed
cycles, with small
batches of work

Set-Based Concurrent Engineering

- generate many alternative designs in parallel

https://less.works For Gene Gendel only, id:gene-gendel

78

3 — Lean Thinking

Cadence

Try…Cadence
(such as
timeboxing) in
lean development

Working in regular rhythms or cadence is a lean principle, both in
production and development [Ward06]. A steady heart beat. In lean
production, it is called takt time.24 In development, it is called
cadence. The Scrum practice of delivering (and holding predictable
meetings) in a regular two- or four-week timebox illustrates cadence.
Cadence is a powerful principle in lean product development, so the
subject is examined in some detail…

There is something basic and very human about cadence: People
appreciate or want rhythms in their lives and work—and appreciate
or want rituals within these rhythms [Kerth01]. Most of us work in
a cadence of seven-day weeks. There is the Tuesday-morning weekly
meeting ritual. And so on. Simply, cadence at work improves predict-
ability, planning, and coordinating. At a deeper level, it reflects the
rhythms by which we live our lives.

In large groups adopting Scrum—groups that previously had little
or no cadence and long unbounded work—it is common to hear peo-
ple say, “Short timeboxes are the most beneficial things we’ve
adopted.” This reflects how much people appreciate cadence.

Suppose a group is not using Scrum (not following a Scrum timebox)
and they can potentially deliver a running tested system any hour of
any day. Suppose they want to hold coordination planning meetings
(because several teams are involved) and they want to hold retro-
spectives. Their two options are (1) to hold these events semi-ran-
domly over time, or (2) to hold them at regular intervals. This lean
principle suggests the latter choice.

Cadence and Timeboxing

Scrum creates an unambiguously clear cadence defined by the
rhythm of the two- or four-week timeboxes. Timeboxing is not a pan-
acea for all product development problems, but it has advantages:

❑ Timeboxing enforces cadence.

24. takt—rhythmic beat (German)

https://less.works For Gene Gendel only, id:gene-gendel

79

Lean Product Development

❑ In small-group products with naturally tiny requirements
(such as many Web applications), a two- or four-week timebox
can sound like a step backwards… “You want us to deliver a
working system every four weeks? We already do that every
week!” But consider a 300-person group that is accustomed to a
‘single’ requirement taking 18 months, and a release every
three years for an embedded-system product with sites in São
Paolo, Oxford, and Warsaw. A suggestion such as, “Start to con-
tinuously develop micro-requirements with a continuously inte-
grated and tested system so that you can always ship the
product” is light years away from their capacity. In this context,
“deliver a working system exactly every four weeks” provides a
compelling and unambiguous attainable improvement goal,
and starts to introduce cadence into system that had very little.

❑ Research and development work is often fuzzy unbounded (or
weakly bounded) work. When the team knows that the Sprint
Review will be in two weeks on March 15, it bounds the fuzzy
work and increases focus. One game company doing Scrum
observed that timeboxing the art work provided an immediate
benefit [Keith08]. In short:

Scrum values
p. 141

– Timeboxing limits scope creep, limits gold-plating, and
increases focus—one of the Scrum values.

❑ Timeboxing reduces analysis paralysis.

❑ Suppose you are in university and have an assignment due on
Monday. When do you start? For many, the answer is, “Close to
Monday.” This is called Student Syndrome [Goldratt97] and
timeboxing is a counterbalance.

❑ If teams must deliver something well done in exactly two
weeks, the waste and ineffectiveness in current ways of work-
ing become painfully clear. For example, parallel development
(rather than serial development) leads to faster delivery of
value, shorter feedback loops, and other benefits; therefore,
timeboxing creates a change-force to improve toward parallel
development with cross-functional feature teams.

❑ In large multiteam development, a planning meeting is some-
times needed between several teams. Sprint Planning on the
first day of each timebox simplifies their coordination.

https://less.works For Gene Gendel only, id:gene-gendel

80

3 — Lean Thinking

❑ Timeboxing simplifies scheduling—you know when to show up
for planning and reviews. This is especially useful for a meet-
ing-challenged busy Product Owner; she can schedule long into
the future when to attend predictable events.

❑ Humans are probably more sensitive to time variation than to
scope variation—“It was late” is remembered more strongly
than, “It had less than I wanted.” Timeboxing avoids the ero-
sion of confidence that happens for business stakeholders when
product development people say, yet again, “… maybe in one
more week it will all be done.”

Re-use Information or Knowledge

Try…Re-use
more information
and knowledge
through
mentoring,
design patterns,
wikis, …

In addition to the long-term shift toward a culture of mentoring by
master engineers and manager-teachers to re-use information, a
simple sharing tool can help. In our coaching we have seen a pattern
that the most ‘sticky’ or successful tool is a wiki. Simplicity and a
“Web 2.0”-centric hypertext model seems to win out over older docu-
ment-centric tools.

Design patterns in both hardware and software leverage the use of
existing design insight; learn and communicate patterns.

Team Room with Visual Management

Try…Team
rooms for lean
development

Lean product development encourages a team room (or “big
room”—big enough for a team) without internal partitions or walls,
where a cross-functional team works and meets, and the entrepre-
neurial chief engineer sits.25 Walls are covered with large physical
displays of project and engineering information, to support visual
management. The team room is in contrast to people working in sep-

25. In Peopleware [DL99] the authors recommended separate offices for
programmers; that was in the context of non-team work. The
authors have revised that advice and now recommend a War Room
(team room): “I’m beginning to think that a project not worth a war
room may be a project not worth doing” [DeMarco08]. Why?
Research shows that team co-location in a team room is correlated
with higher productivity [TCKO00].

https://less.works For Gene Gendel only, id:gene-gendel

81

Lean Product Development

arate offices or cubicles with communication barriers such as parti-
tions between the team members. See Figure 3.10.

Figure 3.10 team
room with rolling
whiteboards to
support visual
management,
Valtech India

Entrepreneurial Chief Engineer with Business Control

Try…Chief
engineer with
business acumen
as chief product
manager

In most product development organizations that we visit, a product
management group is responsible for the business goals and feature
selection, and typically the members are not master engineers with
up-to-date and profound technical depth. Toyota does things differ-
ently. Their product development is led by one great chief engineer
with “towering technical excellence” who is also attuned to and
responsible for the business success of the new product. In Toyota,
product and engineering leadership is combined in one entrepre-
neurial chief engineer who understands the market, product man-
agement, the profit, and the engineering.26

26. We have seen successful products with product managers who are
not master engineers—though they do need to be great product
managers with detailed knowledge of the market, product, and
existing customers.

https://less.works For Gene Gendel only, id:gene-gendel

82

3 — Lean Thinking

Set-Based Concurrent Engineering

Try…Set-based
concurrent
engineering—
several alternate
designs in
parallel

Have you seen development as follows?

1. pick or prototype one solution or design (one user interface, one
architecture, …)

2. evolve it

3. deliver

Set-based concurrent engineering is also called set-based
design, and is different. For example, rather than one engineer or
team creating one cooling system design, several alternatives may
be explored at Toyota in parallel by different teams—and so too for
other components. These sets of alternatives are explored and com-
bined, and gradually filtered in cycles, converging on a solution from
what was at first a large set of alternatives, then a smaller set, and
so on. They outlearn the competition by increasing alternatives and
combinations.

In software, a step in this direction is to explore at least two alterna-
tive for non-trivial design elements. For example, some years ago we
worked with a team that had to build a handler for a printing proto-
col called JDF. Rather than all getting around one wall of white-
boards and doing one design as one team, we split into two groups
and worked at two giant whiteboards (sketching UML-ish dia-
grams27) at opposite ends of the team room. Every 45 minutes or so
we visited each other’s wall designs and did “show and tell”—collect-
ing ideas from each other. Toward the end of the day, we got
together, looked at the two design ideas (that covered large white-
boards), and decided which of the two was more appealing. Then the
team implemented it, taking inspiration from this design idea
sketched on the wall.

27. UML, Unified Modeling Language, is a diagramming notation.

https://less.works For Gene Gendel only, id:gene-gendel

83

Lean Product Development

Figure 3.11 design
workshop that
explored competing
designs

The spirit of set-based design, if not as elaborate as at Toyota, can be
applied to many design problems. You can prototype, in parallel:

❑ two or three user interface alternatives

❑ two alternatives for a performance-critical component, …

Can Lean Production Lessons Help Development?

New product development (NPD) or research and development
(R&D) is not predictable repetitive production (manufacturing), and
the assumption they are similar is one cause of the misuse of early-
1900s manufacturing “economies of scale” management practices in
R&D; for example, sequential development and big batch transfers
of requirements.

Yet, some of the principles and ideas applied in lean production—
including short cycles, small batches, stop-and-fix, visual manage-
ment, and queueing theory—are successfully applied in lean product
development. Why? Modern lean production is different, the small
batches, queues, and cycle times in part reflect queueing theory
insight (among other sources of insight)—a discipline that was cre-
ated for the variable behavior in networks that is much more like
product development than traditional manufacturing.

https://less.works For Gene Gendel only, id:gene-gendel

84

3 — Lean Thinking

An irony in some product organizations is that the manufacturing
engineers have revolutionized and adopted lean production, moving
away from “economies of scale” toward flow and flexibility in small
batches without waste. But these lessons—which fit well to NPD—
remain unused by R&D management, who continue to apply prac-
tices found in older economies-of-scale manufacturing management.

All that said, a caution: NPD is not manufacturing, and analogies
between these two domains are fragile. Unlike production, NPD is
(and must be) filled with discovery, change, and uncertainty. Some
variability is both normal and desirable in new product develop-
ment; otherwise, nothing new is done. Therefore, lean thinking
includes unique practices for NPD, which can be further enhanced
with agile development in Scrum.

EXAMPLE: “KANBAN SYSTEM” ANALYSIS

As in the Systems Thinking chapter, a concluding example may be
useful to make the chapter subject more concrete. This case study is
minor and detailed, and may easily be skipped.

This section will analyze an example practice from a lean perspec-
tive, to help develop evaluation skills. This particular practice,
called “kanban system,” had the appearance of being lean because a
Japanese name was used, but it will be seen that it had weaknesses.

This problem is additional motivation for the analysis, as any lean-
sounding practices may attract people new to lean thinking.

The practice was promoted some years ago in software development
under the name “kanban system”—using a visual management
board with a limited number of cards representing software change
requests [Anderson07]. Note this is a specific practice, different than
the general notion of kanban visual management for pull systems.

One problem in lean adoptions is to assume a practice
labeled from the Japanese lean lexicon is a priori lean.

https://less.works For Gene Gendel only, id:gene-gendel

85

Example: “Kanban System” Analysis

Queue Management is Not Lean Thinking

To quote a summary of the practice under analysis:

The kanban limit for the system is 20 cards [on a wall], divided
in to different stages in the process—systems analysis, develop-
ment, test, build/merge, deployment. [Anderson07]

A limited number of work-request cards on a wall limits the work
queue size; the practice is an example of queue management. As
explored earlier, queue management is not lean thinking, but a
tool—and secondary to key lean elements such as lean-thinking
manager-teachers and continuous improvement with Go See and
kaizen. Likewise with cards on a wall (visual management).

Limiting a queue size of requests combined with cards is useful,
though not new. It has been practiced in the agile method Extreme
Programming [BF00], discussed in lean development
[Poppendieck03], and its use surveyed in [Hirinabe07, Hirinabe08].

Serial versus Parallel Development: Eradicating Queues

In this particular variation of the practice, note that the cards on the
wall identify and affirm separate development stages, promoting or
sustaining a sequential development model—micro-waterfall stages
of “systems analysis, development, test, …” and so forth. So what?

This example applies queue management to improve (by limiting
the queue size and WIP) an existing serial perspective on develop-
ment. But is queue management the best way to improve a develop-
ment method? It demonstrates the traditional belief that several
serial development stages—even if small and close together—are
inevitable and that queues must exist.28

Related to lean concepts, this “kanban system” practice illustrates
an inside-the-box improvement perspective that in Toyota is called
point kaizen, improvement (usually not dramatic) within the exist-
ing system or paradigm. In this case, within the paradigm “develop-

28. This point of “no stages” could be overstated. There are no doubt
usually at least two stages—develop and deploy.

https://less.works For Gene Gendel only, id:gene-gendel

86

3 — Lean Thinking

ment is serial, has stages, and queues must exist.” But queue
management may in fact be Plan B.

In contrast, many (entertaining) stories from battle-hardened Toy-
ota lean coaches demonstrate system kaizen—not merely improv-
ing the system with WIP reduction and so forth, but replacing the
system by challenging fundamental assumptions and paradigm.

eradicate queues
p. 98

In this case, a powerful system kaizen alternative is Plan A—funda-
mentally change the system from serial to parallel. The most power-
ful form of “queue management” is to utterly eradicate a queue by
changing the system. For example, move to more concurrent engi-
neering and parallel development with cross-functional Scrum fea-
ture teams, acceptance test-driven development, and continuous
integration so that there are fewer serial stages (and thus no need to
identify stages with cards on a wall). But this would require more—
and deeper—mindset and organizational changes, as system kaizen
usually does. If that is not possible in the short run, a point kaizen
solution such as the practice under analysis is a reasonable “Plan B.”

By affirming serial stages (systems analysis, development, …) the
system may also increase handoff (and hence delay) and single-func-
tion workers “only working to job title,” wastes in lean thinking.

Thus, the practice under analysis has weaknesses: It is a point kai-
zen solution that makes some improvements but still supports serial
queues, handoff (and so, delay), and under-realized talent.

Variability and Large Work Packages

The practice also allows work of variable size to enter the front-end
queue (as though this were desirable). To quote:

Even though we are making a release every two weeks, items in
the system can take up to 60 days to move through depending on
their size and complexity. Items that would be too big for a sin-
gle two-week iteration can still be fed in to the system…

reducing
variability with
Scrum p. 117

Is this a good idea?

In lean thinking leveling (smoothing) variability of incoming ele-
ments and reducing batch size are principles related to flow.29

https://less.works For Gene Gendel only, id:gene-gendel

87

Example: “Kanban System” Analysis

Queueing theory shows that allowing entry of items with variation
at the front of a system with several stages is undesirable because
the Law of Variability Placement [HS08] identifies variability at the
front end (the incoming requests) as the worst place in terms of
average cycle-time impact. Theory also shows a big work package is
not good. From this perspective, the practice has a weakness.

A powerful alternative is to split the incoming requests into user sto-
ries of small and equal size—to level the work packages and reduce
the batch size. This is automatically done in timeboxed agile meth-
ods with cadence (such as Scrum) because items must fit within the
small timebox. Short timeboxes tend to reduce common-cause varia-
tion in work requests, and non-timeboxing systems (such as the
practice under analysis) may increase the variation. Note that this
user-story-leveling strategy can—and should—be applied whether
timeboxing is or is not used.

Kaizen and Learning

The example system is also complimented for removing ‘overhead’:

…the kanban system has freed us from the management over-
head of running each iteration like a mini-project.

Is that desirable or an improvement?

Removing pure-waste overhead is obviously good. However, is there
any value in the regular meetings of self-managing teams in a time-
boxed method, or are they just waste?

Recall that in lean product development what is being created of
value is not only a product, but new knowledge. And proactive con-
tinuous improvement is a pillar of lean thinking.

For example, the Scrum Sprint Review and Sprint Retrospective are
frequent, formal, and focused opportunities to learn from all parties
and to do kaizen. They are not overhead, but events to learn and
improve, performed in a rhythm. Recurring kaizen events are a com-

29. A ‘single’ requirement in software development is usually a hidden
batch that can be split or reduced in size to increase leveling.

https://less.works For Gene Gendel only, id:gene-gendel

88

3 — Lean Thinking

mon lean practice and ubiquitous in Toyota. They do kaizen not only
reactively in response to the appearance of visible problems, but reg-
ularly and proactively to reflect and improve.

Further, Sprint Planning is a time for teams to learn what product
management wants (and for product management to learn what is
possible), enhanced by eliminating the lean waste of handoff
through increased face-to-face conversation. The part-two workshop
is a chance for the team to collaborate and design in the team
room—a creative learning act promoted in lean product develop-
ment. These are not wasteful events from a lean perspective.

Cadence of Improvement and Learning

Related to the above points, there is no cadence of learning, improv-
ing, and proactive retrospecting in the practice under analysis.
There is only the two-week delivery cycle.

timeboxing
benefits p. 78

There are non-trivial reasons why cadence (which applies to more
than delivery) is identified in lean product development as a key
principle, and why the short timeboxes—that create it—used in
Scrum, XP, and DSDM have been a popular, ‘sticky’ practice for
many years. It is true that timeboxing is not without weaknesses,
but it also has strengths; careful appreciation of the deeper dynam-
ics at play is useful. These include the subtle factors mentioned pre-
viously, such as reducing Student Syndrome, reducing gold-plating,
driving to parallel development, reducing analysis paralysis, bound-
ing fuzzy work, reducing variability (in work requests and other ele-
ments), creating a cadence of learning, and driving out-of-the-box
thinking for deep improvement.

Workers from Resource Pool versus Stable Long-Lived Teams

The practice draws on people from a resource pool (as though this
were desirable). To quote:

Our sustaining process is driven from a floating pool of regular
software engineering resources, there is no dedicated sustaining
or maintenance team.

https://less.works For Gene Gendel only, id:gene-gendel

89

Example: “Kanban System” Analysis

long-lived teams
p. 199

However, Toyota emphasizes stable teams over resource-pool man-
agement [LM07]. Plus, research [Katz82] shows that long-lived sta-
ble R&D teams are correlated with higher productivity than
temporary project groups of people drawn from a resource pool.

The practice does not use a permanent maintenance group, but
instead uses rotating contributors. This rotation has advantages,
but can alternatively be achieved by rotating entire long-lived teams
in and out of a defect-handling role. Most of our large-scale lean and
agile development clients use a cadence of rotation into the role of
“bug team” based on the Scrum timebox—a stable Scrum feature
team may serve as a bug team for one or two iterations before
returning to new feature work.

Summary

The practice under analysis helps by limiting queue size and WIP,
but should not a priori be considered a strong example of lean think-
ing only because a Japanese lean term is used or because queue or
visual management is used. This evaluation applies to any practice.

The case study was also used to illustrate that

❑ eradicating queues through system kaizen with parallel devel-
opment is more powerful than managing queues

❑ variability in request size, and large requests, are undesirable

❑ a cadence of kaizen and learning has value

❑ timeboxes with learning and kaizen events can be useful

❑ Toyota uses stable teams

CONCLUSION

As you investigate lean thinking, it is easy to see that it is a broad
system that intersects with agile principles, and spans all groups
and functions of the enterprise, including product development,
sales, production, service, and HR. Lean thinking applies to large-
scale product development—indeed, it applies to the enterprise.

https://less.works For Gene Gendel only, id:gene-gendel

Misha Goldverg did this.

90

3 — Lean Thinking

That realization started for us several years ago…Xerox develops
large digital presses, printing full color at over 110 pages per
minute. One of these products requires many hundreds of engineers
and scientists, and involves tens of millions of lines of code. Big sys-
tems, big groups. Some years ago Craig was invited to lead the
coaching of lean development for software-intensive embedded sys-
tems at Xerox. That initiative has lasted years and furthered our
appreciation that lean thinking applies to large-scale product devel-
opment—and fits well with Scrum. Xerox also applies lean develop-
ment practices within electro-mechanical-optical engineering. Thus,
lean provides some common vocabulary and framework for different
engineering groups—and that turns out to be useful.

Lean thinking is much more than tools such as kanban, visual man-
agement or queue management, or merely elimination of waste. As
can been seen at Toyota, it is an enterprise system resting on the
foundation of manager-teachers in lean thinking, with the pillars of
respect for people and continuous improvement. Its successful intro-
duction will take years and requires widespread education and
coaching. To re-quote Fujio Cho, chairman of Toyota:

Many good American companies have respect for individuals,
and practice kaizen and other [lean] tools. But what is impor-
tant is having all the elements together as a system. It must be
practiced every day in a very consistent manner…

RECOMMENDED READINGS

❑ Dr. Jeffrey Liker’s The Toyota Way is a thorough cogent sum-
mary from a researcher who has spent decades studying Toyota
and their principles and practices.

❑ Inside the Mind of Toyota by Professor Satoshi Hino. Hino
spent many years working in product development, followed by
an academic career. Hino has “spent more than 20 years
researching the subject of this book.” This is a data-driven book
that looks at the evolution and principles of the original lean
thinking management system.

❑ Extreme Toyota by Osono, Shimizu, and Takeuchi is a well-
researched analysis of the Toyota Way values, contradictions,

https://less.works For Gene Gendel only, id:gene-gendel

91

Example: “Kanban System” Analysis

and culture, based on six years of research and 220 interviews.
It includes an in-depth analysis of Toyota’s strong business per-
formance. Hirotaka Takeuchi was also co-author of the famous
1986 Harvard Business Review article “The New New Product
Development Game” that introduced key ideas of Scrum.

❑ Lean Product and Process Development by Allen Ward and The
Toyota Product Development System by Liker and Morgan are
useful for insights into development from a lean perspective.

❑ Toyota Culture by Liker and Michael Hoseus. Hoseus has
worked both as a plant manager and HR manager at Toyota,
bringing an insider’s in-depth understanding to this book on
the heart of what makes a lean enterprise work.

❑ Lean Thinking by Drs. Womack and Jones is an entertaining
and well-written summary of some lean principles by authors
who know their subject well. As cautioned earlier in this chap-
ter it presents an anecdotal and condensed view that may give
the casual reader the wrong impression that the essential key
of lean is waste reduction rather than a culture of manager-
teachers who understand lean thinking and help build the pil-
lars of respect for people and continuous improvement with Go
See and other behaviors.

❑ The Machine That Changed the World: The Story of Lean Pro-
duction by Womack, Jones, and Roos was based on a five-year
study at MIT into lean and the Toyota system.

❑ Workplace Management by Taichii Ohno is a short book by the
creator of the Toyota Production System. It was out-of-print
but has been recently re-translated by Jon Miller and is now
available. The book does not talk much about TPS but it con-
tains a series of short chapters that show well how Taichii
Ohno thought about management and lean systems.

❑ Mary and Tom Poppendieck’s books Lean Software Develop-
ment and Implementing Lean Software Development are well-
written books that make important connections between lean
thinking, systems thinking, and agile development.

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Queue Management to Reduce Cycle Time 96

• Queueing Theory 101

• Hidden Batches: Eyes for Batches 110

• Hidden Queues: Eyes for Queues 111

• Indirect Benefits of Reducing Batch Size and
Cycle Time 112

• Applying Queue Management in Scrum 115

• Theory of Constraints 121

https://less.works For Gene Gendel only, id:gene-gendel

93

Chapter

4
QUEUEING THEORY

The joy of engineering is to find a straight
line on a double logarithmic diagram.

—Thomas Koenig

We notice that queueing theory garners polar reactions; some
find it inconsequential (for development) while others find it
useful to motivate or apply lean product development.

Queueing theory offers insight into why tradi-
tional product development is unnecessarily
slow—and what to do about it. We very occasion-
ally coach web-application groups where—
really—the maximum effort for a feature is half
of one person-day. They do not have a major
large-batch problem. But in large products one

feature (before splitting) may be “add support for HSDPA protocol”
or “add support for PDF version 1.7.” In such domains, it is particu-
larly helpful to see that large batches and long queues exist, and
that something can be done to improve. This thinking tool is rele-
vant for large products because big variable batches of work have a
nonlinear impact on cycle time—they can really mess things up.

An interesting incongruity: Queueing theory—the mathematical
analysis of how stuff moves through a system with queues—was
developed to understand and improve throughput in telecommuni-
cation systems—systems with lots of variability and randomness
similar to product development. As a consequence, telecommunica-
tion engineers understand the basic insights. And yet, telecom infra-
structure development people (telecom is a domain of large
products) do not always see that it applies to them to reduce the
average cycle time in their development system.

https://less.works For Gene Gendel only, id:gene-gendel

94

4 — Queueing Theory

leveling p. 65 Toyota people understand statistical variation and the implications
of queueing theory; this is reflected in the lean leveling principle to
reduce variability and more generally in the lean focus on smaller
batches and cycle times to move toward flow. As will be evident,
Scrum supports the management implications of queueing theory.

Before diving directly into the subject, note that lean is sometimes
described as focusing on smaller batch (work package) size, shorter
queues, and faster cycle time. Delivering value quickly. Lean is much
more than this—the pillars are respect for people and continuous
improvement resting on a foundation of manager-teachers in lean
thinking. Queue management is a mere tool far removed from the
essence of lean thinking. That said, faster cycle time is part of the
“global goal” in lean: Sustainable shortest lead time, best quality,
most customer delight, lowest cost, high morale, safety. So, on to cycle
time…

TRY…COMPETE ON SHORTER CYCLE TIMES

A lean product development organization is focused on value
throughput in the shortest possible sustainable cycle times, focused
on the baton rather than runners. Toyota people, the progenitors of
lean thinking, are masters of faster and faster (shorter) cycle times
without overburdening people.

Lotus 1-2-3?—Some readers may not have even heard of Lotus 1-2-3, but it once
owned the spreadsheet market. Borland and Microsoft came out with competing
products with better graphics. Lotus was slow to respond (long cycle times), and
three years later the competitors held 52% of the market share, about $500 mil-
lion USD in sales. Lotus 1-2-3 RIP. [Meyer93]

https://less.works For Gene Gendel only, id:gene-gendel

95

What are some process cycles or cycle times in product development?

Try…Use several
high-level cycle-
time KPIs

Key performance indicators (KPIs) in lean are not focused on the
utilization of workers doing these processes. Rather, lean KPIs focus
more on throughput cycle times—the baton rather than the runners.

That said, a caution: Measurement usually generates dysfunction or
‘gaming’ of the system by sub-optimizing to appear to achieve a good
score [Austin96]. This is especially true on ‘lower’ process cycles.
Higher-level cycle times such as potentially shippable cycle time and
“order to cash” or “order to delivery” (the quintessential cycle times)
are most relevant.

What would it mean if you could deliver in half or a quarter of the
time at a sustainable pace without overburdening people? And on
the other hand, what is the cost of delay?

Consider the benefits of delivering fast in terms of life cycle profits,
opportunities gained, response to competition, and innovation. For
most companies—not all—it would be an extraordinary advantage.

Half the time is not half the cost—When people hear “half the
time” they may think, “Twice as many products, features, or
releases—twice the old efficiency.” But there could be more transac-
tion cost, the overhead for each cycle. Shipping more frequently
might increase testing or deployment costs—or not, as will be seen.

Economic model includes cycle time—How to consider
the trade-off of shorter cycles versus transaction costs? Use
an economic model of your product that includes cycle time
factors [SR98]. Suppose you could ship six months sooner.
What are the estimated total life cycle profit impact and the
increased testing costs (transaction cost)? If you could gain
$20 million at a 40 percent increase in testing costs ($1.3
million), it is money well spent. The flip side of this is the

• “concept to cash” for one release

• “concept to done” for one feature

• potentially shippable time—how
frequently could you ship?

• integration time (to integrate
and fully test the product)

• compile time (of all the software)

• “ready to pilot” to delivery time

• deployment time for testing (into
embedded hardware)

• analysis and design times

https://less.works For Gene Gendel only, id:gene-gendel

96

4 — Queueing Theory

cost of delay. One product study showed a 33 percent loss of
total profit due to a six-month delay [Reinertsen83]. Unfor-
tunately, many product groups we work with do not seri-
ously analyze cycle time factors in their life cycle profit
economic model.

Half the time is not twice the cost—Before you put away your
spreadsheet on the transaction cost analysis, hold on. There is a sub-
tle connection between cycle time, transaction cost, and efficiency
that will soon be explored—a secret behind the impressive efficiency
of Toyota and other lean thinking enterprises…

Queue management—There are plenty of strategies to reduce
cycle time; both lean and agile practices offer a cornucopia of skillful
means. One tool is the subject of this chapter—queue management.

QUEUE MANAGEMENT TO REDUCE CYCLE TIME

“Queues only exist in manufacturing, so queueing theory and queue
management don’t apply to product development.” This is a common
misconception. As mentioned, queueing theory did not arise in man-
ufacturing but in operations research to improve throughput in tele-
com systems with high variability. Furthermore, many development
groups—especially those adopting lean or agile practices—have
adopted queue management based on queueing theory insight for
both product development and portfolio management. One study
from MIT and Stanford researchers concluded:

Business units that embraced this approach [queue manage-
ment for portfolio and product management] reduced their
average development times by 30% to 50%. [AMNS96]

https://less.works For Gene Gendel only, id:gene-gendel

97

Queue Management to Reduce Cycle Time

Queues in Product Development and Portfolio Management

Example queues in development and portfolio management?

In traditional sequential development there are many queues of par-
tially done work, known as work-in-progress or WIP queues; for
example, specification documents waiting to be programmed and
code waiting to be tested.

In addition to WIP queues, there are constrained-resource or
shared-resource queues, such as a backlog of requests to use an
expensive testing lab or piece of testing equipment.

Queues Are a Problem

First, if there are no queues—and no multitasking that artificially
makes it appear a queue has been removed—then the system will
move toward flow, the lean principle and perfection challenge that
value is delivered without delay. Every queue creates a delay that
inhibits flows. More specifically, why are queues a problem?

WIP queues—WIP queues in product development are seldom seen
as queues for several reasons; perhaps chief among these is that
they tend to be invisible—bits on a computer disk. But they are
there—and more importantly they create problems. Why?1

❑ WIP queues (as most queues) increase average cycle time and
reduce value delivery, and thus may lower lifetime profit.

• products or projects in a portfolio

• new features for one product

• detailed requirements specifica-
tions waiting for design

• design documents waiting to be
coded

• code waiting to be tested

• the code of a single developer
waiting to be integrated with
other developers

• large components waiting to be
integrated

• large components and systems
waiting to be tested

1. See also the Recommended Readings for a cogent analysis of queues
in product development and what to do about them.

https://less.works For Gene Gendel only, id:gene-gendel

98

4 — Queueing Theory

❑ In lean thinking, WIP queues are identified as waste—and
hence to be removed or reduced—because:

– WIP queues have the aforementioned impact on cycle time.

– WIP queues are inventory (of specifications, code, documen-
tation, …) with an investment of time and money for which
there has been no return on investment.

– As with all inventory, WIP queues hide—and allow replica-
tion of—defects because the pile of inventory has not been
consumed or tested by a downstream process to reveal hid-
den problems; for example, a pile of un-integrated code.

– We saw a traditional product group that spent about one
year working on a “deal breaker” feature. Then product
management decided to remove it because it threatened the
overall release and the market had changed. Replanning
took many weeks. In general, WIP queues affect the cost and
ability to respond to change (deletions and additions)
because (1) time and money were spent on unfinished
deleted work that will not be realized, or (2) the WIP of the
deleted item may be tangled up with other features, or (3) a
feature to add can experience a delayed start due to current
high WIP levels.

benefits of
reducing cycle
and batch p. 112

As will be explored, there is a subtle but potentially powerful sys-
tems-improvement side effect that can occur through the process of
eliminating WIP queues.

Shared resource queues—In contrast to WIP queues, these are
more often seen as queues—and seen as a problem. They clearly and
painfully slow people down, delay feedback, and stretch out cycle
times. “We need to test our stuff on that printer. When will it be free?”

Try…Eradicate queues by changing the system

The bottom line is that (usually) queues are a problem. Given that,
you may jump to the conclusion that the first line of defense against
this problem is to reduce the batch and queue size, because these are
classic queue-management strategies. Yet, there is a Gordian Knot
solution that should be considered first…

https://less.works For Gene Gendel only, id:gene-gendel

99

Queue Management to Reduce Cycle Time

The remainder of this chapter will indeed explore reducing cycle
time through batch- and queue-size management. But that entire
management strategy should be Plan B. Rather, start with Plan A:

Think outside the current box and shorten cycle times by changing
the system so that queues no longer exist—by removing bottlenecks
and other forces that create the queues. These constraints and the
queues they spawn may be created or eradicated by the very nature
of a development system and its tools.

Suppose the existing system is based on sequential or serial develop-
ment with single-specialist workers or groups. There will be WIP
queues: The analyst group hands off specification work packages to
the programming group that hands off code work packages to the
testing group. The inside-the-box response to improving cycle time
with queue management is to reduce batch size, reduce variability,
and limit the WIP queue sizes between these groups.

feature teams
p. 149

But there is a deeper alternative that will more dramatically
improve cycle time: Discard that system and the bottlenecks and
WIP queues it spawns. If you adopt cross-functional feature teams
that do complete features (analysis, programming, and testing)
without handing off work to other groups, and that apply automated
acceptance test-driven development (TDD), the above WIP queues
vanish by moving from serial to parallel development.

Avoid…Fake queue reduction by increased multitasking or utili-
zation rates

Suppose you are busy working on item A, and items B, C, D, and E
are in your queue. Fake queue reduction is to work on all these
items at more or less the same time—a high level of multitasking
and utilization. Multitasking is one of the lean wastes because as
will be soon seen, queueing theory shows that this would increase
average cycle time, not reduce it. Bad idea.

Plan A in queue management is to completely eradicate the
queue, forever, by changing the system—of development, tools, …

https://less.works For Gene Gendel only, id:gene-gendel

100

4 — Queueing Theory

Do not increase multitasking2 or utilization rates to create the illu-
sion that queues have been reduced and the system has improved;
rather, improve the system so that the bottlenecks and other forces
that create queues are removed.

After Plan A, What Queues May Remain?

Traditional WIP queues can be eliminated by the move to Scrum
with cross-functional feature teams and the use of acceptance TDD.
Banished and vanished via Plan A—change the system. Still,
queues can and do remain:

❑ shared-resource queues, such as a testing lab

Product Backlog
and queues
p. 115

❑ the queue of feature requests in the Product Backlog

❑ WIP queues because (1) Plan A is not yet possible (deep change
in large product groups takes time), or (2) tools and techniques,
such as moving from manual to fully automated testing, are
weak and slow to improve

Whatever queues remain—and at the very least, the Scrum Product
Backlog will remain—you can improve average cycle time by Plan B
in queue management…

Try…Small batches of equal size

In Scrum, a smaller batch means a smaller work package of items or
features to develop in an iteration. Equally sized batches imply that
each is estimated to be roughly equal in effort.

2. Naturally, taking on two tasks in parallel (multitasking) is appropri-
ate if it is possible to be blocked from working on one of the tasks
and it is not possible to improve the system to remove the block.

For queues that cannot be eradicated, improve
average cycle time by reducing the batch size in the

queues, and by making each batch equally sized.

https://less.works For Gene Gendel only, id:gene-gendel

101

Queueing Theory

Concretely, how to apply this in Scrum? That will be explored later
in the chapter, but first, on to the field of queueing theory…

QUEUEING THEORY

It might take hard work or a new perspective, but it doesn’t take
much theory to “manage queues” by eradicating them. On the other
hand, when they must still exist, it is helpful to know how to deal
with them with the thinking tool of queueing theory.

A Formal Model for Evaluating Processes

You may accept at face value that queues with smaller feature-
batches of equal size improve average cycle time. Or not. In any
event, it is useful to know that this suggestion is not based on opin-
ion but is grounded in a formal mathematical model that can be
demonstrated. It is possible to reason about some aspects of a devel-
opment process, using a formal model. For example:

❑ Hypothesis: It is fastest to do sequential (‘waterfall’ or V-model)
development with large-batch transfers between groups.

❑ Hypothesis: It is fastest for people or groups to have high utili-
zation rates and multitask on many projects at the same time.

An understanding of queueing theory, independent of opinion, can
reveal if these hypotheses help reduce average cycle time.

The topic is relatively simple; a scenario captures key elements…

Qualities of a Stochastic System with Queues

Consider Los Angeles or Bangalore at rush
hour. By some miracle there are no accidents
and all lanes are open. Traffic is tight and
slow, but moving. Over a short period of time,
there are accidents on three different major
four-lane highways (twelve lanes), and three
lanes are closed—only nine lanes are still

https://less.works For Gene Gendel only, id:gene-gendel

102

4 — Queueing Theory

open. Boom! Before you can say, “Why didn’t I buy a helicopter?”
much of the city does a phase shift into gridlock. When the accidents
are finally cleared (ranging from thirty to sixty minutes later), the
massive queue buildup takes forever to clear. Observations:

❑ Nonlinear—When the highway is from zero to fifty percent
loaded, it is smooth sailing—virtually no queues or delays. But
between fifty and one-hundred percent, slowdown becomes
noticeable, queues build up. The relation of utilization to queue
size is nonlinear, not a smooth linear increase from zero.

❑ Delay and overload does not start at 99.99% utilization—
It is not the case that everything goes fast and smooth on the
highway until just before 100 percent capacity of cars on the
road. Rather, things slow down and gridlock happens well
before capacity is reached.

❑ Clearing the queue takes longer than making it—Forty-
five minutes of blockage in Los Angeles at rush hour creates
queues that take more than forty-five minutes to clear.

❑ Stochastic, not deterministic—There is variation and ran-
domness with probabilities (it is a stochastic system): arrival
rates of cars, time to remove blocks, exit rate of cars.

This is worth spelling out if you wish to grasp how systems behave,
because it seems all us humans do not have an intuitive sense of the
stochastic and nonlinear quality of systems with queues. Gut
instinct may be that they are deterministic and behave linearly. This
incorrect “common sense” leads to thinking mistakes in analyzing
problems and managing product development. These observations—
and thinking mistakes—apply to WIP queues in traditional product
development and to virtually all other queues.

One common thinking mistake in product development is that the
queues, delay, and the people that serve them behave as in
Figure 4.1—the misunderstanding of “delay only starts when the
highway is 100 percent full.” But slowdown starts happening on the
highway long before it is 100 percent full. Perhaps at 60 percent
capacity, you start to notice slowdown—a longer average cycle time.

https://less.works For Gene Gendel only, id:gene-gendel

at around 82%

103

Queueing Theory

Figure 4.1 a
common myth or
thinking mistake
regarding queues in
systems with
variability

multitasking
p. 60

With the misunderstanding “delay only starts when the highway is
100 percent full,” there is a misguided focus on trying to improve
cycle time by increasing resource utilization—getting the people in
product development to be more busy, usually by more multitasking.
This is the mistake of watching the runner rather than the baton.

What really happens to average cycle time when one increases the
utilization level of things or people in a system with variability?

At Xerox they have expensive,
large digital print presses in a test
lab. There is often a shared-
resource queue of testing requests
for one of these devices. Without
understanding how queues really
work (that is, believing they work

100

ratio of cycle time (queue
time + service time)
divided by service time.
for example:

- queue time: 8 weeks
- service time: 2 weeks
- cycle time = 10
- ratio = CT/ST = 10/2 = 5

a ratio of 1 means “no
time in queue” because,
for example:

CT/ST = 2/2 = 1

0 25 7550

5

0

10

15

20

percent of capacity utillization

cy
cl

e
tim

e
(C

T
)

/ s
er

vi
ce

 ti
m

e
(S

T
)

this false graph depicts the
thinking mistake that there is
little or no time waiting in a
queue of a system with
variability until at or near
100% utilization

myth:
- no wait at 25%
- no wait at 50%
- no wait at 75%

this mistake can lead to bad
policy... “You are not yet 100%
utilized, so we should give you
more work”

fact: the CT/ST ratio and queue
size are related

as the ratio goes up, the queue
size goes up

1

https://less.works For Gene Gendel only, id:gene-gendel

104

4 — Queueing Theory

as in Figure 4.1), the management approach would be to encourage
that these expensive systems are reserved and utilized close to 100
percent of the time. But the reality is that there is variability all
over the place—a stochastic system. Tests arrive randomly, some fail
quickly, some take forever to complete, sometimes the equipment
breaks, and so forth. This same variability of behavior applies to peo-
ple and the queues of work that they work on.

Modeling a Basic Single-Arrival System with Queues

How do these systems behave—in traffic, test labs, or traditional
development with people working on WIP queues? You have a sense
of it from the traffic story. Mathematically, the behavior may be
modeled as variations of M/M systems. M/M means that the inter-
arrival rate into the queue is Markovian and the service rate is
Markovian.3 A common, basic queueing model is M/M/1/∞ —it has
one server (for example, one test printer or team) and an infinite
queue.4

Now it starts to get interesting… In a M/M/1/∞ system, how does
cycle and service time relate to utilization of the server—be it a test
printer or people working on WIP queues? Figure 4.2 shows the
behavior [Smith07].

These are averages in Figure 4.2, because elements have random
variability, such as:

❑ requests arrive at different times with different effort

❑ tests or programming effort take variable time

❑ people work faster or slower, get sick, or work longer or shorter

3. Markovian: A simple concept—a random process with probabilities
(stochastic) in which the future state cannot be deterministically
known from the present state; that is, similar to “messy reality.”

4. Development queues are not normally infinite, but this simplifica-
tion does not impact the basic pattern of how the systems behave.

https://less.works For Gene Gendel only, id:gene-gendel

105

Queueing Theory

Figure 4.2 waiting
behavior for a basic
M/M/1/∞ system

The essential point to grasp is that an item (such as a requirement
request) starts sitting in a queue waiting for service long before peo-
ple are 100 percent utilized. It is also fascinating to see the impact of
increased utilization of people on cycle time: As utilization goes up in
a system with lots of variability, average cycle time gets worse, not
better. This is counterintuitive to an average accountant or manage-
ment consultant who has been taught to “improve productivity by
increasing utilization of resources.” Most have not been exposed to
queueing theory—how to understand stochastic systems with
queues (people doing work with variability)—and so demonstrate a
thinking mistake.

Modeling a Batch System with Queues (Traditional Development)

It gets even more interesting (if you could believe that)… The basic
M/M/1/∞ system assumes that a single item (for testing, analysis,
programming, …) arrives in isolation—that arriving items are never
clumped (or batched). Yet in traditional product development, work

It is this real-world variability that creates, on average, this
increased queue size and waiting time in product development.

1000 25 7550

5

0

10

15

20

percent of capacity utillization

cy
cl

e
tim

e
/ s

er
vi

ce
 ti

m
e

0% utilization: no wait
in queue

50% utilization: cycle
time averages 2 times
the time in service

90% utilization: cycle
time averages 10
times the time in
service

2X

10X

this ratio and
queue size are
related

https://less.works For Gene Gendel only, id:gene-gendel

106

4 — Queueing Theory

packages do arrive in big clumpy batches, such as sets of require-
ments or testing work or code to be integrated. Or an apparent ‘sin-
gle’ requirement is received such as “provide HSDPA support” that
is in fact itself a batch of sub-requirements.5

Figure 4.3 waiting
behavior in a
M[x]/M/1/∞ system,
analogous to
traditional
development with
variable batches

Probably obvious, but it needs to be said:

As work-item size or batch size increases, variability increases.

5. “One big requirement is itself a batch” is a critical point that will be
revisited later in this chapter.

1000 25 7550

5

0

10

15

20

percent of capacity utillization

cy
cl

e
tim

e
/ s

er
vi

ce
 ti

m
e

Analogy to
Traditional Product
Development with

Big Batches

50% utilization: cycle
time averages 5 times
the time in service

90% utilization: cycle
time averages 22
times the time in
service2X

10X

22X

5X

bulk arrival
– bigger batches

single
arrival

ratio of cycle time (queue time + service time) divided
by service time. for example:

- service time: 2 weeks - queue time: 2 weeks
- cycle time = 4 - ratio = 2

- service time: 2 weeks - queue time: 8 weeks
- cycle time = 10 - ratio = 5

https://less.works For Gene Gendel only, id:gene-gendel

107

Queueing Theory

One mega-requirement, more variability. A big batch of require-
ments, more variability. Big pile of code to integrate or test, more
variability. And if you are involved in budgeting or finance… A big
pile of budgets, more variability.

What effect does this increased size variability have on queues and
waiting time? Now, instead of the simpler single-arrival M/M/1/∞
model (a single work item arrives), we have a M[x]/M/1/∞ system (a
batch of items arrive). This model is a better analogy to traditional
product development. Example behavior is shown in Figure 4.3.

At first glance, people may not grasp the startling and counterintui-
tive implication of what just happened to their cycle time.

A scenario may help: Suppose a person or team is currently 50 per-
cent utilized and you usually give them single small-sized require-
ments now and then that arrive with some randomness and some
variability in size. Assume it will take them two weeks of hands-on
work to complete a particular requirement-X. And assume it is the
simple single-arrival system modeled in Figure 4.2 (and repeated in
the lower curve of Figure 4.3).

As a table, here is an approximation of the average situation:

Next, instead, suppose that you are typically giving the 50-percent-
utilized team significantly bigger batches of requirements, or ‘one’
giant requirement that actually encompasses a big batch of sub-
requirements; these arrive with some randomness and size differ-
ences. Assume it will take twenty weeks of hands-on service time to
complete some particular batch-X or ‘single’ big requirement.

arrival util. queue
time

service
time

cycle
time

ratio
CT/ST

single arrival 50% 2 wk 2 wk 4 wk 2

https://less.works For Gene Gendel only, id:gene-gendel

108

4 — Queueing Theory

Knowing the prior table, this is what some people will predict:

A gut instinct prediction is a linear increase in the cycle-time
impact. Ten times as much work on average being pushed through
the system, so ten times the cycle time. Four weeks versus 40 weeks.

But it does not work that way, because more variability is introduced
into the system. A much bigger batch or much bigger ‘single’
requirement that encompasses many sub-requirements means more
variability within the batch, and of course batches can arrive of dif-
ferent sizes. So what happens?

At 50 percent utilization, the cycle-to-service-time ratio is ‘5’ in the
M[x]/M/1/∞ example. This approximates the contrasting situations:

Things just got a lot worse. Of course, these are averages and cannot
be assumed for any one real case, and this model is a simplified
abstraction of development. But this is why understanding—and
acting on the insight—of queueing theory is vital for large-scale
development, because large systems are often associated with big
requirements, and big work (requirements, testing, integration, …)

arrival util. queue
time

service
time

cycle
time

ratio
CT/ST

single arrival 50% 2 wk 2 wk 4 wk 2

prediction if big
batch/require-
ment arrivals

50% 20 wk 20 wk 40 wk 2

arrival util. queue
time

service
time

cycle
time

ratio
CT/ST

single arrival 50% 2 wk 2 wk 4 wk 2

big batch/
requirement
arrivals

50% 80 wk 20 wk 100 wk 5

https://less.works For Gene Gendel only, id:gene-gendel

109

Queueing Theory

in big batches arriving at variable times. That can have an astonish-
ing impact on average cycle time.

And as explored earlier, pushing for high utilization rates of your
workers in this situation with big batches of work is a recipe for…
blackstrap molasses in Alaska.

The reality is a nonlinear increase in cycle time. This impact on
delay and queue size defies our instinct because people are not used
to analyzing stochastic systems with queues. One might think, “If I
make the work package ten times bigger, it will take ten times as
long to exit the system.” Do not count on it.

Series of WIP Queues Aggravate Delays—These delays are further
aggravated in traditional sequential development because there are
a series of processes with WIP queues in front of them; this com-
pounds the variability and adds more negative impact to the overall
average cycle time. The Law of Variability Placement [HS08] reveals
that the worst place for variability (in terms of negative cycle-time
impact) is at the front end of a multi-stage system with queues. This
is what happens in phase-one requirements analysis with large
batches of specifications.

Conclusion

So, what has been learned?

❑ product development is a stochastic system with queues; it is
nonlinear and non-deterministic

❑ behavior of a stochastic system with queues defies our instincts

❑ batch size, size of requirements, and utilization levels affect
queue size and cycle time in nonlinear random ways that are
not obvious—throughput can get slow if not understood

❑ queue size affects cycle time

❑ in a variable system, high utilization increases cycle time and
lowers throughput—it does not help; a traditional resource
management approach [for example, McGrath04] can make
things worse by focusing on the runner rather than the baton

https://less.works For Gene Gendel only, id:gene-gendel

110

4 — Queueing Theory

❑ a system with variability and a series of processes and WIP
queues further aggravates the delay; this situation describes
traditional sequential development

❑ variability at the front end of multi-step system with queues
has the worst impact

HIDDEN BATCHES: EYES FOR BATCHES

If you bake three cherry pies at the same
time, then it is clear that there is a batch of
three items. Things are not so clear in
product development: What exactly is ‘one’
requirement? At one level, “a 600 DPI 12
PPM color printer” is one requirement, but
it is also a composite requirement or a
batch of sub-requirements that can be
split; for example, into “a 600 DPI color

printer.” Decomposition of a ‘single’ large composite requirement is
especially relevant (and easy) in software systems. This topic, and
its connection to representing very large requirements as user sto-
ries that can be split, is considered in the Requirements chapter of
the companion book. For now, the key point to appreciate is that
‘one’ requirement—especially in large software-intensive embedded
systems—is almost always itself a batch of sub-requirements. These
hidden batches need to be seen.

Large variable-sized batches are bad for cycle time. Single large
items with variability are bad for cycle time. Variation in size of
batches or items is bad for cycle time. So, the implication for queue
management in Scrum is this:

To reduce average cycle time, all apparently ‘single’ large items
(requirements) in the Product Backlog need to be (eventually)
split into many small and roughly equal-sized items. This is easily
achieved by representing backlog items as user stories.

https://less.works For Gene Gendel only, id:gene-gendel

111

Hidden Queues: Eyes for Queues

HIDDEN QUEUES: EYES FOR QUEUES

When people join Toyota, they learn “Eyes for Waste.” They learn to
see things as waste that they had not considered, such as inven-
tory—queues of stuff. Now, queues of physical things are easy for
people to perceive, and to perceive as a problem… My goodness,
there’s a gigantic pile of Stuff queuing up over there! Making any
money from the pile? Are there defects in there? Does it need to be
combined with other stuff before we can ship it? Do we need—and
will we make money with—each and every item in the pile?

Invisible queues—In traditional development there are also all
kinds of queues, but because they are invisible they are not seen as
queues or keenly felt as problems. If you are a business person who
has invested ten million euros to create a gigantic pile of partially
done Stuff sitting on the floor, not making any money, you walk by it
and see it and you feel the pain and urgency to get it moving. And
you think about no longer making big piles of partially done stuff.
But product development people do not really see and feel the pain
of their queues.

Yet, they are there. Queues of WIP—information, documents, and
bits on a disk. Invisible queues. Product development people need a
lesson in “Eyes for Queues” so that they can start to perceive what is
going on, and develop a sense of urgency about reducing queue sizes.

Try…Visual
management to
see the invisible
queues

Visual management for tangible queues6—To develop “eyes for
queues” and a sense of attention, one lean practice is visual manage-
ment, making physical tokens (not tokens in a computer program7)
for these queues. For example, in Scrum and other agile methods, it
is common to represent all the tasks for the iteration on paper cards
that are placed on the wall and moved around as tasks are com-
pleted (Figure 4.4). Physical tokens. Putting these tasks into today’s
computers8 defeats the purpose of lean visual management and the

6. This section intentionally repeats part of the Lean chapter.
7. Physical tokens are a critical aspect of lean visual management that

is not always appreciated. Some people create software systems for
“visual management” and defeat the purpose.

8. Someday, displays will be wall size and one will move computer
objects with physical gestures; that will negate this point.

https://less.works For Gene Gendel only, id:gene-gendel

112

4 — Queueing Theory

way humans—with countless eons of evolutionary instinct working
with concrete things—need to see and feel tangible queues.

Figure 4.4 lean
visual management
creates physical
tokens, such as task
cards and paper
charts on a wall, so
that invisible queues
can become
tangible—really
seen and felt

INDIRECT BENEFITS OF REDUCING BATCH SIZE AND CYCLE TIME

“Why bother? Our customers don’t want a release every two weeks,
nor do they want just a sub-requirement.”

We get this question regularly from product groups and business
people. They do not yet appreciate the advantages of small batches
in short cycles:

❑ The overall larger release-cycle-time reduction that can come
by eradicating queues and by applying queue management so
that many development cycles are shorter.

❑ The elimination of batch delay, where one feature is unneces-
sarily held back because it is moving through the system
attached to a larger batch of other requirements. Eliminating
this provides another degree of freedom for the business to ship
a smaller product earlier with the highest-priority features.

❑ And last but not least, there are indirect benefits due to the
“lake and rocks” effect described next.

https://less.works For Gene Gendel only, id:gene-gendel

113

Indirect Benefits of Reducing Batch Size and Cycle Time

Indirect Benefits: The Lake and Rocks Metaphor

A metaphor shared in lean edu-
cation: lake and rocks. The
depth of the water may represent
the inventory level, batch size,
iteration length, or cycle time.
When the water is high (large
batch or inventory size, or itera-
tion length), many rocks are hid-
den. These rocks represent
weaknesses. For example, con-

sider an eighteen- month sequential release cycle with a massive
batch transfer; inefficient testing, integration, and poor collabora-
tion are all hidden below the surface of such a long cycle and such a
large batch. But if we work with that group and ask, “Please deliver
a small set of small features that is potentially shippable in two
weeks, every two weeks,” then suddenly all the ineffective practices
become painfully obvious.

Said another way, the transaction cost (overhead cost) of the old pro-
cess cycle becomes unacceptable. That pain then becomes a force for
improvement, because people cannot stand re-experiencing it each
short cycle, and indeed it may simply be impossible to the iteration
goals with the old inefficient system of development.

Tip: Not all ‘rocks’ are big or immediately visible. The lean journey—
and the journey of Scrum—is to start with the big rocks that are
most painfully obvious yet movable, and over time work on smaller
impediments.

The causal loop diagram in Figure 4.5 illustrates this lake and rocks
effect in terms of a system dynamics model.

https://less.works For Gene Gendel only, id:gene-gendel

114

4 — Queueing Theory

Figure 4.5 indirect
and delayed
benefits of reducing
batch and cycle size

batch size
(work package size)

queue size

cycle time

feedback
time

quality innovation

transaction costs
(overhead)

efficiency

�� $$
(profit)

smaller batch size
leads, on average, to
smaller queue size

O

this is a key, and perhaps
counterintuitive, relationship
not first appreciated in lean
development and queue
management—to sustainably
work in small batches and
short cycles, there arises
strong pressure to constantly
improve or revolutionize; this
leads to driving down
transaction costs

however, there is a delay in
this long-term improvement,
and the short-term effect is
the opposite—increasing
overhead as batch size
becomes smaller

in the long term, for example,
people cannot stand
inefficient manual testing in
this context—they will move
to automated test, but that
takes time

this is the “lake and rocks”
effect

noticeably delayed
positive effect … as
batch size goes down
and the group sees
the inefficient
overhead, they may
improve and thus over
time start to drive the
overhead down

O O

lower cycle time leads to higher profits
(often); this is an opposite (O) effect

some product groups are unaware that
shorter cycle time can have a direct
impact on profit, in addition to the
indirect benefits shown in this model

O

other key, but not immediately appreciated, opposite
reinforcement impacts of reduced feedback time…
- short feedback loops quickly improve quality
- after some delay, the increased innovation
 opportunities are exploited and can pay off

O

short
term

long
term

1

2

3

45

https://less.works For Gene Gendel only, id:gene-gendel

115

Applying Queue Management in Scrum

APPLYING QUEUE MANAGEMENT IN SCRUM

There are dozens of strategies to manage queues. Managing the
Design Factory by Don Reinertsen explains many. However, we want
to focus on a few key steps in a Scrum context:

1. change the system to utterly eradicate queues

2. learn to see remaining queues with visual management

3. reduce variability

4. limit queue size

Change the system—(see p. 98). Must you manage existing queues?
Step outside the box. For example, Scrum feature teams and accep-
tance TDD eliminate many queues in traditional development.

Reduce variability—(see p. 117). Some people first try to reduce
work queues by increasing utilization or multitasking (with nega-
tive results), or by adding more developers. True, adding people—if
they are talented—can help (there are exceptions), but it is expen-
sive and takes time. People who have grasped queue management
recognize a simpler place to start in Scrum: Reduce variability,
which includes reduction in batch size.

A Closer Look at the Product Backlog as a Set of Queues

It is possible to view the Product Backlog as one big near-infinite
priority queue9, but we suggest a more fine-grained view. It has dis-
tinct subsets. One view is that it contains two backlogs: (1) the
Release Backlog for the current release, and (2) the “future backlog.”
A second perspective is that the Product Backlog contains the fol-
lowing two subsets:

❑ the clear-fine subset10 of user stories that are clearly analyzed,
well estimated, and fine grained enough to do in one iteration
(or less)

9. The term priority queue is used in the formal sense—a queue of
items whose priority in the queue may change according to a poten-
tially complex sorting algorithm.

https://less.works For Gene Gendel only, id:gene-gendel

116

4 — Queueing Theory

❑ the vague-coarse subset of coarse-grained user stories needing
more analysis, estimation, and splitting before entering the
clear-fine subset

The Release and future backlogs may both contain clear-fine and
vague-coarse user stories. At the start of a release cycle, the Release
Backlog typically contains mostly vague-coarse user stories, and
iteration by iteration they are refined into clear-fine stories, and
then implemented.

This leads to some key points (illustrated in Figure 4.6):

❑ It is common—and advisable—in Scrum to prioritize only the
clear-fine subset of the Release Backlog.

❑ In Scrum, this “clear-fine priority queue” is the critical queue of
implementation work before the teams.

❑ The vague-coarse subset of the backlog is a feeding queue of
user stories into a backlog refinement process that adds high-
quality small stories to the clear-fine subset.

Figure 4.6 Product
Backlog contains
several queues

10. Scrum has no official name for these subsets.

Clear-Fine Items
1. ---
2. ---
3. ---
4. ---

Vague-Coarse Items

Backlog

priority queue of items for
implemenation by teams

queue of items
for refinement
that may move
into the priority

queue

Product
Backlog

refinement

Scrum
Teams

https://less.works For Gene Gendel only, id:gene-gendel

117

Applying Queue Management in Scrum

Try…Reduce the variability in Scrum

Before getting carried away with the idea of variability reduction—
new development is not manufacturing; without variation nothing
new happens or is discovered. It is both appropriate and inevitable
that there is variability in research and development. However,
there are indeed varieties of variability than can be diminished—the
topic of this section. In the terminology of Edwards Deming, there is
common-cause variation and special-cause variation. The first
category is anticipated variation in the process; you could see it by
looking at historical data (if you had any). For example, variation in
feature request size is common-cause variation. On the other hand,
special-cause variation cannot be anticipated—it’s a surprise. In
Scrum development we can reduce common-cause variation.

lean sources of
waste p. 58

Variability is one of the three sources of waste in lean thinking (the
other two are overburden and non-value-add actions). With an
understanding of queueing theory, it may be clearer why variability
is considered a source of waste.

What are some sources or kinds of variability in Scrum?

… and more. In queueing-model terminology, they usually boil down
to variability in the service and arrival rate.

flow p. 67
leveling p. 65

In lean thinking, flow is a key principle—and flow requires reduc-
tion or elimination of variability. That is why leveling is also a lean
principle; it is an antidote to variability and helps move toward flow.

This leads to some variability-reduction suggestions in Scrum:

• big batches and big user stories

• ambiguity of what a user story
means

• ambiguity of how to implement a
story

• different (estimated) efforts for
different stories

• number of stories in the Release
Backlog clear-fine priority queue

• estimate-versus-actual effort
variance, which can reflect what/
how ambiguity, unskillful estima-
tion, learning, and much more

• the arrival rate of user stories
into the clear-fine priority queue
of the Release Backlog

• team and individual variability

• overloading or failure of shared
resources, such as a testing lab

https://less.works For Gene Gendel only, id:gene-gendel

118

4 — Queueing Theory

leveling in the
Product Backlog
p. 62

Reduce variability by a small queue (buffer) of clear-fine,
similar-sized user stories in the Release Backlog—In the Lean
Thinking chapter, it was explained that a small buffer of high-qual-
ity inventory is used in lean systems to smooth or level the introduc-
tion of work to a downstream process. This inventory (a temporarily
necessary waste) positively supports level pull because the Scrum
feature teams now have a queue of similar-sized stories to work on;
no waiting and fewer surprises. Stories in the vague-coarse subset of
the Release Backlog have high what/how ambiguity and are large;
so choosing those for implementation is unskillful because it
increases variability.

Product Backlog
Refinement
p. 318

see Requirements
in companion
book

Reduce variability by holding a “five percent” Product Back-
log Refinement Workshop each iteration—One of the less-
known guidelines in Scrum is to dedicate at least five percent of
duration of each iteration to requirements analysis, user story split-
ting, and estimation or re-estimation. This is done for user stories
for future iterations, not the current iteration, and may be done in a
Product Backlog (PB) Refinement Workshop. This reduces what/how
ambiguity or variability, plus reduces estimation variability because
re-estimation may improve as people learn.

During this workshop, split items into small and equally sized user
stories. A big ‘single’ requirement is actually a hidden batch. For
example, the ‘one’ story “…HSDPA protocol support…” can be split
into smaller customer-centric user stories. This reduces batch size
and its attendant variability. It also reduces batch delay—the artifi-
cial holding back of an important sub-feature because it was stuck to
a larger batch of features, some of which are less important.

This repeating workshop also creates a regular cadence of adding
clear-fine stories to the queue, reducing variability in arrival rate.

Reduce variability by stable feature teams—Use stable long-
lived feature teams in Scrum to reduce the variability in the ‘serv-
ers’—the teams. Also, the cross-functional, cross-component feature
teams increase parallelism and flow because a user story can flow to
any one of several available teams.

Reduce variability by timeboxed effort-boxed learning
goals—This tip is most useful in domains with large research-ori-
ented requirements. It reduces what/how ambiguity and variability.

https://less.works For Gene Gendel only, id:gene-gendel

119

Applying Queue Management in Scrum

Sometimes non-trivial investigation is needed just to start to under-
stand a feature. For example, we were once consulting at a site in
Budapest; the mobile-telecom product group wanted to provide
“push to talk over cellular.” The international standards document
for this is thousands of pages. Just to vaguely grasp the topic is a
formidable effort. One approach is to ask a team to “study the sub-
ject.” Yet, that is fuzzy unbounded work that will introduce more
service variability and may expand into the lean waste of over-pro-
cessing. An alternate approach—our suggestion—is to offer the
team a timeboxed and effort-boxed goal to learn. Perhaps the con-
crete goal is to present a research report at the end of the iteration,
in addition to their work implementing user stories. For example,
“introductory report on push to talk, maximum 30 person hours.” A
leveled amount of effort is put into the research and learning, bal-
anced with the team also implementing user stories. The Product
Owner Team may then decide to invest more bounded effort into
another cycle of research in a future iteration (probably more
focused as the subject clarifies), until finally the subject is clear
enough for people to start writing, splitting, and estimating user sto-
ries.

Other Benefits of Reduction in Variability

Another benefit of all this variability reduction is improved predic-
tion (estimation) of the duration of the release.

Finally, it allows higher utilization of teams. Queuing theory pre-
dicts that irregularly loading large high-variability batches of big
requirements onto groups and then pushing for high levels of utili-
zation or multitasking increases cycle time. Avoid that.

On the other hand, queueing theory predicts
that utilization can be higher without nega-
tive cycle-time impact if there was leveling or
removal of variability in all elements.

Imagine a highway that only allows small,
equally sized motorcycles all going the same

speed. Bikes only enter the highway one at a time at an even pace
controlled by a pacing light on the ramp entrance. This idealized

https://less.works For Gene Gendel only, id:gene-gendel

120

4 — Queueing Theory

highway—on average—can be more fully utilized while still main-
taining good flow than can a typical high-variability highway.

How Small?

If a one-week requirement is better than a
one-year requirement, is a one-minute
requirement even better?

The way to look at this is the transaction cost
or overhead of each batch of work. At some
point, the cost or effort of user-story splitting

becomes too high or difficult. And the overhead of doing each small
story eats away the advantages. That said, it is worthwhile recalling
that moving to smaller batch sizes has a subtle indirect benefit to
drive down overhead costs over time, as explored on p. 113. And yet,
at some point splitting is no longer worth it—though that point will
change over time.

Try…Limit size of the clear-fine subset of the Release Backlog

Another queue management technique is to limit queue size. This
does not necessarily reduce variability, but it has other virtues. In a
traditional development first-in first-out (FIFO) WIP queue, a long
queue is a problem because it will take forever for an item to move
forward through the queue and eventually be finished—a straight-
forward reason to limit FIFO WIP queue size.

That problem is less pernicious in a Scrum Release Backlog priority
queue, since it can be re-sorted—something just added can move to
the head of the list. Still, there are good reasons to limit the number
of items in the clear-fine priority queue of the Release Backlog:

For large-product development, our guideline is to split (the typi-
cally large) user stories until one user story is small enough for one
Scrum feature team to do it in one-quarter of an iteration.

https://less.works For Gene Gendel only, id:gene-gendel

121

Theory of Constraints

❑ A long list of fine-grained complex features is hard to under-
stand and prioritize. In large-product development, we regu-
larly hear complaints from the Product Owner Team that the
backlog is too big for them to “get their head around.”

❑ A big backlog of clearly analyzed, finely split and well-esti-
mated user stories has usually had some investment in it, pro-
portional to its size. It is inventory with no return on that
investment. As always with inventory, that is a financial risk.

❑ People forget details over time. All the user stories in the clear-
fine subset have been through in-depth analysis in PB Refine-
ment Workshops. If that list is short, there is a good chance
that the Scrum Team implementing the story has recently ana-
lyzed it in a workshop, perhaps within the last two months. If
the queue is very long and growing, there is a greater chance
the team will take on a story analyzed long ago. Even though
there will probably be written documentation that was gener-
ated long ago in the workshop, it will of course be imperfect,
and their grasp of the details will be hazy and stale.

THEORY OF CONSTRAINTS

Theory of Constraints (TOC) is a management system originally cre-
ated for manufacturing [Goldratt84]. It is mentioned here because
TOC also deals with bottlenecks, cycle time, batch size, and queues.

A key idea of TOC is that there is always at least one—usually just
one—primary constraint (or bottleneck) that limits throughput or
performance of a system. The constraint may be in a physical form,
in some knowledge work, or in a policy—and there will usually be a
queue building up behind it. Broadly—and at risk of gross oversim-
plification—the journey of applying “basic TOC” is to find that one
dominant constraint or bottleneck, reduce it so it is no longer domi-
nant, and then look for the new primary constraint. Repeat forever.
There is much more, but space prevents a thorough treatment.

Basic TOC has appealing logic to it, such as focusing on the major
bottleneck and reducing it. Try that.

https://less.works For Gene Gendel only, id:gene-gendel

122

4 — Queueing Theory

Some people who write about TOC primarily focus on the simple
idea of “remove the dominant constraint” and a few other straight-
forward tools. No problem.

But… the story gets messy. Some promote TOC for project manage-
ment without having seen the full picture in action. In the 1990s
Goldratt extended TOC to project management for product develop-
ment work [Goldratt97]. Here is a key point: Official “project man-
agement TOC” is more than what is described in the books, and
involves specialized courses, tools, and coaching from the Goldratt
Institute or authorized providers. It includes a relatively complex
and detailed plan-and-control centralized management system with
detailed task assignment to people, intensive upfront estimation
and scheduling in detailed Gantt charts, and several other tradi-
tional management practices. Bottom line: We have seen two very
large official “project management TOC” adoption attempts (and
heard of one more) in companies developing software-intensive
embedded systems. Big companies with large product groups. The
management was educated formally in the method, tools were pur-
chased, TOC consultants tried to help. The practice was clearly
heavy, not agile, and not lean. In all three cases, the approach was
eventually found cumbersome and not very effective, and was
dropped.

CONCLUSION

Queue management can become a hammer so that you go looking for
queue nails. Resist the temptation to manage existing queues—that
is an inside-the-box response to the problem. Rather, consider doing
system kaizen so that the underlying system is changed in some way
so that queues can no longer form or exist. Parallelizing with cross-
functional teams and acceptance test-driven development are com-
mon examples, but there are more. Only apply queue manage-
ment—a point kaizen tactic—when you cannot eradicate a queue.

https://less.works For Gene Gendel only, id:gene-gendel

123

Theory of Constraints

RECOMMENDED READINGS

There are dozens, if not hundreds, of general texts on queueing the-
ory. More specifically, we suggest readings that make the connection
between this subject and product development:

❑ Managing the Design Factory by Don Reinertsen is a classic
introduction on queueing theory and development. Reinertsen
has a broad and deep grasp of both product development and
business economics and weaves these insights together into
one of our favorite books on product development. This is the
book that popularized the model of thinking tools for process
improvement and organizational change.

❑ Flexible Product Development by Preston Smith was the first
widely-popular general product development book that intro-
duced agile software development concepts—including Scrum
and Extreme Programming—to a broader audience. This text
includes an analysis of queueing theory and variability, and
their relationship to development.

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Method Weight and Empirical Process with

Scrum 126

• False Dichotomies 129

• Avoid…Extreme Relativism 131

• Misconceptions 132

https://less.works For Gene Gendel only, id:gene-gendel

125

Chapter

5
FALSE DICHOTOMIES

2B ∨ ¬2B, that is the question
—Hamlet, early hexadecimal programmer

In 1999, Craig visited a client in Houston to help with an agile adop-
tion.1 At the beginning of the first-day kickoff, someone said, “We’re
trying XP but we hate it!” I asked, “How long are your timeboxed
iterations?” “What’s that?” she replied. I queried, “What about your
continuous integration practices?” She didn’t know. I asked, “What
is your experience with test-driven development and refactoring?”
She said, “I don’t think we do that.” “So,” I asked, “what are you
doing in XP?” “Well,” she said, “programming without any documen-
tation, of course!”

“Gymnasts are very agile, but they do not have discipline. Navy
Seals are very disciplined but they do not have agility.” Obviously
not true—this is a simplistic, binary view.

1. I shared this story at one of the earliest Extreme Programming (XP)
courses; it has since been attributed to several people.

agile disciplinedagiledisciplined

https://less.works For Gene Gendel only, id:gene-gendel

126

5 — False Dichotomies

Some years ago, the oddly named book Balancing Agility and Disci-
pline was published [BT03]. The title frames the subject of agile
methods in contrast to ‘discipline,’ as though these were at opposite
ends of a scale that needs to be balanced. In other words, a false
dichotomy—an artificial argument or framing of a situation set up
with two and only two binary alternatives.

The irony of this false dichotomy is rich when one considers the
practices and principles in a typical two-week timeboxed Scrum
Sprint (which is usually combined with XP engineering practices):

How is this not disciplined? In fact, the reality is that when we start
coaching a group, they are not able to do all the Scrum and XP prac-
tices because agile methods demand a level of planning, estimating,
engineering, and process-improvement discipline, rigor, and struc-
ture well beyond what they are used to or capable of. The reality is
that…

Try…Adjust
method weight
empirically in
Scrum

METHOD WEIGHT AND EMPIRICAL PROCESS WITH SCRUM

Scrum is an empirical process or adaptive process in which the
process complexity (roughly, the method weight) is based on con-
text, and adjusted each iteration at the Sprint Retrospective—a
cadence of process improvement. Rather than a false dichotomy of
“heavily documented work” versus “no documented work” and so on,

• Sprint Planning Part One: Timebox of two-
hour meeting with team and Product
Owner to clarify Sprint goals and Defini-
tion of Done.

• Sprint Planning Part Two: Timebox of two
hours for team to design, break down and
estimate all tasks for the iteration.

• Sprint execution: Build well-done fully
integrated and tested software, never devi-
ating from quality levels defined in Defini-
tion of Done.

• Create automated unit tests for all code.
• Continuously integrate all code across the

product.
• Continuously review code with others to

aid quality and learning.

• Product Backlog Refinement workshop to
refine requirements and re-estimate for
future iterations.

• Sprint Review: Timebox of two hours to
demo the running product and discuss with
Product Owner.

• Sprint Retrospective: Timebox of 1.5 hours
for kaizen event to analyze process situa-
tion and create process improvement
actions. Goal: Continuously improve.

• Create automated acceptance tests for all
features.

• Continuously refactor the code so it is of
high quality.

• Immediately fix a broken build.

Scrum and XP use and require a high level of discipline;
otherwise, agility is not easily attained or maintained.

https://less.works For Gene Gendel only, id:gene-gendel

127

Method Weight and Empirical Process with Scrum

in Scrum, people adjust the method weight adaptively each iteration
according to the principle of barely sufficient methodology
[Highsmith02]. Barely sufficient is high when creating nuclear
power plant systems.2

Figure 5.1 example
partial context for
Scrum; this 2-
dimensional view is
merely an
example—the
context is an N-
dimensional issue
and cannot be
trivially reduced to
this simple case

In Agile Software Development [Cockburn04] Alistair Cockburn
frames this contextual adaptation in terms of appropriate method
weight, the method size and formality in terms of defined steps,
documents, working agreements, reviews, degree of compliance, and
so on. Method weight in Scrum depends on context: criticality

2. Some years ago, I (Craig here) introduced Scrum and XP—and agile
modeling and documentation practices described in my book Apply-
ing UML and Patterns—on a nuclear-related system. Our team and
project was audited by NUPIC because it was the first ‘agile’ project
in the nuclear industry that they knew of. The auditor had “no find-
ings” (somewhat rare in a nuclear audit) and sent information to
another project on our agile practices and agile documentation, as
an example of real, useful discipline and “how it should be done.”

Number of people
1-6 -20 -40 -100

Life
(L)

Essential
money (E)

Discretionary
money (D)

Comfort
(C)

C6 C20 C40 C100

. . .

L6

E6

D6

L20

E20

D20

L40

E40

D40

L100

E100

D100

Criticality
(defects cause loss of...)

a C6 and L100 context need different
method weight in Scrum

https://less.works For Gene Gendel only, id:gene-gendel

128

5 — False Dichotomies

(impact of failure), distribution (co-located versus distributed), staff
size, and more.

A Cockburn scale of two aspects of context (size and criticality) is
shown in Figure 5.1 to visualize the concept. Note however that the
full context is N-dimensional, it is not two-dimensional. In this
example, C6 means a product group of 1–6 people, where the worst
that can happen from a system failure is loss of comfort. L100 is a
product group of 41–100 people where lives may be lost, such as a
failure in aircraft control software.

Skillful behavior is to adjust the method weight in Scrum according
to context. That is why in Scrum there is no cookbook, prescription,
or rule of the exact method weight. A C6 product group doing Scrum
needs different weight than an L100 group.

Further, there is too much variability and local context to delegate
the appropriate method weight decision to a cookbook—that would
trivialize and make deterministic what is in fact a subtle, complex
problem requiring local insight. That is why in Scrum the self-orga-
nizing teams themselves decide—based on their judgement—the
method weight of Scrum for a product group.

Finally, skillful behavior is to adjust the weight over time as the con-
text changes, and according to the nature of the people. That is why
in Scrum there is only ever a one-iteration process experiment. Each
iteration the teams inspect and adapt Scrum. Empirical, adaptive
process evolution.

large-scale
Scrum p. 289

This book discusses large-scale Scrum, but that should not be inter-
preted as a special method or special Scrum. Rather, regular
Scrum—an empirical process framework that can realize and adapt
any method weight and work in any size of group3—is what is being
described. Large-scale Scrum is just Scrum; it is shorthand for “reg-
ular Scrum in the context of a relatively large multiteam product
group.”

On this note, people sometimes ask if there will be an ‘improved’ ver-
sion of Scrum—Scrum 2.0. Ken Schwaber, the co-creator of Scrum,
put it well:

3. We have seen Scrum adoption on a thousand-person product group.

https://less.works For Gene Gendel only, id:gene-gendel

129

False Dichotomies

There will be no Scrum Release 2.0…Why not? Because the
point of Scrum is not to solve [specific problems of develop-
ment]… The underlying premise of Scrum is that the people,
technology, and requirements of most development is too com-
plex for single solutions. Scrum unearths the problems caused
by the complexity and lets the organization solve them, one by
one, over and over again. Traditional methodologies provide
answers to all problems, and this is why they don’t work—they
assume a simplistic rather than a complex problem
[Schwaber07]

Try…Identify
and avoid false
dichotomies

FALSE DICHOTOMIES

Variations of the following can be heard or read:

You are disciplined or agile. Self-organizing teams are anarchy.

We need detailed documentation of
all requirements in phase one, or
we can’t know goals or effort.

We need to do the ‘architecture’ or
design before programming, or we
aren’t doing design and won’t have
a good architecture.

Will it be all finished on May 1? We’re doing TDD, so we won’t do
any modeling.

Are the estimates correct or not? We’re doing modeling, so we don’t
do TDD.

We need to define all release goals
at the start, or we don’t have a
release plan.

The UI interaction design must be
finished before development, or
there is no disciplined UI design.

We need to schedule all tasks to
people, or we aren’t planning.

We need to define the process
details for all tasks and workers, or
we have no process.

We need to invest all money at the
start, or we can’t invest.

We’re doing TDD, so we only do
unit tests, not integration tests.

A Gantt chart means we have a
good plan and are planning; other-
wise, we aren’t planning.

Modeling bad; programming good.

All steps are predicted, or we can’t
predict.

Database design must be finished
before implementation, or we won’t
have skillful database design.

Acceptance TDD good, unit TDD
bad.

You can use either Scrum or XP.

https://less.works For Gene Gendel only, id:gene-gendel

130

5 — False Dichotomies

…ad nauseam. Computer people are so binary and discrete. (We
don’t know why, we’ll have to think about that for a while…). People
set up false dichotomies. Of course, these are thinking mistakes.
Simply, strive to identify these when you hear or see them, avoid
them, and help others see them. And you will not only hear these
dichotomies from co-workers; many writers, speakers, and tradi-
tional or agile ‘gurus’ cast “X versus agile” topics as false dichoto-
mies.

A better way to frame all these issues is along continuums:

This is the view in Scrum: Practices adjust along continuums
according to context.

Tips on alternatives to false dichotomies in any one of these areas—
such as design or investment—can easily consume its own book.
Many of the chapters in the companion book, Practices for Scaling
Lean & Agile Development, have pointers.

False dichotomy thinking is, perhaps, common to human nature. We
do it too. This book surely contains some false dichotomies that we
can’t see because of our ignorance or myopia.

We have to do everything. Re-use must be planned; otherwise,
there won’t be any re-use.

We can only have feature teams and
no component teams.

documentation

appropriate behavior varies along a
continuum for each discipline, and this may
evolve iteration by iteration and team by team;
in Scrum, with empirical process control, they
may adjust each cycle

investment

modeling

detail

...

https://less.works For Gene Gendel only, id:gene-gendel

131

False Dichotomies

False Dichotomies and Agile Values

The four values of the agile manifesto are sometimes misread and
framed as false dichotomies. For example, the first value is

Individuals and interactions over processes and tools.

This does not mean processes and tools are wrong. The conclusion
that follows the four values provides perspective.

That is, while there is value in the items on the right, we value
the items on the left more.

For example, try to effectively introduce a new process if the people
are not educated or willing. You will quickly see the dominant force.

Some have incorrectly described agile methods as not having docu-
mentation—another a false dichotomy. The value is

Working software over comprehensive documentation.

Most people understand that’s a reasonable perspective.

AVOID…EXTREME RELATIVISM

Seeing and avoiding false dichotomies does not mean everything is
good or acceptable—an extreme relativism mistake. Slavery is bad.
Period. Closer to home, there is a mass of statistics in product devel-
opment identifying poor practices—poor in the sense of correlated
with more failure, lower productivity, more delay, and so forth. For
example, the COCOMO data shows that the capability of develop-
ment people is the single most important factor for productivity, and
low complexity the second most important [Boehm00]. So, hiring lots
of weak developers is not good for productivity. Executing a long
sequential life cycle with a massive batch transfer of requirements
(higher complexity) is not good for productivity. Research shows that
iterative and incremental life cycles (for example, as used in Scrum)
are correlated with less cost and schedule overrun than sequential
development (for example, [MJ05]); therefore a large batch and long
sequential life cycle case is not good for cost and schedule goals.

https://less.works For Gene Gendel only, id:gene-gendel

132

5 — False Dichotomies

Try…Identify
misconceptions
and misreads

MISCONCEPTIONS

There are misconceptions regarding lean, Scrum, and agile princi-
ples. It is useful to spot these, and to help others understand them.
To start, there is one special misconception worth highlighting…

Misconception: There Is No Possible Formal Theory to Evaluate
Development Process; It Is All Opinion or ‘Religion’

This is a misconception at the root of many conflicts regarding
approaches to development processes and improvement. From this
view one will logically claim that lean or agile principles (or indeed,
any process) are only opinion-based or someone’s definition of “best
practices.” However, there are formal models that can be applied to
understand and evaluate a process or work system with people:

❑ queueing theory4

❑ control theory

❑ information theory

❑ game theory

These developed in the late 1800s through mid-1900s in physics,
economics, and communications to understand and improve the
behavior of systems—with variability, nonlinearity, information and
request flows, autonomous actors, and other complex or chaotic
behaviors. Knowledge work, such as the non-repetitive discovery
work of product development, is variable and involves information
flows and people making decisions. It may be modeled, understood,
and improved with insights from these theories. They provide a set
of mathematically grounded models to understand if a particular
system is likely to improve or degrade long-term value throughput.

Queueing theory—Deals with systems with variability, workers, and
queues with requests. Useful to evaluate product development
options in work package size, cycle time, and worker utilization; cov-

4. ‘Theory’ in the sense of a validated system rather than supposition;
e.g., number theory (proven) versus string theory (supposition).

https://less.works For Gene Gendel only, id:gene-gendel

133

Misconceptions

ered in the Queueing Theory chapter. See also Fundamentals of
Queueing Theory [GH98].

Control theory—Deals with dynamic systems with feedback (cyber-
netics) and their control. Useful to evaluate the impact of open-loop
versus double-loop feedback management strategies, such as defin-
ing the requirements at the start of development and controlling
toward that goal, versus other options. The Systems Thinking chap-
ter explores how to visualize existing or future causal loops and
feedback in your system. See Feedback Control of Dynamic Systems
[FPE05] for a general overview, and Quality Software Management:
Systems Thinking [Weinberg92] for management perspective.

Information theory—This was originally developed in the context of
communication systems, but the insights are more broadly applica-
ble to general data analysis and information feedback. The topic is
broad and deep, but as explored in Managing the Design Factory
[Reinertsen97] at a simple level it provides a formal way to look at
the value and cost of information in a product development process.
This can be useful to evaluate the cost of delayed information, prior-
ities of implementation, and testing in product development.

Game theory—This deals with the decisions people make in the con-
text of cooperation and competition with others; organized into coop-
erative and noncooperative games. Cockburn has framed product
development as a cooperative game [Cockburn01]. It can be used to
evaluate possible decisions and behavior of people working together
in the context of some development process and work policies. See
Game Theory [Davis97].

Over the years, evidence (for example, [MJ05]) has grown correlat-
ing long sequential development life cycle with big-batch transfer
(‘waterfall’, V-Model) with poor results in terms of cost, schedule,
and other factors compared with small-batch short-cycle iterative
and evolutionary systems such as Scrum. Without underlying the-
ory, these alternatives can only be considered in terms of opinion or
empiricism—not that data is a bad thing. Queueing, control, infor-
mation, and game theories provide formal models to understand
why a system of people working with lean or agile principles is corre-
lated with good performance, and to evaluate new process ideas.

https://less.works For Gene Gendel only, id:gene-gendel

134

5 — False Dichotomies

Other Misconceptions

Estimates are not estimates; estimates are commitments—
Not so. This tragicomic confusion drives all kinds of dysfunction in
organizations… “Why is the estimate wrong?” The Merriam-Webster
dictionary defines estimate as “a rough or approximate calculation.”
In Scrum estimates are estimates; each iteration there is a re-estima-
tion activity as part of the Product Backlog Refinement workshop
(five to ten percent of each iteration) as new information arrives and
estimates can evolve and ideally improve.

Agile means a practice—Not so. As the chapter Be Agile consid-
ers, ‘agile’ is a set of values and principles aiming toward the ability
to be adaptive and responsive for business competitive success. It is
a quality of the organization (including, of course, its people) rather
than a technique or practice. Many practices support agility and
hence can be called agile practices.

Agile means XP—Not so. Several methods support agile values,
including Scrum, XP, DSDM, and others—Scrum being the most
popular [VersionOne08]. These methods have some very different
practices. For example, pair programming is an XP practice, but is
not mentioned in Scrum or DSDM. This misconception arose
because XP was the first agile method to become widely known in
the mid-1990s, although both Scrum and DSDM predate it. Scrum is
flexible with respect to practices and is often combined with XP
engineering practices such as continuous integration.

Agile means pair programming—Not so. This is a variation of
the Agile means XP misconception (since pair programming is an XP
practice).

Agile means iterative—Not so. Iterative, incremental, timeboxed,
and evolutionary software-intensive development is an agile practice
that has been around since at the least the 1960s, and applied on
many large systems—with good results [LB03]. Timeboxed iterative
and evolutionary development is one old, well-established agile
practice, among many others. Agile means agile—adaptive, embrac-
ing change, and learning.

Agile is for small development—Not so. Scrum has been used in
large product development involving hundreds of developers, for

https://less.works For Gene Gendel only, id:gene-gendel

135

Misconceptions

many years [Larman03]. This is another side effect of the Agile
means XP misconception, because XP was originally focused on
small-group development. Note that ‘XP2’ [Beck04] was shown to be
applicable to large-group product development, but journalists did
not follow this development, and repeated early old stories.

Agile is ugly hacking, no design or architecture, and no mod-
eling—Not so. The ninth agile principle is Continuous attention to
technical excellence and good design enhances agility. It is hard to be
fast and adaptive in development if the code is a mess. This miscon-
ception arises due to false dichotomy thinking, such as if not all
design is decided before programming, there is no design. Also, this
is a side effect of the Agile means XP misconception, because XP pro-
moted little modeling (which does not mean hacking, nor does it
mean no modeling). Scrum is neutral on the subject; teams can do as
much modeling or upfront ‘architecture’ work as they find useful.
Some elaboration on the XP model: It is noteworthy that Kent Beck,
the prime creator of XP, is also a founder of the field of design pat-
terns for better software design [BC88]. XP emphasizes high-quality
design/code, achieved primarily through constant code review and
mentoring between programmers, and continual improvement of the
design through refactoring; short modeling sessions are also
accepted in XP.

Agile has no estimates, end date, release plan, or release con-
tent definition—Not so. This comes from false dichotomy thinking
or ignorance of the practices of various agile methods. For example,
the false dichotomy if not every requirement is completely analyzed,
frozen, and estimated with a detailed work breakdown structure, it is
impossible to estimate an end date or release content. Scrum adop-
tion starts with an initial Product Backlog creation step, before the
first iteration, in which the first release goals are identified and esti-
mated, and an end date and release content is defined. And, there is
improved estimation each iteration as more information accumu-
lates. Of course, the reality of variable discovery-oriented product
development is that it is… well, variable. Scrum works with (rather
than against) this inherent change and variability; it has mecha-
nisms for adapting and improving the release goal and better pre-
dicting the future, iteration by iteration, as the “cone of uncertainty”
slowly collapses.

https://less.works For Gene Gendel only, id:gene-gendel

136

5 — False Dichotomies

Agile means no requirements analysis—Not so. Again, a false
dichotomy such as if not all requirements are written in long detail,
there is no requirements analysis. In Scrum, requirements analysis
usually starts with an Initial Product Backlog Creation workshop
before the first iteration if no Product Backlog or analysis has been
created. Plus, this analysis continues each iteration—Scrum
includes the Product Backlog Refinement rule—that between five
and ten percent of each iteration is dedicated by the Scrum team to
more requirements analysis, splitting, and re-estimation.

Agile means no documentation—Not so. False dichotomy… One
must document in detail and freeze requirement specifications and
design before implementation or there is no documentation. In
Scrum, teams can document as much as they find useful, when they
find useful.

Agile means no contracts, or no fixed-time fixed-scope con-
tracts—Not so. This derives from the Agile has no estimates or
release plan misconception. In Scrum there is a release plan—the
Release Backlog—created before the first iteration, in which all
release elements are identified and estimated. Of course, this should
be separated from the misconception that estimates are not esti-
mates. Contracts have been written for decades in outsourced soft-
ware development recognizing that estimates are estimates, so this
is nothing new. The common response is to include a margin in the
contract pricing model. This misunderstanding also derives from the
Agile means the requirements must change misconception. Valtech
India does fixed-time fixed-scope contracted projects using Scrum.
In those cases, more upfront analysis and estimation is done before
the first iteration—perfectly acceptable in Scrum. That said, some
agile outsourcing companies also encourage a “replaceability clause”
in their fixed-scope contracts so that the client can replace an exist-
ing element with a new one of (estimated) equal size. See the Con-
tracts chapter in the companion book for more.

Agile means the requirements must change—Not so. There is
no mandate in Scrum that the requirements must change. It is, in
theory, possible that all the original (before the first iteration) iden-
tified requirements in the Release Backlog will be done without
adaptation. Scrum works with changing requirements, it does not
demand change.

https://less.works For Gene Gendel only, id:gene-gendel

137

Misconceptions

Agile is only for highly innovative and variable exploratory
development; ‘other’ development is best done with sequen-
tial life cycle (‘waterfall’)—Not so. First, data on successful
results with agile development spans all kinds of development,
small to large, legacy to greenfield, low change to high change
[VersionOne08]. Second, with the insight of queueing theory and
information theory, it can be shown that large-batch transfer,
delayed integration, delayed testing, and delayed feedback are not
good practices in any development—innovative or mundane. Third,
variability does not only exist in requirements; there is all kinds of
variability in development related to people, practices, tools, and
much more. Fourth, a story: We have been closely involved in a pure
rewrite project for a large product moving from one technology (Pow-
erBuilder) to another (Java). Essentially no innovation and zero
requirements change or variability; and also very clear require-
ments—as the old application was running and available to us to
check. The project was done in Scrum, with the client doing manual
user-acceptance testing (UAT) each iteration. Key point: All kinds of
problems were uncovered—thankfully—by the advantage of work-
ing with adaptive iterative planning in short iterations and small
batches. For example, it turned out that our predictions of what
would be technically difficult and that therefore should be done
early were wrong. We adjusted our priority each iteration as we
learned. Further, of course, the original estimates were not reliable.
As we learned the group’s average velocity we made adjustments to
improve overall velocity. Also, there were subtle weaknesses in the
new frameworks and there were subtle defects introduced, because
humans are imperfect and the work is complex. Integrating early
and testing early revealed those defects quickly, which led to their
architectural resolution early, so that the subtle problems did not
propagate or linger. The client UAT that was done each iteration
gave the client new ideas about priority which were different from
their original ideas. Also, the client (product experts) uncovered sub-
tle bugs through exploratory testing that were not caught by the
official test cases, and this early feedback prevented propagation of
some misunderstanding. In other words, the last simple project
was done in 1962. Do not believe that there is any project that does
not involve learning or complexity or some variability, and that will
not benefit from agile development.

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• The Agile Manifesto: Four Values 141

• Scrum: Five Values 141

• The Twelve Agile Principles 143

• Agile Management Principles 144

https://less.works For Gene Gendel only, id:gene-gendel

139

Chapter

6
BE AGILE

The sooner you get behind schedule,
the more time you have to make it up.

—anonymous

Try…Be agileBroad introductions to agile methods are covered elsewhere
[Larman03]. In this thinking-tool chapter, there is essentially one
suggestion:

‘Agile’ is not a practice. It is a quality of the organization and its peo-
ple to be adaptive, responsive, continually learning and evolving—to
be agile, with the goal of competitive business success and rapid
delivery of economically valuable products and knowledge. One can-
not do agile, although it is a common misconception that one can.
Such miscommunication is related to the Agile means iterative or
Agile means XP misconceptions. From this, we see (in our consult-
ing) incongruities such as

“Our product group is going to do agile; we are bringing in
teachers over the next few months to teach 70 new ScrumMas-
ters in some Scrum courses. By the way, when will the require-
ments be finished and the release-content contract be signed?”
… “You are supposed to be doing agile now, so how come it isn’t
all finished on time?”

A product group can do Scrum or XP—concrete methods. And they
can do practices that encourage agility—agile practices. But they
can only really be agile, or not.

Be agile rather than do agile.

https://less.works For Gene Gendel only, id:gene-gendel

140

6 — Be Agile

The term agile was not chosen at random; at the Utah workshop in
2001 where a group of modern methodology leaders convened, two
alternative names were considered: adaptive or agile. Both empha-
size flexibility. The Merriam-Webster dictionary defines agile as
ready ability to move with quick easy grace. This is more than a les-
son in lexicon; if you are a thought leader introducing agility into an
organization, it is useful to open the discussion with colleagues by
reflecting on the word agile…

Agile does not mean delivering faster. Agile does not mean fewer
defects or higher quality. Agile does not mean higher productivity.
Agile means agile—the ability to move with quick easy grace, to be
nimble and adaptable. To embrace change and become masters of
change—to compete through adaptability by being able to change
faster than your competition can. This agility is supported by both
lean and agile practices.

Perhaps faster delivery and higher quality will be achieved with an
agile method such as Scrum, but it is vital for business and engi-
neering leaders to appreciate that the raison d’être of agile methods
is…agility. Furthermore, it is vital to appreciate that organizational
agility cannot be achieved by a development team in isolation—it is
a system challenge for organizational redesign. Especially when you
are interested in large-scale Scrum within an R&D department of
thousands, where each product group may have 200 or 700 people
distributed in two or five sites around the world. If an engineering
team has the technical capacity to adapt or change quickly, but
requirements management, legal practices, product management,
HR policies, site strategies, and deployment processes all emphasize
rigidity, conformance to original plans, conformance to the status
quo, and slow practices, then how can there be real agility?

We suggest the foundation of enterprise agility is to apply the think-
ing tools offered in this book, including systems thinking, lean think-
ing, and queueing theory. And ideally to understand the economics of
information from an information theory perspective: Why and how
to get higher-value, lower-cost information? What is the cost of
delayed feedback?

Further, that foundation also rests on applying the organizational
tools, including feature teams, real teams, large-scale Scrum, and a
new organizational model in which products are structured around

https://less.works For Gene Gendel only, id:gene-gendel

KEY QUOTE BY LARMAN

141

The Agile Manifesto: Four Values

requirement areas, and there is a change in task, process, and
reward systems to support competing and winning through agility.

Try…Learn and
applying the four
values and
twelve agile
principles for
competitive
advantage

THE AGILE MANIFESTO: FOUR VALUES

Agile development is based on sets of values—not practices—that
support and encourage being agile. It is useful to know, contemplate,
and share these values in any organization that wants to succeed
with enterprise agility and large-scale Scrum. The four values of the
agile manifesto:

That is, while there is value in the items on the right, we value
the items on the left more.

The False Dichotomies chapter discusses some ways that these val-
ues are misinterpreted.

SCRUM: FIVE VALUES

Try…Know and
share the five
Scrum values

Although many people are aware of the Scrum practices, few are
aware of its five values [SB01]. As with the agile values, learn and
teach these values within a group that wants to succeed with being
agile through large-scale Scrum.

Commitment—Be willing to commit to a goal. Scrum provides peo-
ple all the authority they need to meet their commitments. This does
not refer to fake commitments. For example, someone in sales prom-
ises the moon to a customer “to be delivered in six months.” Then,
the Sales division asks the R&D organization to commit to our
promise, although R&D had no role or control in the decision.
Assigning a target—a fake commitment. Or, a project manager gives
work to a group and then plans and schedules the tasks and assigns
them to people. Controlling how the work is done—a fake commit-
ment. In contrast, Scrum is based on self-organizing teams that

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

https://less.works For Gene Gendel only, id:gene-gendel

142

6 — Be Agile

decide what and how much to take on from the wish list offered by
the Product Owner during Sprint Planning. No work is pushed to
teams, and no team is told how to do the work. This provides the
foundation and opportunity for real commitment. When you are in
control of deciding what you can realistically take on for a two- or
four-week iteration, and you are in control of how you will do it, then
the willingness to commit—and the ability follow through on that
commitment—is enhanced.

Focus—Do your job. Focus all your efforts and skills on doing the
work that you’ve committed to doing. Don’t worry about anything
else. In Scrum, work is not arbitrarily forced on people, and work
cannot be added during the iteration. Nor is there any multitasking
or distraction, because each team is 100 percent committed to the
set of small achievable items chosen for the short iteration. There is
no partial allocation on different projects; partial allocation means
partial results. Each person’s time is 100 percent allocated to the
goals of the iteration for the product. This provides the foundation
for the focus and reduction in multitasking that leads to quick deliv-
ery and productivity.

Openness—Scrum keeps everything about a project visible to every-
one. The foundation of inspect and adapt—empirical process con-
trol—is to be able to see what is really going on. The backlogs and
burndown charts are open to all—and made even more open with
the lean practice of visual management (for example, posting the
backlogs on walls). The Daily Scrum of each team is an open event in
which team members share with each other what is going on; and it
is an open event in that everyone is invited, although only the ‘pigs’
(Scrum Team members) can talk since only they have “skin in the
game.” Higher-level coordination meetings in Scrum, such as a
Scrum of Scrum or Town Hall Meeting, are also open to everyone.
There are no closed door meetings or hidden project management
information.

Respect—Individuals are shaped by their background and their
experiences. It is important to respect the different people who make
up a team. Squabbles and difference are normal in any group; they
are aggravated when the group is composed of isolated people who
are essentially in competition with each other. This aggravation and
lack of respect increases when the organizational culture empha-
sizes individual goals and individual rewards. In Scrum, a small

https://less.works For Gene Gendel only, id:gene-gendel

143

The Twelve Agile Principles

team has a common and clear goal (the features for the iteration);
the focus is not individual heroics and rewards, but team accom-
plishment. This provides the fertile ground for team members to
want to understand how to make their team succeed and thus, to
work with members’ strengths and weaknesses. And that inevitably
supports more insight and respect for this diversity.

Courage—Have the courage to commit, to act, to be open, and to
expect respect. Courage in Scrum is not the courage of heroic effort; it
is the courage to follow the Scrum rules, to change the organization,
and the courage for a self-organizing team to take initiative. For
example, the iteration is underway and someone from management
asks a team member or the entire team to do an additional task. It is
the courage to say, “Sorry, no. If you want something else, the Prod-
uct Owner must first agree to abnormally terminate the iteration.”
It is the courage to be utterly transparent when things are going
down the drain—individually and as a team. And it is the courage,
when confronted with a challenging goal, for the team to explore,
learn, decide, and act, rather than wait for someone else to decide or
solve the problems.

THE TWELVE AGILE PRINCIPLES

More specifically, beyond the four agile values are the twelve agile
principles that support being agile…

1. Our highest priority is to satisfy
the customer through early and
continuous delivery of valuable
software.

7. Working software is the pri-
mary measure of progress.

2. Welcome changing requirements,
even late in development. Agile
processes harness change for the
customer’s competitive advantage.

8. Agile processes promote sus-
tainable development. The spon-
sors, developers, and users should
be able to maintain a constant
pace indefinitely.

3. Deliver working software fre-
quently, from a couple of weeks to a
couple of months, with a preference
to the shorter time scale.

9. Continuous attention to techni-
cal excellence and good design
enhances agility.

https://less.works For Gene Gendel only, id:gene-gendel

144

6 — Be Agile

Try…Learn and
applying nine
agile
management
principles

AGILE MANAGEMENT PRINCIPLES

The nine principles for agile management [Highsmith04] recapitu-
late basic agile and lean principles. However, they are worth dis-
tinctly highlighting—and learning and sharing—because they
summarize key principles to be agile in a “short and sweet” list.

CONCLUSION

cargo cults p. 44 Especially in large-scale development, it seems common that a prod-
uct group will demonstrate superficial agile cargo cult process adop-
tion by doing agile practices such as holding a Daily Scrum, working
in team rooms, applying timeboxed iterative development, fraudu-
lently relabeling project managers as ScrumMasters, and more. The
fake ScrumMasters may post big visible burndown charts on the

4. Business people and developers
must work together daily through-
out the project.

10. Simplicity—the art of maxi-
mizing the amount of work not
done—is essential.

5. Build projects around motivated
individuals. Give them the environ-
ment and support they need, and
trust them to get the job done.

11. The best architectures,
requirements, and designs emerge
from self-organizing teams.

6. The most efficient and effective
method of conveying information to
and within a development team is
face-to-face conversation.

12. At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts
its behavior accordingly.

1. Deliver something useful to the
client; check what they value.

6. Use short timeboxed iterations
to quickly deliver features.

2. Cultivate committed stakehold-
ers.

7. Encourage adaptability.

3. Employ a leadership-collabora-
tion style.

8. Champion technical excellence.

4. Build competent, collaborative
teams.

9. Focus on delivery activities, not
process-compliance activities.

5. Enable team decision making.

https://less.works For Gene Gendel only, id:gene-gendel

145

Agile Management Principles

walls and declare a new era of empowered teams while simulta-
neously collecting the teams’ “productivity data” each week. It is a
mirage, and a sham of what real agility implies. Such fake Scrum-
Masters gradually create “the death of agile” by resisting rather
than driving deep organizational change.

More important from a business perspective, the ability to compete
and make money with the potential power of lean and agile princi-
ples has been squandered by doing agile rather than being agile.

We encourage those that want to realize enterprise agility to take
the time to learn the implications of values such as responding to
change over following a plan, and to take the time to discuss and
share these insights with others.

RECOMMENDED READINGS

❑ Agile Software Development by Alistair Cockburn. Emphasizes
the principles and theory underlying agile methods, with a spe-
cial focus on communication.

❑ Agile Software Development with Scrum (Schwaber and Bee-
dle) and Agile Project Management with Scrum (Schwaber)
both explore how to be agile.

❑ Agile & Iterative Development: A Manager’s Guide (Larman)
summarizes the key ideas and introduces Scrum, Extreme Pro-
gramming, and older iterative methods such as Evo.

❑ Extreme Programming Explained: Embrace Change (2E) by
Kent Beck with Cynthia Andres. Although both Scrum and the
DSDM agile methods predate XP, this is the book and Beck is
the person that really kicked off the widespread popularity of
agile development. Beck credits his 1980s co-worker Ward
Cunningham with making seminal agile contributions. Beck
and Cunningham are also noteworthy for having introduced
the idea of design patterns to the software community [BC88],
and Cunningham created the widely popular wiki concept and
technology that is used for Wikipedia (www.wikipedia.org) and
within many companies applying agile methods.

https://less.works For Gene Gendel only, id:gene-gendel

www.wikipedia.org

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Organizational Tools

https://less.works For Gene Gendel only, id:gene-gendel

Chapter
• Introduction to Feature Teams 149

• Avoid…Single-function teams 155

• Avoid…Component teams 155

• Try…Feature teams 174

• Transition 188

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

https://less.works For Gene Gendel only, id:gene-gendel

149

Chapter

7
FEATURE TEAMS

Better to teach people and risk they leave, than not and risk they stay
—anonymous

INTRODUCTION TO FEATURE TEAMS

Figure 7.1 shows a feature team—a long-lived,1 cross-functional
team that completes many end-to-end customer features, one by one.

Figure 7.1 feature
team—long-lived,
cross-functional,
learning-oriented,
multi-skilled people

1. A misunderstanding is that new teams re-form for each feature. Not
true. A great feature team may stay together for years.

feature team
long-lived, cross-functional

customer-
centric
feature

potentially
shippable
product

increment

Product
Owner

Customer DocDeveloper
Developer

Analyst

Tester Architect

This figure could be misinterpreted: A feature team does not have a
person who is only a Developer and does not have a person who is
only a Tester. Rather, people have primary skills such as Developer and
Tester, and also other skills—and are learning new areas. Team
members may help in several areas to complete the feature. An
'architect' may write automated tests; a 'tester' may do analysis.

Interaction
Designer

https://less.works For Gene Gendel only, id:gene-gendel

150

7 — Feature Teams

In Scrum and other agile methods the recommended team structure
is to organize teams by customer-centric features. Jim Highsmith, in
Agile Project Management [Highsmith04], explains:

Feature-based delivery means that the engineering team builds
[customer-centric] features of the final product.

lean thinking
wastes p. 58

In lean thinking, minimizing the wastes of handoff, waiting, WIP,
information scatter, and underutilized people is critical; cross-func-
tional, cross-component feature teams are a powerful lean solution
to reduce these wastes.

Why study the following in-depth analysis? Because feature teams
are a key to accelerating time-to-market and to scaling agile devel-
opment, but a major organizational change for most—changing
team structure is slow work, involving learning, many stakeholders,
and policy and mindset issues. If you’re a change agent for large-
scale agility, you need to really grasp the issues.

Figure 7.2 a long-
lived feature team;
developers, testers,
and others create a
complete customer
feature

Scrum team
p. 309

A proper Scrum team is by definition a feature team, able to do all
the work to complete a Product Backlog item (a customer feature).
Note that Scrum team (feature team) members have no special title
other than “team member.” There is not emphasis on ‘developer’ ver-
sus ‘tester’ titles. The goal is to encourage multi-skilled workers and
“whole team does whole feature.” Naturally people have primary
specialities, yet may sometimes be able to help in less familiar areas
to get the job done, such as an ‘analyst’ helping out with automated
testing. The titles in Figure 7.1 should not be misinterpreted as pro-
moting working-to-job-title, one of the wastes in lean thinking.

https://less.works For Gene Gendel only, id:gene-gendel

151

Introduction to Feature Teams

cross-functional
team p. 196

Feature teams are not a new or ‘agile’ idea; they have been applied
to large software development for decades. They are a refinement of
cross-functional teams, a well-researched proven practice to
speed and improve development. The term and practice was popu-
larized at Microsoft in the 1980s and discussed in Microsoft Secrets
[CS95]. Jim McCarthy [McCarthy95], the former development lead
of Visual C++, described feature teams:

Feature teams are about empowerment, accountability, identity,
consensus and balance…

Empowerment—While it would be difficult to entrust one
functional group or a single functional hierarchy, such as Devel-
opment, for instance, with virtually absolute control over a par-
ticular technology area, it’s a good idea to do that with a
balanced multi-disciplinary team. The frontline experts are the
people who know more than anyone else about their area, and it
seems dumb not to find a way to let them have control over their
area.

Accountability—… If a balanced group of people are mutually
accountable for all the aspects of design, development, debug-
ging, QA, shipping, and so on, they will devise ways to share
critical observations with one another. Because they are
accountable, if they perceive it, they own it. They must pass the
perception to the rest of the team.

Identity—… With cross-functional feature teams, individuals
gradually begin to identify with a part of the product rather
than with a narrow specialized skill.

Consensus—Consensus is the atmosphere of a feature team.
Since the point of identification is the feature rather than the
function, and since the accountability for the feature is mutual,
a certain degree of openness is safe, even necessary. I have
observed teams reorganizing themselves, creating visions, real-
locating resources, changing schedules, all without sticky con-
flict.

Balance—Balance on a feature team is about diverse skill sets,
diverse assignments, and diverse points of view.

https://less.works For Gene Gendel only, id:gene-gendel

152

7 — Feature Teams

Feature teams are common in organizations learning to deliver
faster and broaden their skills. Examples include Microsoft, Valtech
(applied in their India center for agile offshore development), the
Swedish software industry [OK99], Planon [Smeets07], and telecom
industry giant Ericsson [KAL00]. The report on Ericsson’s feature
teams clarifies:

The feature is the natural unit of functionality that we develop
and deliver to our customers, and thus it is the ideal task for a
team. The feature team is responsible for getting the feature to
the customer within a given time, quality and budget. A feature
team needs to be cross functional as it needs to cover all phases
of the development process from customer contact to system test,
as well as all areas [cross component] of the system which is
impacted by the feature.

To improve development on large products (one sub-project may be
one million person hours) in their GSM radio networks division,
Ericsson applies several practices supporting agility, including fea-
ture teams and daily builds. It’s no coincidence that both these prac-
tices were popularized by Microsoft in the 1990s; Ericsson also
understands the synergy between them [KA01]:

Daily build can only be fully implemented in an organization
with predominantly customer feature design responsibility.

… The reasons why feature responsibility is a prerequisite for
taking advantage of daily build is the amount of coordination
and planning needed between those responsible for delivering
consistent parts of each module that can be built. … In a feature
team this coordination is handled within the team.

In another book describing the successful practices needed for scal-
ing agile development, Jutta Eckstein similarly recommends “verti-
cal teams, which are focused around business functionality”
[Eckstein04]. Feature teams do ‘vertical’ end-to-end customer fea-
tures (GUI, application logic, database, …) rather than ‘horizontal’
components or layers. In her more recent scaling book she again
emphasizes “In order to always keep the business value of your cus-
tomer in mind, there is only one solution: having feature teams in
place” [Eckstein09].

https://less.works For Gene Gendel only, id:gene-gendel

153

Introduction to Feature Teams

multi-skilled
workers p. 204

A common misunderstanding is that each feature team member
must know everything about the code base, or be a generalist. Not
so. Rather, the team is composed of specialists in various software
component areas and disciplines (such as database or testing). Only
collectively do they have—or can learn—sufficient knowledge to
complete an end-to-end customer feature. Through close collabora-
tion they coordinate all feature tasks, while also—important point—
learning new skills from each other, and from extra-team experts. In
this way, the members are generalizing specialists, a theme in
agile methods [KS93, Ambler03], and we reduce the waste of
underutilized people (working only in one narrow speciality), a
theme in lean thinking.

long-lived teams
p. 199

To summarize the ideal feature team2:

work redesign
p. 234

Feature teams work independently by being empowered and given
the responsibility for a whole feature. Advantages include:

Feature Team

❑ long-lived—the team stays together so they can ‘jell’ for
higher performance; they take on new features over time

❑ cross-functional and cross-component

❑ co-located

❑ work on a complete customer-centric feature, across all com-
ponents and disciplines (analysis, programming, testing, …)

❑ composed of generalizing specialists

❑ in Scrum, typically 7 ± 2 people

2. A Scrum feature team is typically stable, long-lived. The name “fea-
ture team” was first popularized by Microsoft, but is also used in the
(relatively rare) method Feature-Driven Development (FDD).
However, in FDD a “feature team” is only a short-term group
brought together for one feature and then disbanded. Such groups
have the productivity disadvantage of not being ‘jelled’—a rather
slow social process—and the disadvantage of not providing stable
work relationships for people.

https://less.works For Gene Gendel only, id:gene-gendel

154

7 — Feature Teams

❑ increased value throughput—focus on delivering what the
customer or market values most

❑ increased learning—individual and team learning increases
because of broader responsibility and because of co-location
with colleagues who are specialists in a variety of areas

– critical for long-term improvement and acceleration; reduces
the waste of underutilized people

❑ simplified planning—by giving a whole feature to the team,
organizing and planning become easier

– for example, it is no longer necessary to coordinate between
single-specialist functional and component teams

❑ reduced waste of handoff—since the entire co-located fea-
ture team does all work (analysis, design, code, test), handoff is
dramatically reduced

❑ less waiting; faster cycle time—the waste of waiting is
reduced because handoff is eliminated and because completing
a customer feature does not have to wait on multiple parties
each doing part of the work serially

❑ self-managing; improved cost and efficiency—feature
teams (and Scrum) do not require a project manager or matrix
management for feature delivery, because coordination is triv-
ial. The team has responsibility for end-to-end completion and
for coordinating their work with others. Data shows an inverse
relationship between the number of managers and develop-
ment productivity, and also that teams with both an internal
and external focus are more likely to be successful [AB07]. Fea-
ture teams are less expensive—there isn’t the need for extra
overhead such as project managers.

– For example [Jones01]: “The matrix structure tends to raise
the management head count for larger projects. Because soft-
ware productivity declines as the management count goes up,
this form of organization can be hazardous for software.”

❑ better code/design quality—multiple feature teams working
on shared components creates pressure to keep the code clean,
formatted to standards, constantly refactored, and surrounded
by many unit tests—as otherwise it won’t be possible to work

https://less.works For Gene Gendel only, id:gene-gendel

155

Introduction to Feature Teams

with. On the other hand, due to long familiarity, component
teams live with obfuscated code only they can understand.

❑ better motivation—research [HO80, Hackman02] shows that
if a team feels they have complete end-to-end responsibility for
a work item, and when the goal is customer-directed, then
there is higher motivation and job satisfaction—important fac-
tors in productivity and success.

❑ simple interface and module coordination—one person or
team updates both sides of an interface (caller and called) and
updates code in all modules; because the feature team works
across all components; no need for inter-team coordination.

❑ change is easier—changes in requirements or design (we
know it’s rare, but we heard it happened somewhere once) are
absorbed by one team; multi-team re-coordination and re-plan-
ning are not necessary.

AVOID…SINGLE-FUNCTION TEAMS

cross-functional
teams p. 196

A Scrum feature team is cross-functional (cross-discipline), com-
posed of testers, developers, analysts, and so on; they do all work to
complete features. One person will contribute primary skills (for
example, interaction design or GUI programming) and also second-
ary skills. There is no separate specification team, architecture
team, programming team, or testing team, and hence, much less
waiting and handoff waste, plus increased multiskill learning.

AVOID…COMPONENT TEAMS

An old approach to organizing developers in a large product group is
component teams—programmer groups formed around the archi-
tectural modules or components of the system, such as a single-spe-
ciality GUI team and component-X team. A customer-centric feature
is decomposed so that each team does only the partial programming
work for their component. The team owns and maintains their com-
ponent—single points of specialization success or failure.

https://less.works For Gene Gendel only, id:gene-gendel

156

7 — Feature Teams

In contrast, feature teams are not organized around specific compo-
nents; the goal is a cross-component team that can work in all mod-
ules to complete a feature.

What About Conway’s Law?

Long ago, Mel Conway [Conway68] observed that

[…] there is a very close relationship between the structure of a
system and the structure of the organization which designed it.

… Any organization that designs a system […] will inevitably
produce a design whose structure is a copy of the organization’s
communication structure.3

That is, once we define an organization of people to design some-
thing, that structure strongly influences the subsequent design—
typically in a one-to-one homomorphism. A striking example Con-
way gave was

[An] organization had eight people who were to produce a
COBOL and an ALGOL compiler. After some initial estimates
of difficulty and time, five people were assigned to the COBOL
job and three to the ALGOL job. The resulting COBOL compiler
ran in five phases, the ALG0L compiler ran in three.

Why raise this topic? Because “Conway’s Law” has—strangely—
been incorrectly used by some to promote component teams, as if
Conway were recommending them. But his point was very different:
It was an observation of how team structure limits design, not a rec-
ommendation. Cognizant of the negative impact, he cautioned:

Components (layer, class, …) still exist, and we strive to create
good components, but we do not organize teams by these.

3. In [Brooks75] this was coined Conway’s Law.

https://less.works For Gene Gendel only, id:gene-gendel

157

Introduction to Feature Teams

To the extent that an organization is not completely flexible in
its communication structure, that organization will stamp out
an image of itself in every design it produces.

… Because the design that occurs first is almost never the best
possible, the prevailing system concept [the design] may need to
change. Therefore, flexibility of organization is important to
effective design. Ways must be found to reward design manag-
ers for keeping their organizations lean and flexible.

In this way, Conway underlines a motivation for feature teams.

In Microsoft Secrets [CS95], Brad Silverberg, senior VP for Windows
and Office, explained their emphasis on feature teams, motivated by
the desire to avoid the effects of “Conway’s Law”:

The software tends to mirror the structure of the organization
that built it. If you have a big, slow organization, you tend to
build big, slow software.

Disadvantages

It is extraordinary the amount of delay, overhead, unnecessary man-
agement, handoff, bad code, duplication, and coordination complex-
ity that is introduced in large groups who organize into component
teams, primarily driven by two assumptions or fears: 1) people can’t
or shouldn’t learn new skills (other components, testing, …); and 2)
code can’t be effectively shared and integrated between people. The
first assumption is fortunately not so, and the second, more true in
the 1970s, has been resolved with agile engineering practices such
as continuous integration and test-driven development (TDD).

Component teams seemed a logical structure for 1960s or 1970s
sequential life cycle development with its fragile version control,
delayed integration, and weak testing tools and practices because
the apparent advantages included:

❑ people developed narrow specialized skill, leading to appar-
ently faster work when viewed locally rather than in terms of
overall systems throughput of customer-valued features, and
when viewed short-term rather than long-term

https://less.works For Gene Gendel only, id:gene-gendel

158

7 — Feature Teams

❑ those specialists were less likely to break their code

❑ there were no conflicting code changes from other teams

Fortunately, there has been much innovation since the 1960s. New
life cycle and team structures have been discovered, as have power-
ful new version-control, integration, and testing practices.

Systems and lean thinking invite us to ask, “Does a practice globally
optimize value throughput with ever-faster concept-to-cash cycle
time, or locally optimize for a secondary goal?” From that perspec-
tive, let’s examine the disadvantages of a component team…

Promotes Sequential Life Cycle Development and Mindset

Customer features don’t usually map to a single component nor,
therefore, to a single component team; they typically span many
modules. This influences organization of work.

Who is going to do requirements analysis? If several component
teams will be involved, it is not clear that any particular one of them
should be responsible for analysis. So, a separate analyst or analyst
team does specification in a first step.

Who is going to do high-level design and planning? Again, someone
before the component teams will have to do high-level design and
plan a decomposition of the feature to component-level tasks. She is
usually titled an architect or systems engineer; in [Leffingwell07]
this role is called requirements architect. In this case, one usually
sees a planning spreadsheet similar to the following:

Who is going to test the end-to-end feature? This responsibility
doesn’t belong to any one component team, who only do part of the
work. So testing is assigned to a separate system-test team, and
they start high-level testing after development has finished—some-

Feature
Component

A B C D E …
Feature 1 x x x
Feature 2 x x x

…

https://less.works For Gene Gendel only, id:gene-gendel

159

Introduction to Feature Teams

times long after, as they need the work of multiple component teams
and these teams seldom finish their work at the same time. Plus,
they have a backlog of other features to test.

Now what do we have?

1. (before development) requirements analysis by a separate ana-
lyst

2. (before) high-level design and component-level task planning
by a separate designer

3. (during) implementation by multiple interdependent compo-
nent teams that have to coordinate partially completed work

4. (after) system testing of the feature

Back to a waterfall! There is massive handoff waste in the system
and plenty of delay. This is traditional sequential life cycle develop-
ment and mindset, even though—ironically—people may incorrectly
think they are doing Scrum or agile development simply because
they are doing mini-waterfalls in a shorter and iterative cycle
(Figure 7.3). But mini-waterfalls are not lean and agile development;
rather, we want real concurrent engineering.

Completing one non-trivial feature now typically takes at least five
or six iterations instead of one.4 And it gets worse: For very large
systems the organization adds a subsystem layer with a subsystem
architect and subsystem testing—each specialized and each adding
another phase delay before delivering customer functionality.

4. Five or six iterations is optimistic. With multiple component teams,
the handoff, waiting, and overhead coordination delays implementa-
tion over many iterations.

Component team structures and
sequential life cycle development are directly linked.

https://less.works For Gene Gendel only, id:gene-gendel

160

7 — Feature Teams

Figure 7.3 com-
ponent teams lead
to sequential life
cycle

Limits Learning

Consider this thought experiment, although it will never be
achieved: Option 1—Everyone working on the product can do every-
thing well. Option 2—Every person can do one (and only one) small
task extremely well, but nothing else. Which option allows faster
feature throughput? Which option has more bottlenecks? Which

Backlog Item 1
Backlog Item 2
Backlog Item 3
Backlog Item 4
...

Comp A
Team

Comp B
Team

Comp C
Team

Analyst System
Engineer

System
Testers

Iteration 1 Iteration 2
(probably later)

Iterations 3-5
(probably later

and more)

At least
iteration 6

(probably later)

Item 1

requirement
details

for Item 1

tasks by
component

realistically, not all
teams start on Item 1
programming at the
same iteration; they are
multitasking on many
partially done features

it is unlikely that the
system testers are
available to test
Item 1 as soon as
the last component
team has finished

realistically, not
available as
soon as the
analyst is
finished

Analysis

Design

Implementation

Test

Component teams create sequential life cycle development with
handoff, WIP queues, and single-specialist groups. This organizational
design is not Scrum or agile development, which are instead based on
true cross-functional teams that do all work for a feature without
handoff. This "mini-waterfall" development is sometimes confused as
agile development; that is a misunderstanding.

code

https://less.works For Gene Gendel only, id:gene-gendel

161

Introduction to Feature Teams

offers more adaptability? Although the perfection vision of option-1
isn’t possible, viewed along a continuum of desirability, we want to
encourage a learning organization that is moving in that direction—
reducing bottlenecks, people learning one area well, then two, …

Observations:

❑ Developing multi-skilled people takes plenty of learning oppor-
tunities and close work with different kinds of experts.

❑ More specifically, developing programmers who can help in sev-
eral components requires a variety of experiences and mentors.

❑ Data shows an extraordinary variance in individual program-
mer productivity—studies suggest an average of four times
faster in the top versus bottom quartile [Prechelt00].

There’s a strong link in software development between what you
know and what you can do well—software is the quintessential
knowledge-sensitive profession. In short: There are great business
benefits if we have skilled developers who are constantly learning.

This learning has preconditions, of management responsibility:

❑ slack5

❑ a structure to support continual learning

– but there’s a systemic flaw in component teams…

How do developers become skilled in their craft and broadly knowl-
edgeable about their product? We asked Pekka Laukkanen—an
experienced developer and creator of the Robot test framework
[Laukkanen06, Robot08]—a question: “How do you become a great
developer?” He thought about it carefully and answered: “Practice—
and this means not just writing lots of code, but reflecting on it. And
reading others’ code because that’s where you learn to reflect on your
own.”

Yet, in traditional large-product groups with component teams, most
developers know only a narrow fragment of the system, and most
salient, they don’t see or learn much that is new.

5. See Slack [DeMarco01] on the need for slack to get better.

https://less.works For Gene Gendel only, id:gene-gendel

162

7 — Feature Teams

And on the other hand, there are always a few wonderful people who
know a lot about the system—the people you would go to for help on
an inexplicable bug. Now, when you ask how that’s possible, a com-
mon answer will be, “He knows everything since he always reads
everybody’s code.” Or, “He’s worked on a lot of different code.” Inter-
estingly, such people are more common in large open source prod-
ucts; there is a culture and value of “Use the source, Luke”
[Raymond] that promotes reading and sharing knowledge via code.

Why does this matter? Because component teams inhibit developers
from reading and learning new areas of the code base, and more
broadly, from learning new things.

Contrast the organizational mindset that creates such a structure of
limited learning with the advice of the seminal The Fifth Discipline
[Senge94] in which MIT’s Peter Senge summarizes the focus and
culture of great long-lived companies: learning organizations. Lean
Process and Product Development [Ward06] also stresses this theme;
it summarizes the insight of Toyota’s new product development suc-
cess: It’s about creating lots of knowledge, and about continual learn-
ing. And Toyota Talent [LM07] asks the question: “How does Toyota
continue to be successful through good times and bad?” and answers
“The answer is simple: great people,” and

It is the knowledge and capability of people that distinguishes
any organization from another. For the most part, organizations
have access to the same technology, machinery, raw material,
and even the same pool of potential employees as Toyota. The
automaker’s success lies partially in these areas, but the full
benefit is from the people at Toyota who cultivate their success.

Isao Kato, one of the students of Taichii Ohno (father of the Toyota
Production System), said:

In Toyota we had a saying, “Mono zukuri wa hito zukuri”,
which mean “Making things is about making people.” [Kato06]

Yet what is the journey of the software developer in many large
product groups? After graduating from university, a young developer
joins a large company and is assigned to a new or existing compo-
nent. She writes the original code or evolves it, becoming the special-
ist. There she stays for years—apparently so that the organization

https://less.works For Gene Gendel only, id:gene-gendel

163

Introduction to Feature Teams

can “go faster” by exploiting her one specialty—becoming a single
point of success or failure, a bottleneck, and learning only a few new
things. The university did not teach her good design, so where did
she learn good from bad? How can she see lots of different code? How
can she see opportunities for reusable code? How can she help else-
where when there’s a need?

Component team (and single-function team) organizations gradually
incur a learning debt—learning that should have occurred but
didn’t because of narrowly focused specialists, short-term quick-fix
fire fighting, lack of reflection, and not keeping up with modern
developments. When the product is young, the pain of this debt isn’t
really felt. As it ages and the number of single-specialized teams—
the number of bottlenecks—expands from 5 to 35, this debt feels
heavier and heavier. Those of you involved in old large products
know what we mean.

Encourages Delivery of Easier Work, not More Value

Component specialists, like other single-specialists, create an orga-
nizational constraint or bottleneck. This leads to a fascinating sub-
optimization: Work is often selected based on specialty rather than
customer value.

Component teams are faster at developing customer features that
primarily involve their single-speciality component—if such single-
component customer features can be found (not always true). For
that reason, when people are sitting in a room deciding what to do
next, features are often selected according to what available compo-
nent teams can do best or quickest. This tends to maximize the
amount of code generated, but does not maximize the value deliv-
ered.6 Therefore, component teams are optimized for quickly devel-
oping features (or parts of features) that are easiest to do, rather than

Note that the problem is not specialization; it is single-specializa-
tion, bottlenecks, and team structures that inhibit learning in
new areas. To create a learning organization, we want a struc-
ture where developers can eventually become skilled in two
areas—or more. Component teams inhibit that.

https://less.works For Gene Gendel only, id:gene-gendel

164

7 — Feature Teams

of highest value. We once saw a component team assigned to code
their small part of a low-priority customer feature that was not due
for more than 18 months in the future, simply because it was easier
to plan that way.

Figure 7.4 lower-
value work chosen

Interestingly, this sub-optimization is often invisible because 1)
there isn’t prioritization based on a customer-value calculation or
the prioritization scheme consists of bizarre super-coarse-grained
variants such as “mandatory” versus “absolutely mandatory”; 2)
component teams tend to be busy fixing bugs related to their compo-
nent; and, 3) there is plenty of internal local-improvement work.
Everyone appears very busy—they must be doing valuable work!

6. Not only do more lines of code (LOC) not imply more value, more
code can make things worse. Why? Because there is a relationship
between LOC and defect rates and evolution effort. More code
equals more problems and effort. Great development groups strive
to reduce their LOC while creating new features, not increase it.
Since component teams have a narrow view of the code base, they
don’t see reuse or duplication issues.

Item 1
Item 2
Item 3

...

Item 8

…

Item 12

System

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

With component teams, there is a tendency to select
goals familiar for people, not for maximizing customer
value. For example, Component A Team does Backlog
Item 3 because it mostly involves Component A work.

https://less.works For Gene Gendel only, id:gene-gendel

165

Introduction to Feature Teams

The sub-optimization becomes clear when we create a real Product
Backlog, sorted by a priority that includes value (Figure 7.4).

The Resource Pool and Resource Manager Quick Fix

project versus
product p. 238

One quick-fix way that traditional resource management tackles the
priority problem is by creating projects according to which special-
ists are required and available [McGrath04]. Project managers
select people from a specialist resource pool and release them back
when finished. This gives rise to project groups or feature
projects, usually with matrix management. In such organizations
one hears people called ‘resources’ as though they were machine
parts and human or team dynamics had little importance on produc-
tivity or motivation (which is not the case).

Thus, with a resource pool, management twists the organization
around single-specialist constraints. It seems to work well on paper
or in a project management tool. But people are not machine parts—
they can learn, be inspired or de-motivated, gain or lose focus, etc. In
practice, resource pool and feature project management has disad-
vantages:

❑ lower productivity due to non-jelled project groups—
there is clear evidence that short-lived groups of people
brought together for a project—a “project group”—are corre-
lated with lower productivity [KS93].

work redesign
p. 234

❑ lower motivation and job satisfaction—I often lead a “love/
hate” exercise with many people in an enterprise to learn what
they, well… hate. In large groups focused around resource pools
and project groups, “we hate being part of a resource pool
thrown into multiple short-term groups” is always at or near
the top.

❑ less learning—more single-specialization as people seldom
work/learn outside their area.

❑ lower productivity due to multitasking—with resource
pool management it is common to create partial ‘resource’ allo-
cations where a person is 20% allocated to project-A, 20% to
project-B, and so forth.7 This implies increasing multitasking

https://less.works For Gene Gendel only, id:gene-gendel

166

7 — Feature Teams

and—key point—lots of multitasking reduces productivity in
product development, it does not improve it [DeMarco01].

❑ lower productivity and throughput due to increased
handoff and delay waste—the people in the temporary
group are often multitasking on many projects. If that’s the
case, it leads to another productivity/throughput impact: Since
they are not working together at the same time on the same
goal, there is delay and handoff between the members.

❑ lower productivity and increased handoff and delay due
to physical dispersion—the project group is rarely co-located
in the same room; members may be in different offices, build-
ings, or even cities (and time zones), and have little or no rela-
tionship with each other; physical and time zone dispersion of a
task group impacts productivity [OO00].

❑ lower productivity and higher costs due to more manag-
ers—if each temporary project group has a project manager
(usually in a matrix management structure), costs are higher
and productivity lower because of the inverse relationship
between management count and software productivity.

Go See p. 52 Observe the relationship between the lean “Go See” attitude and the
belief that it is skillful to have resource pools that optimize around
single-specialist constraints. People that do not spend regular time
physically close to the real value-add workers may believe in
resource pools and short-lived project groups because it appears on
paper—as with machine parts—to be flexible and efficient. Yet those
frequently involved in the real work directly see the subtle (but non-
trivial) problems.

Promotes Some Teams to Do “Artificial Work”

A corollary of the disadvantage of encourages delivery of easier work,
not more value is illustrated by an example: Assume the market
wants ten features that primarily involve components A–T and thus
(in the simplest case) component teams A–T. What do component
teams U–Z do during the next release? The market is not calling for
high-value features involving their components, and there may even

7. Or worse. We’ve even seen 10% partial project allocations!

https://less.works For Gene Gendel only, id:gene-gendel

167

Introduction to Feature Teams

be no requests involving their components. In the best case, they are
working on lower-value features—because that is all they can do. In
the worst case, there is an explicit or more frequently a subtle
implicit creation of artificial work for these teams so that component
team U can keep busy doing component-U programming, even
though there is no market driver for the work.

With component teams and large product groups there is often a
resource manager who tries to keep the existing teams busy (“100%
allocated”) by choosing and assigning this low-value or artificial
work, or by asking the underutilized teams for advice. Their focus is
the local optimization of “everyone doing their best”—generating
code according to what people know, rather than generating the
most value. And the work is sometimes ‘redesign’: If we don’t have
anything new, we’ll redo what we did before.8

More Code Duplication and Hence Developers

We once visited a client with many component teams and discussed
the link between this structure and code duplication. The client
asked, rhetorically, “Do you know how many XML parsers we have?”

see Legacy Code
in companion
book

Consider duplication: Good code is free of it, and great developers
strive to create less code as they build new features, through con-
stant refactoring. It’s difficult to see duplication or opportunities for
reuse in a code base with single-component specialists, because one
never looks broadly. Single-component specialists increase duplica-
tion. And so the code base grows ever larger than necessary, which
in turn demands more single-component specialists…9

8. Improving existing code is a good thing; our point is different.
9. Code-cloning statistics based on (imperfect) automated analysis of

large systems shows around 15% duplicated code [Baker95], but this
is probably an underrepresentation because such tools don’t
robustly find “implicit duplication” of different-looking code that
does the same thing. Anecdote: I’ve done refactoring (to remove
duplication) on large systems built by component teams, removing
explicit and implicit duplication; reduction averaged around 30%.

https://less.works For Gene Gendel only, id:gene-gendel

168

7 — Feature Teams

Figure 7.5 system
dynamics of
component teams
and number of
developers

Ever-Growing Number of Developers

Component teams create several forces to increase the number of
developers. One reason examined previously is the increased code
bulk due to duplication. A second reason involves the mismatch
between the existing component teams and the high-priority work,
as explained next and summarized in the system dynamics diagram,
Figure 7.5.

Component teams become boxes in the formal organization struc-
ture, each with its own manager. Several component teams form a
subsystem group or department with a second-level manager. This
leads to an interesting dynamic…

Example: Current release—A high-priority goal involves mostly
work in component or subsystem A, and therefore component-A or
subsystem-A groups work on it. They hire more people in the belief
it will make them go faster. Component-C team has lower-priority
goals and does not need or get more people. Next release—A high-
priority goal involves primarily work for component C. Now, they are
viewed as the bottleneck and so hire more people (see Figure 7.6).

We could have moved people from one component team to another,
and gradually taught them (through pair programming) to help,

code
duplication

of
component

teams

O

goal: faster work on a high-priority
feature mostly involving component A

amount of broad
cross-component

code insight

O

size of
component

teams

constraint: don�t
break up an existing
component team

constraint: don�t reassign an
existing component team
member to a new component

quick fix: hire more component
team A developers

component
LOC

https://less.works For Gene Gendel only, id:gene-gendel

169

Introduction to Feature Teams

instead of hiring more people. But this rarely happens. The other
component team already has work chosen for the release, so they
won’t wish to lose people. And there is a fear it will take too long to
learn anything to be helpful. Also, the mindset is that “it would be a
waste of our specialist to move her to another component team.”
Finally, moving people is inhibited by political and management sta-
tus problems—many managers don’t want to have a smaller group
(another force of local optimization). Conway formulated this well:

Parkinson’s law [Parkinson57] plays an important role… As
long as the manager’s prestige and power are tied to the size of
his budget, he will be motivated to expand his organization.
[Conway68]

Thus, the component-A team will grow, as will the component itself.
It may even eventually split into two new components, and hence
two new teams. The people will specialize on the new components.
In this way large product organizations tend to grow even larger.

Figure 7.6 ever-
growing size with
component teams

Item 1
Item 2
Item 3

...

Item 20

…

Item 42

current release:
need more people

next release:
need more people

System

next release

current release

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

https://less.works For Gene Gendel only, id:gene-gendel

170

7 — Feature Teams

Figure 7.7 chal-
lenges in planning—
coordination

Problems in Planning and Coordination

Scrum (and other agile methods) strive for an integrated product at
the end of every iteration with demonstrable customer functionality.
For most features this involves multiple component teams and
therefore complicates planning and coordination between teams.

Example: In the next iteration the goal is to do Product Backlog
items 1, 2, 3, and 4. Backlog item 1 (customer feature 1) requires
changes in component A and B. Item 2 requires changes in compo-
nent A, B, and C, and so forth. All teams depend on one another in
the iteration planning and need to synchronize their work during

Item 1
Item 2
Item 3
Item 4

...

…

System

Comp A
Team

Comp B
Team

Comp C
Team

Component
A

Component
B

Component
C

With component teams, there is increased multitasking, as one component
team may work on several features in parallel, in addition to handling defects
related to "their" component. Multitasking is one of the wastes in lean
thinking, and correlated with reduction in productivity.

Project
Manager

With component teams, the overhead of a
project manager is required to coordinate
and see to completion a feature that spans
component teams and functional teams.

https://less.works For Gene Gendel only, id:gene-gendel

171

Introduction to Feature Teams

the iteration (see Figure 7.7)—a task that is often handled by a sep-
arate project manager. Even if we successfully plan the complex
interdependencies for this iteration, a delay in one team will have a
ripple effect through all component teams, often across several itera-
tions.

Delays Delivery of Value

Value can be delivered only when the work of multiple component
teams is integrated and tested. Figure 7.3 illustrates how compo-
nent teams promote sequential life cycle. So what? With a compo-
nent team organization, the work-in-progress (WIP) from a team
usually waits several iterations before it can be combined into a
valuable feature. This WIP, like all inventory, is one of the wastes in
lean thinking; it hides defects, locks up an investment, reduces flexi-
bility, and slows down the delivery of value. And in addition to the
straightforward sequential life cycle reasons already discussed, com-
ponent teams delay delivery as follows…

Example:

1. Item 1 in the Product Backlog involves component A. Compo-
nent team A will work on their part of item 1 next iteration.

2. Item 4 involves components A and C. Since component team A
is busy with item 1, they do not work on item 4.

3. Item 4 is the highest goal involving component C. Component
team C therefore works on their part of item 4 next iteration.

❑ First problem: Not every team is working on highest value.

❑ Second problem: After the iteration, item 4 (which needs code
in components A and C) can’t yet be integrated, tested, and
delivered, because of the missing component A code. Item 4
delivery has to wait for component team A.

Organizations try to solve this problem by the quick fix of creating a
role, called project manager or feature manager, for coordinat-
ing the work across teams and/or by creating temporary project
groups whose far-flung members multitask across multiple concur-
rent feature goals. Such tactics will never fundamentally resolve the

https://less.works For Gene Gendel only, id:gene-gendel

172

7 — Feature Teams

problem or support rapid development, since the problem is struc-
tural—baked into the organization, built into the system.

More Poor Code/Design

see Design in
companion

Perhaps the greatest irony of component teams is this: A mistaken
belief behind their creation is that they yield components with good
code/design. Yet, over the years we have looked closely at the code
across many large products, in many companies, and it is easy to see
that the opposite is true—the code in a component maintained by a
single-component team is often quite poor.10 For example, we will sit
to start pair programming with a component team member (who
knows we’ll be looking for great code), and with a slightly apologeti-
cally grin the programmer will say, “Yeah, we know it’s messy, but
we understand it.” What is going on?

❑ limited learning—as discussed above, developers are not
exposed to vast amounts of different code; this limits their
learning of good design.

❑ familiarity breeds obfuscation—when I stare at the same
complicated, obfuscated 10,000 lines of code month after month
it starts to be familiar and ‘clear’; I can no longer see how com-
plicated it is, nor does it especially bother me, because of long
exposure—so I am not motivated to deeply improve it.

❑ obfuscation and duplication-heavy large code bases
breed job security—some do think like this, especially in
groups where line management are not master programmers,
not looking at the code, not encouraging great, refactored code.

❑ no outside pressure to clarify, refactor, or provide many
unit tests for the code—no one other than the team of five
component developers (who are long familiar with the compli-
cated code) works on it; thus there is no pressure to continually
refactor it, reduce coupling, and surround it with many unit
tests so that it is clear and robustly testable for other people to
work on.

10. New developers joining an existing component team (i.e., compo-
nent) also report this observation.

https://less.works For Gene Gendel only, id:gene-gendel

173

Introduction to Feature Teams

The perpetuation of belief that component teams create great code is
an indicator of a lack of “Go See” behavior by first-level manage-
ment. If they were master developers (lean principle “my manager
can do my job better than me”) and regularly looking in depth across
the code base, they would see that on average, more—not less—fresh
eyes on the code makes it better.

Summary of Disadvantages

Platform Groups—Large-Scale Component Groups

In large product organizations, there often exist one or more lower-
level platform groups distinct from higher-level product groups. For
example, in one client’s radio networks division a platform group of
hundreds of people provides a common platform to several market-
visible products (each involving hundreds of people). Note that the
platform group and a higher-level product group that uses it are
essentially two very large component groups. There is no absolute
constraint that a separate platform group must exist; for example,
the software technologies and deployment environment are the
same in both layers. A higher-level developer could in theory modify
code in the lower-level ‘platform’ code—the boundary is arbitrary.

So, the long-term organizational change toward feature teams,
large-scale Scrum, and less handoff waste implies that an artificially
constructed platform group may merge into the customer-product

• promotes sequential life cycle
development and mindset

• limits learning by people working
only on the same components for
a long time—the waste of
underutilized people

• encourages doing easier work
rather than most valuable work

• promotes some component teams
to do “artificial work”

• causes long delays due to major
waiting and handoff wastes

• encourages code duplication

• unnecessarily promotes an ever-
growing number of developers

• complicates planning and syn-
chronization

• increases bottlenecks—single
points of success are also single
points of failure

• fosters more poor code/design

https://less.works For Gene Gendel only, id:gene-gendel

174

7 — Feature Teams

groups, with feature teams that work across all code. This is a multi-
year learning journey.

TRY…FEATURE TEAMS

Most drawbacks of component teams can be resolved with feature
teams (defined starting on p. 149). They enable us to put the
requirements analysis, interaction design, planning, high-level
design, programming, and system test responsibilities within the
team11, since they now have a whole end-to-end customer-feature
focus. Planning, coordinating, and doing the work are greatly simpli-
fied. Handoff and delay wastes are dramatically reduced, leading to
faster cycle time. Learning increases, and the organization can focus
on truly high-priority market-valued features. And because multiple
feature teams will work on shared components, sometimes at the
same time, it is essential that the code is clean, constantly refac-
tored, continually integrated, and surrounded by unit tests—as oth-
erwise it won’t be possible to work with.

11. Ideally, customer documentation is also put within the team.

Note a key insight: Feature teams shift the coordination chal-
lenge between teams away from upfront requirements, design,
and inter-team project management and toward coordination at
the code level. To see this, compare Figure 7.7 and Figure 7.8.
And with modern agile practices and tools, coordinating at the
code level is relatively easy. Naturally, developers and managers
unfamiliar with these practices don’t know this, and so continue
with upfront responses to the coordination challenge.

https://less.works For Gene Gendel only, id:gene-gendel

175

Introduction to Feature Teams

Figure 7.8 feature
teams shift the
coordination
problem to shared
code

As the shift to shared code coordination illustrates, a feature team
organization introduces new issues. In traditional development
these seemed difficult to solve. Fortunately, there are now solutions.

The following sections analyze these challenges and illustrate how
modern agile development practices ameliorate them, thus enabling
feature teams. Challenges or issues of feature teams include:

• broader skills and product
knowledge

• concurrent access to code

• shared responsibility for design

• different mechanism to ensure
product stability

• reuse and infrastructure work

• difficult-to-learn skills

• development and coordination of
common functional (for example,
test) skills that span members of
many feature teams

• organizational structure

• defect handling

Item 1
Item 2
Item 3

...

Item 8

…

Item 12

Team
Red

Team
Blue

Team
Green

Component
A

Component
B

Component
C

With feature teams, coordination issues shift toward the shared code
rather than coordination through upfront planning, delayed work, and
handoff. In the 1960s-70s this code coordination was awkward due
to weak tools and practices. Modern open-source tools and practices
such as TDD and continuous integration make this relatively simple.

https://less.works For Gene Gendel only, id:gene-gendel

176

7 — Feature Teams

Broader Skills and Product Knowledge

This is the opposite of the limits learning problem of component
teams. The feature team needs to make changes in any part of the
system when they are working on a customer feature.

First, not all people need to know the whole system and all skills.
The Product Owner and teams usually select a qualified feature
team for a feature, unless they have the time and desire for a ‘virgin’
team to invest in some deep learning in less familiar territory. In the
common case, the team members together need to already know
enough—or be able to learn enough without herculean effort—to
complete a customer-centric feature. Notice that feature teams do

Feature Teams versus Feature Projects

Feature teams are not feature projects. A feature project is organized around one fea-
ture. At the start, the needed specialists (usually developers from component teams or a
resource pool) are identified and organized into a short-lived group—a virtual project
group. The specialists are usually allocated a percentage of their time to work for the fea-
ture project. Feature teams and feature projects have important differences:

Long-life teams—A feature team, unlike a project group, may stay together for several
years. The team has an opportunity to jell and learn to work together. A well-working
jelled team leads to higher performance [KS93].

Shared ownership—In a feature team, the whole team is responsible for the whole fea-
ture. This leads to shared code ownership and cross-learning, which in the long run
increases degrees of freedom and reduces bottlenecks. In feature projects, developers only
update their particular single-specialty section of code.

Stable, simple organizational structure—Feature teams offer a simple structure; they
are the stable organizational units. Traditional project teams are ever-shifting and result
in matrix organizations, which degrades productivity.

Self-managing; improved cost and efficiency—Feature teams (and Scrum) do not
require overhead project managers, because coordination is trivial.

https://less.works For Gene Gendel only, id:gene-gendel

177

Introduction to Feature Teams

have specialized knowledge—that’s good. And, since learning is pos-
sible, they are slowly extending their specializations over time as
they take on features that require moderate new learning, strength-
ening the system of development over time (see Figure 7.9). This is
enhanced by more pair-work and group-work in a team with various
skills. We move beyond false dichotomies such as “specialization
good, learning new areas bad” and “generalists good, specialists
bad.”

Figure 7.9 special-
ization is good,
learning is good

Learning new areas of the code base is not a profound problem for
“moderately large” products, but beyond some tipping point12 it
starts to be a challenge.

requirement
areas p. 217

One solution is requirement areas. In traditional large product
development, component teams are usually grouped within a major
subsystem department. Similarly, when scaling the feature team
organization, we can group feature teams within a requirement
area—a broad area of related customer requirements such as “net-
work performance monitoring and tuning” or “PDF features.” To

12. It depends on size, quality of code, and unit tests, …

Item 1 needing ABC

Item 2 needing ADE

...

…

Team Red
with ABC

skills

Team Blue
with CDE

skills

Team Green
with ABEF

skills

Product Backlog

?

Item 2 will be given to
Team Blue or Green; skill
A or D will need learning

https://less.works For Gene Gendel only, id:gene-gendel

178

7 — Feature Teams

clarify: A requirement area is not a subsystem or architectural mod-
ule; it is a domain of related requirements from the customer per-
spective.

What’s the advantage? Most often, a requirement-area feature team
will not need to know the entire code base, since features in one area
usually focus across a semi-predictable subset of the code base. Not
always, but enough to reduce the scope of learning. Requirement-
area feature teams provide the advantage of feature teams without
the overwhelming learning challenge of a massive code base.13

But stepping back from the ‘problem’ of requiring broader knowl-
edge: Is it a problem to avoid, or an opportunity to go faster?

A traditional assumption underlying this issue is the notion that
assigning the existing best specialist for a task leads to better per-
formance. Yet this is an example of local optimization thinking—no
doubt locally and short-term it seems faster for code generation, but
does it increase long-term systems improvement and throughput of
highest market-valued features? In addition to the obvious bottle-
necking it promotes (thus slowing throughput of a complete feature),
does it make the organization as a whole speed up over time? As pre-
viously explored in the section on the disadvantages of component
teams:

Product groups that repeatedly rely on single-skill specialists
are limiting learning, reducing degrees of freedom, increasing
bottlenecks, and creating single points of success—and failure.
That does not improve long-term system throughput of highest
market-valued features or the ability to change quickly.

There is an assumption underlying concerns about broader product
knowledge: The assumption is that it will take a really long time for
a developer to learn a new area of the code base. And yet, in large
product groups, it is not uncommon for an existing developer to
move to a different component team and within four or five months
be comfortable—even shorter if the code is clean. It isn’t trivial, but
neither is it a herculean feat. Programmers regularly learn to work

13. A requirement-area feature team may eventually move to a new
area; we haven’t seen that yet.

https://less.works For Gene Gendel only, id:gene-gendel

179

Introduction to Feature Teams

on new code and in new domains all the time; indeed, it’s an empha-
sis of their university education.

Still, to dig deeper: Why is it hard to learn new areas of the code
base? Usually, the symptom is incredibly messy code and bad
design—a lack of good abstraction, encapsulation, constant refactor-
ing, automated unit tests, and so forth. That should be a warning
sign to increase refactoring, unit tests, and learning, not to avoid
new people touching fragile code—to strengthen rather than to live
with a weakness.

potential skills
p. 206

Learning new code and changing an existing code base is indeed a
learnable skill. It takes practice to become good, and people in fea-
ture teams get that practice and learn this skill.

Returning to the apparent quick-fix, short-term performance advan-
tage of choosing the best existing specialist for a task, this “common
sense” has also been questioned in a study [Belshee05a].

Development ran with one-week iterations. Each iteration the team
experimented with new practices. One experiment involved task
selection. A traditional approach may be called most qualified imple-
menter—the specialist who knows most about a task works on it.
The team experimented with a task selection method called least
qualified implementer—everyone selects the task they know least
about. Also, task selection was combined with frequent pair switch-
ing, called promiscuous pairing, each 90 minutes. First, the ini-
tial velocity did not drop significantly. Second, after two iterations
(two weeks) the velocity increased above their previous level. The
benefit of increased learning eventually paid off.

Belshee explains the above result with a concept called beginner’s
mind. “Beginner’s Mind happens when the thinker is unsure of his
boundaries. The thinker opens himself up and thoroughly tests his
environment… The whole mind just opens up to learning.”
[Belshee05b]

An experience report from Microsoft related to these practices:

The principles laid out in Belshee’s paper are not for the faint of
heart. They require dedication, commitment and courage. Dedi-
cation is required of each team member to strive for self

https://less.works For Gene Gendel only, id:gene-gendel

180

7 — Feature Teams

improvement. Commitment is needed for each team member to
ensure the values and principles will be followed and the team
will hold itself accountable. Courage, because the emotions that
Promiscuous Pairing invites will be not unlike the most fun and
scariest roller-coaster ever experienced. [Lacey06]

The studies illustrates the potential for acceleration when an orga-
nization invests in broadening learning and skill, rather than limit-
ing it through dependence on bottlenecks of single-specialists.

Concurrent Access to Code

As illustrated in Figure 7.8, one important difference between com-
ponent teams and feature teams is that the dependency and coordi-
nation between teams shifts from requirements and design to code.
Several people may concurrently edit the same source code file, typi-
cally a set of C functions, or a class in C++ or Java.

With weak or complex version-control tools and practices, common
in the 1980s and still promoted by companies such as IBM, this was
a concern. Fortunately, it isn’t an issue with modern free tools and
agile practices.

see Continuous
Integration in
companion

Old-generation and complex (and costly) version control systems
such as ClearCase defaulted to strict locking in which the person
making a change locked the source file so that no one else could
change it. Much worse, vendors promoted a culture of avoiding con-
current access, delaying integration, complex integration processes
involving manual steps, integration managers, and tool administra-
tors. This increased costs, complexity, bottlenecks, waiting, and rein-
forced single-team component ownership.

On the other hand, the practices and tools in agile and in open
source development are faster and simpler. Free open source tools
such as Subversion14 default to optimistic locking (no locking),

14. Subversion is likely the most popular version control tool worldwide,
and a de facto standard among agile organizations. Tip: It is no
longer necessary to pay for tools for robust large-scale development;
for example, we’ve seen Subversion used successfully on a 500-per-
son multisite product that spanned Asia and Europe.

https://less.works For Gene Gendel only, id:gene-gendel

181

Introduction to Feature Teams

and more deeply, have always encouraged—through teaching and
features—a culture of simplicity, shared code ownership, and con-
current access [Mason05]. With optimistic locking anyone can
change a source file concurrently. When a developer integrates her
code, Subversion automatically highlights and merges non-conflict-
ing changes, and detects if conflicts exist. If so, the tool easily allows
developers to see, merge, and resolve them.

An optimistic-locking, fast, simple tool and process are required
when working in an agile development environment and are a key in
eliminating problems related to concurrent access to code.

Optimistic locking could in theory lead to developers spending inor-
dinate time merging difficult changes and resolving large conflicts.
But this is resolved with continuous integration and test-driven
development, key practices in scaling agile and lean development.

see Continuous
Integration in
companion

parallel releases
p. 209

When developers practice continuous integration (CI) they inte-
grate their code frequently—at least twice a day. Integrations are
small and frequent (for example, five lines of code every two hours)
rather than hundreds or thousands of lines of code merged after
days or weeks. The chance of conflict is lower, as is the effort to
resolve. Developers do not normally keep code on separate “devel-
oper branches” or “feature branches”; rather, they frequently inte-
grate all code on the ‘trunk’ of the version-control system, and
minimize branching. Furthermore, CI includes an automated build
environment in which all code from the hundreds of developers is
endlessly, relentless compiled, linked, and validated against thou-
sands of automated tests; this happens many times each day.15

see Test in
companion

In test-driven development every function has many automated
micro-level unit tests, and all programming starts with writing a
new unit test before writing the code to be tested. Further, every fea-
ture has dozens or hundreds of automated high-level tests. This
leads to thousands of automated tests that the developer can rerun
locally after each merge step—in addition to their continual execu-
tion in the automated build system.

In lean thinking terminology, CI replaces big batches and long cycle
times of integration (the practice of traditional configuration man-

15. Note that this implies driving down the build time of a large system.

https://less.works For Gene Gendel only, id:gene-gendel

182

7 — Feature Teams

agement) with small batches and short cycles of integration—a
repeating lean theme.

Shared Responsibility for Design

In a traditional component team structure, each component has an
owner who is responsible for its design and ongoing “conceptual
integrity.” On the other hand, feature teams result in shared owner-
ship. This could—without the practices used in agile methods—lead
to a degradation of integrity. All that said, it must be stressed that
in reality, code/design degradation happens in many groups anyway,
regardless of structure; recall the reasons component teams ironi-
cally often live with obfuscated code (p. 172).

Continuous integration (CI) implies growing a system in small
steps—each meant to improve the system a little. In addition to inte-
gration of all code on the trunk multiple times daily and non-stop
automated builds running thousands of automated tests, CI with on-
going design improvement is supported by other practices:

see Design in
companion

❑ evolutionary design culture—since (as Conway points out)
the initial design vision is rarely great, and in any event since
software is ever-changing, encourage a culture in which people
view the design or architecture as a living thing that needs
never-ending incremental refinement

– a sequential life cycle with a single upfront architectural or
design phase gives the false message that the design is
something we define and build once, rather then continually
refine every day for the life of the system

❑ test-driven development—drive code development with
automated micro-unit tests and higher-level tests; each test
drives a small increment of functionality

– this leads to hundreds of thousands of automated tests

❑ refactoring; a key step—after each micro-change of a new unit
test and related solution code, perform a small refactoring step
to improve the code/design quality (remove duplication,
increase encapsulation, …)

https://less.works For Gene Gendel only, id:gene-gendel

183

Introduction to Feature Teams

– refactoring implies always leaving the code a little better
than we found it

– note that design quality means code quality; there is no real
‘design’ in software other than the source code [Reeves92]

be agile p. 139These CI practices support continuous design improvement with
feature teams, and the 9th agile principle: Continuous attention to
technical excellence and good design enhances agility. Plus, there are
strong connections between these agile practices and the lean princi-
ples Stop and Fix, Continuous Improvement, and the kaizen practice
of endless and relentless small steps of improvement—in this case,
“kaizen in code.”

Successfully moving from solo to shared code ownership supported
by agile practices doesn’t happen overnight. The practice of compo-
nent guardians can help. Super-fragile components (for which
there is concern16) have a component guardian whose role is to teach
others about the component ensures that the changes in it are skill-
ful, and help remove the fragility. She is not the owner of the compo-
nent; changes are made by feature team members. A novice person
(or team) to the component asks the component guardian to teach
him and help make changes, probably in design workshops and
through pair programming. The guardian can also code-review all
changes using a ‘diff ’ tool that automatically sends her e-mail of
changes. This role is somewhat similar to the committer role in
open source development.17 It is another example of the lean prac-
tices of regular mentoring from seniors and of increasing learning.

Another possible practice is establishing an architecture code
police [OK99]; to quote, “The architecture police is responsible for
keeping a close check on the architecture.” Note that since the only
real design is in the code, architecture code police are responsible for
continually looking at the code (not at documents), identifying weak-
nesses, and coaching others while programming—they are master-

16. A typical reason for concern about delicate components is that the
code is not clean, well refactored, and surrounded by many unit
tests. The solution is to clean it up (“Stop and Fix”), after which a
component guardian may not be necessary.

17. But the roles are not identical. Guardians (or ‘stewards’) do more
teaching and pair programming, and allow commits at any time.
Committers also teach, but less so, and control the commit of code.

https://less.works For Gene Gendel only, id:gene-gendel

184

7 — Feature Teams

programmer teachers. Architecture code police are a variant of com-
ponent guardians; they are responsible for overall code quality. But
no single person is responsible for a specific component. Warning:
This practice could devolve into a separate “PowerPoint architects”
group that is not focussed on the code, and not teaching through pair
work.

community of
practice p. 252

A related practice is used at Planon, a Dutch company building
workplace management solutions. The co-creator of Scrum, Jeff
Sutherland, wrote: “We have another Scrum company that has hit
Gartner Group’s magic [leaders]” [Sutherland07]. They have multi-
ple feature teams, each consisting of an architect, developers,
testers, and documentation people. There is also one lead architect,
but he is not responsible for defining the architecture and handing it
over to the team. Instead, he is “the initiator of a professional circle,
that includes all architects, to keep the cross-team communication
going.” Planon’s term professional circle is a community of prac-
tice, in which people with similar interest form a community to
share experiences, guide, and learn from each other [Wenger98,
WMS02]. At Planon, they have a community of practice for different
specialists such as architects, testers, and ScrumMasters
[Smeets07].

see Design in
companion

Another practice to foster successful shared design is the design
workshop. Each iteration, perhaps multiple times, the feature
team gets together for between “two hours and two days” around
giant whiteboard spaces. They do collaborative agile modeling,
sketching on the walls in a creative design conversation. If there are
component guardians or other technical leaders (that are not part of
the feature team) who can help guide and review the agile modeling,
they ideally also participate. See Figure 7.10.

For broad architectural issues joint design workshops (held
repeatedly) can help. Interested representatives from different fea-
ture teams (not restricted to ‘official’ architects) spend time together
at the whiteboards for large-scale and common infrastructure
design.18 Participants return to their feature team, teaching joint
insights in their local workshops and while pair programming.

18. Solutions for multisite joint design workshops are explored in the
Design chapter.

https://less.works For Gene Gendel only, id:gene-gendel

185

Introduction to Feature Teams

Handoff and partially done work (such as design specifications) are
wastes in lean thinking. To reduce this and to encourage a culture of
teaching, it is desirable that design leaders not be members of a sep-
arate group that create specifications, but rather be full-time mem-
bers on a feature team who also participate in joint design
workshops as a part-time architectural community of practice.

Figure 7.10 design
workshop with agile
modeling

New Mechanisms for Code Stability

Code stability in a component team organization is attempted with
component owners. They implement their portion of a customer fea-
ture in their component, hopefully keeping it stable. Note that sta-
bility is an ideal rather than an assured consequence of this
approach. It is common to find large product groups where the build
frequently breaks—often as a consequence of the many coordination
problems inherent to and between component teams.19

see Test and
Continuous
Integration in
companion

With feature teams, new—and just plain better—stability tech-
niques are used. Massive test automation with continuous integra-
tion (CI) is a key practice. When developers implement new
functionality, they write automated tests that are added to the CI
system and run constantly. When a test breaks:

1. The CI system automatically (for example, via e-mail or SMS)
informs the set of people who might have broken the build.

19. We have seen many examples of a three-month or worse ‘stabiliza-
tion’ phase in traditional large products that used component teams.

https://less.works For Gene Gendel only, id:gene-gendel

186

7 — Feature Teams

2. Upon notification, one or more of these people stop, investigate,
and bring the build back to stability.

– this CI attitude illustrates the lean principle of Stop and Fix

Infrastructure and Reuse Work

In a component team organization, goals such as a reusable frame-
work or improving test automation are usually met by formation of a
temporary project group or with an existing component team.

In a feature team organization with Scrum, these major goals are
added to the Product Backlog—an exception to the guideline to focus
on adding customer-feature items, since these goals span all fea-
tures.

This backlog infrastructure work is prioritized by the Product
Owner in collaboration with the teams. Then the infrastructure
work is given to an existing feature team, as any other backlog item.
This team works on infrastructure for a few iterations (delivering
incremental results each iteration) and thus may be called an infra-
structure team, a temporary role until they return to normal fea-
ture team responsibility.

Difficult-to-Learn Skills

potential skill
p. 206

A feature team may not have mastery of all skills needed to finish a
feature. This is a solvable problem if there is the potential skill
[KS01]. On the other hand, some skills are really tough to learn,
such as graphic art or specialized color mathematics. Solutions:

❑ fixed specialist for the iteration—This creates a constraint
in the iteration planning; all work related to that skill needs to
be done by the feature team with the specialist (who may be a
permanent or temporary visiting member).

– A good Stop and Fix approach to working with the specialist
is that he is a teacher and reviewer, not a doer

❑ roaming specialist—During the iteration planning several
teams request help from a specialist; she schedules which
teams she will work with (and coach) and roams between them.

https://less.works For Gene Gendel only, id:gene-gendel

187

Introduction to Feature Teams

❑ visit the specialist at her primary team—the specialist
physically stays with one feature team that needs her most (for
the iteration) and invites other people to visit her for mini-
design workshops, review, and consultation.

Solo specialists are bottlenecks; avoid these solutions unless team
learning is not an option. Encourage specialists to coach, not do.

Coordinating Functional Skills: Communities of Practice

communities of
practice p. 252

An old issue in cross-functional teams is the development and coor-
dination of functional skills and issues across the teams, such as
testing skills or architectural issues. The classic solution, previously
introduced, is to support communities of practice (COP)
[Wenger98, WMS02]. For example, there can be a COP leader for the
test discipline that coordinates education and resolution of common
issues across the testers who are full-time members of different fea-
ture teams and part-time members of a common testing COP.

Organizational Structure

In a component- and functional-team (for example, test team) orga-
nization, members typically report to component and functional
managers (for example, the “testing manager”). What is the man-
agement structure in an agile-oriented enterprise of cross-func-
tional, cross-component feature teams?

organizational
structure p. 241

In an agile enterprise, several feature teams can report to a common
feature team’s line manager. The developers and testers on the team
report to the same person. Note that this person is not a project
manager, because in Scrum and other agile methods, teams are self-
managing with respect to project work (11th agile principle).

Handling Defects

In a traditional component team structure, the team is usually given
responsibility for handling defects related to their component. Note
that this inhibits long-term systems improvement and throughput
by increasing interrupt-driven multitasking (reducing productivity)

https://less.works For Gene Gendel only, id:gene-gendel

188

7 — Feature Teams

for the team, and by avoiding learning and reinforcing the weakness
and bottleneck of depending upon single points of success or failure.

On a large product with (for example) 50 feature teams, an alterna-
tive that our clients have found useful is to have a rotating mainte-
nance (defect) group. Each iteration, a certain number of feature
teams move into the role of maintenance group. At the end of the
two or three iterations, they revert to feature teams doing new fea-
tures, and other feature teams move into maintenance. Lingering
defects that aren’t resolved by the timebox boundary are carried
back to the feature team role and wrapped up before new feature
work is done.

As an additional learning mechanism, consider adding the practice
of handling defects with pair programming, pairing someone who
knows more and someone who knows less, to increase skills transfer.

TRANSITION

In his report on feature teams in Ericsson [KAL00], Karlsson
observed, “Implementing daily build and feature teams in an organi-
zation with a strong [traditional] development process, distributed
development and a tradition of module [single component] responsi-
bility is not an easy task.” It takes hard work and management com-
mitment.

There are several tactics for transitioning to feature teams:

❑ reorganize into broad cross-component feature teams

❑ gradually expand team responsibility

Reorganize into Broad Cross-Component Feature Teams

One change tactic is to reorganize so that, collectively, the new
teams have knowledge of most of the system. How? By grouping dif-
ferent specialists from most component areas (Figure 7.11).

https://less.works For Gene Gendel only, id:gene-gendel

189

Transition

requirement
areas p. 217

A variation is that a new team is formed more narrowly with spe-
cialists from the subset of most components typically used in one
(customer) requirements area, such as “PDF printing.” This
approach exploits the fact that there is a semi-predictable subset of
components related to one requirements area. It is simpler to
achieve and reduces the learning burden on team members.

When one product at Xerox made the transition to feature teams, it
started out by forming larger (eleven- or twelve-member) teams
than the recommended Scrum average of seven. The advantage was
that a sufficiently broad cross-section of specialists was brought
together into feature teams capable of handling most features. The
disadvantage was that twelve members is an unwieldy size for cre-
ating a single jelled team with common purpose.

Figure 7.11 moving
to feature teams

Component A Team Feature Team Red

Feature Team Blue

… and so forth

Component B Team

A specialist

A specialist

A specialist

B specialist

B specialist
B specialist

C specialist

A specialist

B specialist

C specialist

A specialist

B specialist

https://less.works For Gene Gendel only, id:gene-gendel

190

7 — Feature Teams

Gradually Expand Teams’ Responsibility

For some, reorganizing to full-feature teams is considered too diffi-
cult, although in fact the impediments are often mindset and politi-
cal will. As an alternative, take smaller steps to gradually expand
teams’ responsibility from component to “multi-component” teams to
true feature teams.

Simplified example: Suppose an organization has four component
teams A, B, C, and D. Create two AB teams and two CD teams from
the original four groups, slowly broadening the responsibilities of
the teams, and increasing cross-component learning. A customer
feature will still need to be split across more flexible “multi-compo-
nent” teams, but things are a little better. Eight months later, the
two AB and two CD teams can be reformed into four ABCD teams…
and so on.

One Nokia product took this path, and formed AB teams based on
the guideline of combining from closely interacting components; that
is, they chose A and B components (and thus teams) that directly
interacted with each other. Consequently, the original team A and
team B developers already had some familiarity with each other’s
components, at least in terms of interfaces and responsibilities.

CONCLUSION

Why a detailed justification toward feature teams and away from
single-function teams and component teams? The latter approach is
endemic in large-product development. The transition from compo-
nent to feature teams is a profound shift in structure and mindset,
yet of vital importance to scaling agile methods, increasing learning,
being agile, and improving competitiveness and time to market.

RECOMMENDED READINGS

❑ Dynamics of Software Development by Jim McCarthy. Origi-
nally published in 1995 but republished in 2008. Jim’s book is a
true classic on software development. Already in 1995 it

https://less.works For Gene Gendel only, id:gene-gendel

191

Transition

emphasized feature teams. The rest of the book is stuffed with
insightful tips related to software development.

❑ “XP and Large Distributed Software Projects” by Karlsson and
Andersson. This early large-scale agile development article is
published in Extreme Programming Perspectives. It is a insight-
ful and much under-appreciated article describing the strong
relationship between feature teams and continuous integra-
tion.

❑ “How Do Committees Invent?” by Mel Conway. This 40-year
article is as insightful today as it was 40 years ago. It is avail-
able via the authors website at www.melconway.com.

❑ Agile Software Development in the Large by Jutta Eckstein.
This is the first book published on the topic of scaling agile
development. It describes the experience of a medium-sized
(around 100 people) project and stresses the importance of fea-
ture teams in large-scale development.

❑ “Promiscuous Pairing and Beginner’s Mind” by Arlo Belshee.
This article is not directly related to feature teams or large-
scale development but it does contain some fascinating experi-
ments that question some of the assumptions behind special-
ization.

https://less.works For Gene Gendel only, id:gene-gendel

www.melconway.com

Chapter
• Try…Self-organizing teams 194

• Try…Set challenging but realistic goals 195

• Try…Cross-functional teams 196

• Try…Long-lived teams 199

• Try…Team owns the process 200

• Try…Team manages external dependencies 202

• Try…Dedicated team members 204

• Try…Multi-skilled workers 204

• Try…Team makes decisions 207

• Try…Open team conflict 208

• Avoid…Phase-based “resource allocation” 209

• Avoid…Parallel releases (a symptom of imbal-
anced groups and work) 209

• Avoid…Staircase branching (a symptom of
imbalanced groups and work) 210

• Avoid…Projects in product development (a
symptom of imbalanced groups and work) 212

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

https://less.works For Gene Gendel only, id:gene-gendel

193

Chapter

8
TEAMS

One man alone can be pretty dumb sometimes, but for real bona fide
stupidity, there ain’t nothin’ can beat teamwork.

—Edward Abbey

Teams to lean are like bricks to buildings. They are so basic, people
even forget to mention them. Toyota expert, Jeffrey Liker:

Toyota sincerely believes that teams are more effective and effi-
cient than the sum of individuals, and that when they are given
the skills and systems of problem solving, the sky is the limit
[LH08].

But teams are the core building block for large product develop-
ment—and team structure has a huge impact on productivity and
cycle time. This chapter covers different team-related subjects and
their influence on organizing work.

Team has

❑ a shared work product

❑ interdependent work

❑ a shared responsibility

❑ a set of working agreements

❑ responsibility for managing the outside-the-team relation-
ships [SJS03]

❑ distributed leadership [Katzenbach98]

https://less.works For Gene Gendel only, id:gene-gendel

194

8 — Teams

TRY…SELF-ORGANIZING TEAMS

Self-organizing teams are the basis of Scrum and a widespread mod-
ern management practice. They go by different names such as self-
managing, self-directing, and empowered, but the idea is the same.
And what is that? Well, the team has the authority to design, plan,
and execute their task and to monitor and manage their work pro-
cess and progress [Hackman02]. In other words, the team—rather
than a (project) manager—has the responsibility of deciding how to
work.

In a healthy self-organizing team, the leadership role is also shared
among team members—a hard thing for traditional management to
change. Preston Smith, author of the first book on flexible product
development [Smith07], notes that a “measure of a self-organizing
team is how frequently the leadership changes [in the team].”

What does it mean to share leadership among team members? At
the MIT leadership center, Peter Senge and three other MIT profes-
sors did a four-year study called “leadership in the age of uncer-
tainty.” One of their key assumptions was that leadership “should
permeate all levels of the firm” [Ancona05]. They identified four lead-
ership capabilities: (1) making sense of the world around us, (2)
developing relationships within and across the organization, (3) cre-
ating a vision of the future, and (4) creating new ways of working
together [Malone05]. In a self-organizing team, all members con-
stantly exercise these capabilities and, depending on the situation,
one team member takes a more or a less strong leadership role.

Avoid…Manager
not taking
responsibility for
creating the
conditions
needed for teams
to self-organize

We worked with some product groups who, when moving to self-
organizing teams, gathered the people and said, “From today you
are self-organizing; go and do your job.” Afterwards, they sat back
and waited. The team was confused and their productivity plum-
meted. Self-organizing teams do not just happen, they need the right
environment. The organization is responsible for supporting the
team development by creating the conditions needed for teams to
succeed. Switching to self-organizing teams means the job of the tra-
ditional manager changes from directing the team to creating these
conditions.

https://less.works For Gene Gendel only, id:gene-gendel

195

In Scrum, the ScrumMaster is responsible for creating the environ-
ment a team needs to succeed. To avoid confusion, Scrum introduced
a new role instead of changing the responsibilities of existing roles.
The change from a traditional (project) manager to a ScrumMaster
is a change in mindset and attitude. Often, traditional managers
experience a loss of power, or what we call “illusion of power.” Some
helpful references related to this change are included in this chap-
ter’s recommended readings section.

The foundation of Scrum is the work of Nonaka and Takeuchi
[NT86], who studied innovation and knowledge creation in Japan.
Their conclusion: Innovative new product development is done by
self-organizing teams. According to them [NTI84], self-organizing
teams require to be:

❑ autonomous

❑ cross-functional

❑ challenged

Autonomy is already covered and a later section covers cross-func-
tional teams. The third requirement is…

TRY…SET CHALLENGING BUT REALISTIC GOALS

The one thing all team literature seems to agree on is this: A team
needs a challenging performance goal. Why? A clear goal results in a
shared-work product with all team members sharing responsibility.
This binds the team together and challenges people to cooperate,
learn, and work as a team. The result: The combined contribution
exceeds the sum of the individual contributions—a truly high-per-
forming team.

feature teams
p. 149;
requirement
areas p. 217

In the work of Nonake and Takeuchi, the teams were responsible for
the whole product. Other studies showed that when the team is
responsible for the end-to-end result, their internal motivation is
higher [HO80]. Feature teams and requirement areas create this
end-to-end focus, thereby, increasing the teams’ internal motivation
and creating the conditions for challenging and meaningful goals.

https://less.works For Gene Gendel only, id:gene-gendel

196

8 — Teams

Figure 8.1 Scrum
has cross-functional
teams

TRY…CROSS-FUNCTIONAL TEAMS

Self-organizing teams are cross-functional (or multifunctional). A
cross-functional team is a “group of people with a clear purpose rep-
resenting a variety of functions or disciplines in the organization
whose combined efforts are necessary for achieving the team's pur-
pose” [Parker02].

Avoid…Single-
function
specialist teams

Why are cross-functional teams important? Imagine having a single-
function specialist design team, a single-function specialist imple-
mentation team, and a single-function specialist test team. These
teams ‘optimize’ their work according to their specific function—a
local optimization. They hand off work to “the next team”—another

analysts

designers/
architects

…..

WIP
queue

programmers

…..

testers

…..

a 2- or 4-week iteration

cross-functional team does all work (architecture, analysis, interaction
design, internal design, programming, test, …) without handoff

a 2- or 4-week iteration

incorrect

this is not
Scrum nor a

Scrum Team, it
is a mini-

waterfall of
single-function

groups with
handoff and
WIP queues

repeat in
another

timeboxed
iteration

correct

https://less.works For Gene Gendel only, id:gene-gendel

197

lean waste. And they create queues between the teams, which
reduces the total cycle time, and reduces the feedback loop, thus
decreasing the learning opportunities (see Figure 8.1). Cross-func-
tional teams avoid these wastes by letting the team see the whole.

By definition, a Scrum team is cross-functional. Its members include
at least product marketing (Product Owner), software development,
and testing. A cross-functional team implies breaking the organiza-
tional barriers between development and testing by putting them in
the same team. For most organizations we worked with, this was
already a major change. However, when traditional product develop-
ment literature mentions cross-functional teams, they are not talk-
ing about specializations inside the product development function;
instead:

Cross-functional means that team membership includes all the
key functions involved in the project, usually Engineering, Mar-
keting, and Manufacturing, at a minimum [Smith07].

True cross-functional integration in large product development is
rare. Instead, we have frequently encountered cross-functional
project management groups with management representatives of the
different functional areas. They do not work. Some examples:

❑ Most organizations turn such important cross-functional deci-
sions over to a management group, but this arrangement is usu-
ally slow to react in a turbulent environment. Such groups do
not convene often enough or quickly enough to deal with con-
stant change. In addition, they do not have information at hand
regarding decisions the team faces today. The team would have
to brief them, which wastes precious reaction time. When a team
is encountering constant change, it needs the capability to make
cross-functional trade-off decisions internally, which means
that it needs an internal cross-functional composition
[Smith07].

❑ Ford had formed cross-functional planning groups of senior
managers and senior staffers to think about future technology
needs. One reason for forming the groups was to provide guid-
ance for research work, which they did. But the executives
wrongly assumed that the groups would also naturally serve as
a link between research and the operating engine-development

https://less.works For Gene Gendel only, id:gene-gendel

198

8 — Teams

groups, thereby making sure the latter would tap the former's
knowledge. But those links never materialized at the working
level [BCHW94].

❑ Cross-functional project teams … do not guarantee effective
development. Even good “teamwork” may not be enough. In one
American company … we found a very coherent “project team”
with a high level of team spirit. But the team consisted only of
liaison people from each department; none of the working engi-
neers responsible for creating actual drawings and prototypes
was included. The liaison team was effectively an enclave that
tended to be isolated from the working engineers, who referred
to the liaison members as “the team people.” It took extensive
clinical study to recognize that this high integration at the liai-
son level masked a lack of integration across the development
organization [CF91].

❑ A large telecom company we worked with formed program
management teams consisting of project managers from the dif-
ferent functions. These project managers commanded single-
function specialist teams, resulting in a traditional sequential
life cycle with huge queues between teams. There was never
any true cross-functional integration and the “cross-functional
program management team” served as another structure for
traditional command-and-control management.

Avoid…IBM ❑ Another very large company we worked with was ‘advised’ to
use this kind of management structure by IBM who sold them
their integrated product development solution. This boiled
down to using a stage-gate sequential life cycle process with a
cross-functional management team. This team was controlled
by a product development team leader who commanded the dif-
ferent single-specialist project group managers. Ironically, the
IBM integrated product development material [Mugge04]
refers to the same sources as this book. The earlier two stories
about the lack of true integration came from these.

Clark and Wheelwright, authors of “Revolutionizing Product Devel-
opment” [CW92]—the classic work on product development—simply
conclude that “True cross-functional integration occurs at the work-
ing level.” An ideal cross-functional team includes all functions
needed for shipping the product. This is not possible in large product
development. For example, only a few teams include hardware- or

https://less.works For Gene Gendel only, id:gene-gendel

199

manufacturing-related people, and thus these teams do the work
most related to these functions. Other functional groups that spend
even less effort in product development, such as HR, are best left out
of the team and in a supporting role.

The first step for most organizations is to integrate analysis, interac-
tion design, software architecture, programming, and testing. They
need to realize that in the long run, to become faster and more agile,
other functions also need to be integrated in the teams. They need to
remember that “Successful implementation of multifunctional teams
requires a fundamental redesign of the entire organization”
[Meyer93].

TRY…LONG-LIVED TEAMS

Creating high-performance teams takes time. It’s sad that currently
the most common way of structuring work is by projects. Once the
team finally manages to reach a level of high-performance, they are
broken up and the individuals are assigned to new project teams. We
worked with one of the first Scrum teams in China that was broken
up when they finished their project work. In their retrospective, the
most important item that came up was “We finally know how to
work together and now we get split up.” Ironically, the reason for
breaking up well-working teams is ‘efficiency.’ Efficiency is often
incorrectly measured by an “increase in resource utilization”
(remember the baton and the runner). But, does this really improve
the overall efficiency or is this another local optimization?

If you are truly interested in performance, then it is unskillfull to
break up high-performing teams. Instead of regrouping teams to fit
the work, you can regroup the work to fit the teams. For example,
when using feature teams you give features to existing teams
instead of regrouping the teams for each feature. The teams are con-
sidered the “unit of organizing work.”

How long should a team stay together? Ralph Katz—a professor of
entrepreneurship and innovation—studied the relation between
team performance and team longevity. His research shows that R&D
teams increase their performance until they reach a peak after
working together for four years [Katz82] (Figure 8.2).1 After this,

https://less.works For Gene Gendel only, id:gene-gendel

200

8 — Teams

their performance dropped, probably because of the lack of fresh
ideas. Therefore, keep teams together as long as possible. But some-
times rotate members across teams to create new insights. Of
course, self-organizing teams can decide to rotate their members
themselves.

Figure 8.2 team
performance over
time

TRY…TEAM OWNS THE PROCESS

One reason for the increase in performance over time is improve-
ment in the team’s process. A Scrum team owns their process and is
expected to improve it. In Toyota, every team member is expected to
not just execute his task, but to also be responsible for improving his
team’s work. The team member handbook at Toyota states:

All team members are expected to take part in developing and
designing new ways of doing their work that continue to
improve the job and productivity as well as the quality of our
product. In the process, team members also learn to work effec-
tively as a team and to help their fellow team members, when
necessary, to perform their job duties [LH08].

1. Team performance was measured by interviewing people involved
and then rating their response on a seven-point scale.

3

3.5

4

4.5

5

Te
am

 P
er

fo
rm

an
ce

5.5

0 1 2 3 4 5 6 11 12 13

Years Team Together

https://less.works For Gene Gendel only, id:gene-gendel

201

Figure 8.3 large-
scale Scrum teams

Of course, team members only improve their process if they feel they
own it. When people are regrouped frequently, it is hard to get this

Large-scale Scrum
Teams

Teams Have
- shared work product

- interdependent work

- shared responsibility

- set of working agreements

- responsibility for managing the
 outside-the-team relationships

- distributed leadership

Feature Teams Are
- long-lived—the team stays together so
 they can �jell� for higher performance;
 they take on new features over time

- cross-functional and cross-component

- co-located

- working on a complete customer-
 centric feature, across all components
 and disciplines

- composed of generalizing specialists

- in Scrum, typically composed of
 7 ± 2 people

Cross-functional
- variety of skills and functions

- cross-functional learning

- multi-skilled workers

- responsibility for the whole –
 no handoff

Self-organizing
- make own decisions

- have the authority to execute
 their task and to monitor and
 manage their work process
 and progress - autonomy

- are cross-functional

- need a challenging
 performance goalLong-lived and Dedicated

- long-term team commitment of members
 and organization

- full-time members

https://less.works For Gene Gendel only, id:gene-gendel

202

8 — Teams

kind of ownership. The result is that people “just do their job,” follow
the process, and a huge potential in performance and job satisfaction
is lost.

Definition of
Done p. 313

How can multiple teams work together if every team has their own
way of working? Multiple teams need to agree on cross-team work-
ing agreements—standards. The Scrum “Definition of Done” is an
example of a multi-team working agreement. Over time, the work-
ing agreement evolves because teams reflect, learn, and improve.
Important: No separate group owns the cross-team working agree-
ment; the teams own them together.

When transitioning an existing product development group to
Scrum, the set of basic agreements is not yet established. Neither is
there a way of reflecting working agreements nor a way of changing
them. To kick-start the transition, management can take one team’s
agreements and make them the multi-team working agreements
without having consensus. After this, they need to let go and let the
teams evolve these agreements. We have seen this in a large radio
network telecom product where the “Definition of Done” set for all
the teams was based on that of a single team. This “Definition of
Done” was above most teams’ capabilities and resulted in a tempo-
rary slowdown in all teams because they had to learn and expand
their capabilities. One drawback was that the teams did not feel
ownership of the “Definition of Done,” so it was hard for them to
evolve it.

TRY…TEAM MANAGES EXTERNAL DEPENDENCIES

In traditional development it is common for someone outside the
team—a project manager—to manage the external dependencies for
the team so that the team can focus on their work. Surprisingly,
according to the results of long-time team researcher and MIT pro-
fessor Deborah Ancona, teams with an internal and external focus
outperform teams with solely an internal focus. She calls these
teams X-teams.

High-performance teams manage across their boundaries,
reaching out to find the information they need, understand the
context in which they work, manage the politics and power

https://less.works For Gene Gendel only, id:gene-gendel

203

struggles that surround the team initiative, get support for their
ideas, and coordinate with the myriad other groups that are key
to a team’s success [AB07].

She is not alone in this. An article published by Manchester Busi-
ness School reviewed research on cross-functional teams and their
success factors. The researchers found that “teams need to be edu-
cated to consider boundary management as an important part of
their task” [HGG00]. Harvard professor and long-time team
researcher Richard Hackman suggests establishing two outward-
looking working agreements, of which the first one is:

Members should take an active, rather than a reactive, stance
towards the environment in which the team operates, continu-
ously scanning the environment and inventing or adjusting
their performance strategies accordingly [Hackman02].

see Continuous
Integration in
companion book

What are the implication for large product development? They are
profound! First, each team needs a clear goal so that they know their
boundaries. Establishing customer-focused feature teams helps. It
results in code-focused, cross-team communication. Second, the
organization needs to make it crystal clear that the teams them-
selves are responsible for coordinating their work with other teams.
A team’s success must be measured by the whole product’s success
to prevent local optimization. Removing official coordination roles
such as project managers makes it clear to the team that coordina-
tion is their responsibility. Third, establish a whole product-wide
continuous integration system. This creates the visibility teams
need so that they can coordinate their work. The health of the prod-
uct must always be visible to everybody.

Coordination roles, such as the project manager role, tend to result
in inward-focused teams who blame their failures on the coordinat-
ing person or on the other teams. They are victims. Removing these
roles makes it crystal clear that teams are responsible for coordinat-
ing their work—managing their boundary.

The problem with coordination roles was painfully visible when we
worked with a telecom messaging product. This product used Scrum
and had ScrumMasters creating the conditions for self-organizing
teams, but they refused to remove the project manager role. The
result? The project manager became responsible for the coordination

https://less.works For Gene Gendel only, id:gene-gendel

204

8 — Teams

among teams and even for the communication to the Product Owner.
He became stressed and overloaded with work. When we told him
that his role is not needed, he laughed, and pointed out the amount
of work he was doing. He did not realize that his role attracted the
work, and that the work—the major bottleneck in the product
group— would disappear if his role was removed.

Another product group did remove project managers and let the
teams coordinate their work. One of the line managers of this group
reflected on this change and said, “Nobody ever missed them, and I
have fifty percent more ‘free’ time.”

TRY…DEDICATED TEAM MEMBERS

Avoid non-dedicated team members or “partial allocation.” A team
member who is in multiple teams does not have the same commit-
ment and shared responsibility as the other members. “Part-time
people equate to part-time commitment. Part-time commitment
leads to team failure” [Jensen96]. To the maximum amount possible,
all members are 100 percent allocated—fully dedicated to their
team. The amount of management waste that disappears is amaz-
ing. In the past, we worked with some traditional sequential life
cycle product groups and saw that the amount of time managers
were spending on “allocating resources” was non-trivial.

TRY…MULTI-SKILLED WORKERS

In Scrum, a team develops the product in priority order—based on
customer value. This results in a mismatch between the selected
Product Backlog Items and the skills of the team, especially with
long-lived dedicated teams. For example, the next iteration the team
works on Backlog Item one and two. These items require work in
ABC and ADE. However, the team consists of specialists in
ABCEFG. There is no D specialist and there is no work for the F and
G specialist (see Figure 8.4). What to do?

https://less.works For Gene Gendel only, id:gene-gendel

205

Figure 8.4 mis-
match between
Backlog Items and
skills on the team

This mismatch is common. It means team members need to step out
of their knowledge area and learn new skills. Learning multiple
skills—developing multi-skilled workers—creates flexibility and
understanding of each others job. Multi-skilled workers are common
and important in Toyota:

Cross-training…has many purposes and benefits. To have mem-
bers know as many skills as possible and to rotate among the
team helps teamwork… and helps the team make improvements
in order to raise their capabilities and improve productivity for
the company. It also helps the flexibility… If a person already
knows four or five jobs… [he] will be able to move to a new team
and set of jobs and quickly and efficiently learn to perform
them. On the other hand, if… [he] only learns one job and gets
wedded to that job, or spends years developing the seniority to
get assigned to an easy job, … [he] will not want to move,
thereby reducing flexibility [LH08].

When we talk to senior management about learning and multi-skill-
ing, they tell us they worry about efficiency. When people are learn-
ing, they are slower. Therefore, the view is that it is more efficient to
have the specialist work on the specialist things. This might make
sense from a traditional Tayloristic2 manufacturing mindset
(though Toyota uses multi-skilled workers in manufacturing to
increase efficiency), but from a product-development-as-knowledge-

2. Many old-fashioned management practices have been influenced by
Frederick Taylor’s scientific management [Taylor11].

team

specialist A
specialist B

specialist C

specialist E

specialist F
specialist G

Item 1 needing ABC

Item 2 needing ADE

...

…

Product Backlog

https://less.works For Gene Gendel only, id:gene-gendel

206

8 — Teams

creation perspective [NT95], this kind of thinking is silly. Learning
is the major activity in product development. In the long run, reduc-
ing learning reduces efficiency—not increases it. Sherman, in For-
tune Magazine:

Workers will be rewarded for knowledge and adaptability. Spe-
cialization is out, a new-style generalism is in. The most
employable people will be flexible folk who can move easily from
one function to another, integrating diverse disciplines and per-
spectives... people will need the ability not only to learn funda-
mentally new skills but also to unlearn outdated ways
[Sherman93].

Potential skill—How can this work in large-scale product develop-
ment? The key is to think about potential skill instead of actual skill.
A person has a potential skill when he can learn the skill in a rea-
sonable amount of time. For example, people with a computer sci-
ence degree can learn a new programming language within a
reasonable amount of time. Even more important, when they
already know five programming languages, then learning the sixth
is even faster. Therefore, people should be selected to teams for
potential skill rather than the teams being changed to utilize cur-
rent skills. That way, people grow in their jobs and teams are kept
together for a long time. When do you know your team is working
well and learning? One perspective:

You will know your teams are working the day an engineer
begins sounding like a marketer, or vice versa. Effective teams
operate like a small startup in that people take whatever role is
required, with little regard to function or rank. Leadership roles
will also rotate when the team is working at peak effectiveness.
The designated leader will step back and let leadership emerge
from the parties either most knowledgeable or responsible for
the issue under discussion. There is not an absence of leader-
ship, but rather an increase and balance of leadership from all
team members [Meyer93].

NSN has a central support coaching group, called Flexible Company,
for agile development. The group was created as a cross-functional
team with specialists from development, testing, quality manage-
ment, CMMI, and some other areas. Each Monday morning the

https://less.works For Gene Gendel only, id:gene-gendel

207

group held a meeting dedicated to learning. Lots of conflict—learn-
ing—happened during this meeting. The result? After a couple of
months the areas started blurring and people outside this team
could no longer recognize the original specialization of the persons.

TRY…TEAM MAKES DECISIONS

Self-organizing teams make their own decisions. However, many
people grew up in a command-and-control environment where man-
agement made decisions for them. What happens when such people
move to self-organizing teams? Endless discussion without deci-
sions. This is painful. A ScrumMaster can help the team learn how
to make decisions. There are many decision-making methods, such
as voting, consensus, and “expert decides.” A team agreement on how
to make decisions is more important than the specific decision-mak-
ing method. That said, most healthy teams apply some kind of con-
sensus decisions making method [KLTFB07]

We worked with a product group building network optimization
products; they had fallen in the not-know-how-to-make-decisions
trap. After a discussion of their current problems, it was obvious
that they knew how to solve their problems except that they could
not agree with each other on the solutions. We introduced the
Decider protocol [MM02], which is a quick and easy way of making
consensus decisions. This helped the team move forward because
finally they could agree on which solution to implement for their
problems.

Paul Nagy is a ScrumMaster in NSN Hungary. In one design meet-
ing, his team could not make a decision. The team was split exactly
fifty-fifty on the two design alternatives they had. After long discus-
sions, they desperately asked their ScrumMaster, Paul, to decide for
them. He asked the team to explain the two alternatives. Then he
grabbed his wallet, took out a coin and flipped it. “Heads… alterna-
tive one,” he said. The team looked at him angrily and said, “You did
not even think about it!” He answered, “You asked me to make the
decision.” The team never asked him to make a decision again—they
always made it themselves.

https://less.works For Gene Gendel only, id:gene-gendel

208

8 — Teams

TRY…OPEN TEAM CONFLICT

People working together creates conflict. That is not a bad thing.
But conflict needs to be resolved. Unresolved conflict has a negative
impact on team performance and creates a dysfunctional team atmo-
sphere [Lencioni02]. Resolved conflict, on the other hand, creates
learning and trust, both of which have a positive impact on perfor-
mance. Conflict is an opportunity for the team to improve their per-
formance, and hence a good thing.

Team conflict keeps a ScrumMaster busy. Without apparent conflict,
the team is in trouble. You, as ScrumMaster, need to discover why.
Are members avoiding discussion? Is something hidden? Are mem-
bers truly committed to the team? When there is conflict in the
team, a ScrumMaster observes the team to make sure they resolve
the issues. Good teams resolve their own conflict; teams who were
just formed need help. Well-working teams naturally have conflict
but can express and resolve it.

We have worked with teams all over the world, and cultural differ-
ences are fascinating to us. North-East Asia (China, Japan, and
Korea) has a very strong conflict-avoidance culture. People would
rather shut up than create “social instability.” When working with or
in these cultures, it is important to realize this and to sometimes
open the needed conflict.

EFFECTS ON ORGANIZATION

Self-organizing cross-functional teams have a major impact on the
organization. To repeat an earlier quote,

“Successful implementation of multifunctional teams requires a
fundamental redesign of the entire organization” [Meyer93].

organizational
impact p. 241

Some points are covered here, but most of the organizational impact
is discussed in the Organization chapter.

https://less.works For Gene Gendel only, id:gene-gendel

209

Effects on Organization

Avoid…Phase-based “resource allocation”

In traditional sequential life cycle development, each phase has
phase specialists. For example, requirement specialists in the
requirements phase, design specialists in the design phase, and
developers in the implementation phase. The requirement specialist
would only be on the release in the beginning—she was only allo-
cated in the requirement phase.

Scrum is not the waterfall. There are no phases. With its self-man-
aging, cross-functional, long-lived feature teams, it balances the
“resource need” over the release. The same people stay on the
release from the beginning until the end.

Avoid…Parallel releases (a symptom of imbalanced groups and
work)

In traditional development, when a requirement analyst finished
analyzing the requirements, what would she do? Would she wait for
the testing to be finished so that the next release can be started?
No…

queuing theory
p. 93

Most organizations want to achieve a high “resource utilization.”
Therefore, when the requirement analyst has nothing to do, she can
start analyzing the requirements for the next release. That way, the
‘resources’ are used ‘efficiently’ and the time-to-market is improved.
However, as seen in Queuing Theory, cycle time increases when
“resource utilization” is high in a system with variation.

Figure 8.5 parallel
release for so-called
efficient resource
usage, a local
optimization
“watching the
runner rather than
the baton”

Analysis Design Implementation Test

Analysis Design Implementation Test

Analysis Design Implementation

Release 2

Release 3

https://less.works For Gene Gendel only, id:gene-gendel

210

8 — Teams

Wishful thinking. Learning happens and requirements change.
When the product is in a later phase, the requirement analyst is
needed again. She spends her time on the previous release, thereby
delaying the next release. Parallel releases increase waste—a lot. It
causes multi-tasking, handoff, and extra processes. Ironically, the
(misunderstood) “father of the waterfall” warned about this in his
classic paper that was incorrectly used to justify waterfall develop-
ment [Royce70, Larman03].

Parallel releases caused problems for many products we worked
with. Product groups frequently decide “to do the next release with
Scrum.” Scrum requires a cross-functional team from day one. How-
ever, the testers are still busy testing the previous release, and thus
they are not included in the ‘cross-functional’ team. The result?
Even with good intentions, the product group reverts to sequential
development.

see Requirements
and Continuous
Integration in
companion

Without parallel releases, does the time-to-market degrade? The
opposite is true. The removal of the waste in product development
decreases the cycle time and therefore improves the time-to-market.
But some products have large features for which development takes
longer than one release. This is common in the telecom industry. The
trick is to split up the large feature and deliver parts of it over mul-
tiple releases. These feature parts are integrated, included, and
released, though they might be disabled from use until complete.

Avoid…Staircase branching (a symptom of imbalanced groups
and work)

Functional teams and sequential life cycle development leads to par-
allel releases. Parallel releases lead to waste—and one of these
wastes is caused by merging branches.

Traditional development scenario: When a feature in the first
release has been coded completely, the developers start working on
the second release. But, of course, release two development is not
allowed to interfere with the first release. Thus, they create a
release-two branch based on release one. The same happens with
the release three, which is created by branching from release two.

https://less.works For Gene Gendel only, id:gene-gendel

211

Effects on Organization

We have seen this branching model with many large products and
call it the “branch early” strategy. Berczuk and Appleton, in their
classic Configuration Management Patterns [BA03] call it staircase
branching (Figure 8.6).

Figure 8.6 stair-
case branching

This branching model maximizes waste. It causes developers extra
work to synchronize all changes over all branches. We have seen
products where developers spend most of their time on these syn-
chronizations. What is the alternative? Branch as late as possible.
Keep developing on the mainline and only branch off just before the
release (Figure 8.7). This requires the development to use continu-
ous integration.

Figure 8.7 main-
line development
branching model

release 1 branch

release 2 branch

release 3 branch

start of release 1

time

start of release 2 start of release 3

release 1 branch

mainline

release 2 branch

start of release 1

time

start of release 2 start of release 3

branch as late
as possible

https://less.works For Gene Gendel only, id:gene-gendel

212

8 — Teams

Avoid…Projects in product development (a symptom of imbal-
anced groups and work)

Valtech often does relatively short-term projects. A client orders a
ten-month project and when it is done, it is done. Xerox, Ericsson,
Microsoft and many other companies develop products. A product
has many releases and the code base stays around for a long time.

Traditional development with single-function teams, phase-based
“resource allocation” and staircase branching leads to using
projects for product development. Every definition of the word
project (for example, [PMBOK04]) includes its temporal nature,
resulting in a focus on short-term goals. Using projects for product
development is fraught with local optimizations—short-term over
long-term thinking.

Self-organizing, cross-functional, “resource balanced,” feature teams
work iteratively on the mainline by selecting work from a Product
Backlog: This leads to a better balance between long and short-term
goals that are needed for product development. The concept of
project does not belong in this type of product development.

One large multisite product group has completely abandoned the
concept of project in development. All feature teams get their work
from the Product Backlog, and at certain points the Product Owner
decides to release.

CONCLUSION

These different—but proven—team concepts cause major change in
organizations.

❑ Self-organizing teams require a change from command-and-
control management to manager-teacher. Instead of focusing
on what people do, management should focus on how to create
the environment for the teams to succeed.

❑ Cross-functional teams require breaking functional boundaries
and working together across the whole organization to opti-
mize delivering customer value. Instead of boxing people in

https://less.works For Gene Gendel only, id:gene-gendel

213

Effects on Organization

functional groups, management should focus on cross-func-
tional learning.

❑ Long-lived dedicated teams require giving work to existing
teams and letting them decide how to do it. Instead of consider-
ing individuals to be the unit of performance, the focus needs to
be on complete teams.

RECOMMENDED READINGS

When switching to cross-functional teams, changing management
style is difficult. Luckily, a lot of excellent material has been written
on this subject.

❑ Leading Teams, by Richard Hackman. Harvard professor Rich-
ard Hackman is a long-time team researcher. His book is cur-
rently our favorite team-related book. It has a strong focus on
helping management in their change to team-based work.

❑ Leading Self-Directed Work Teams, by Kimball Fisher. This
book has a strong focus on the change in role when one
becomes a team leader of a self-directed team.

❑ The Project Manager’s Bridge to Agility, by Michele Sliger and
Stacia Broderick. Michele and Stacia are two Scrum Trainers
and also PMI-certified PMPs. Traditional project managers
will find here an explanation of the difference in thinking from
a PMI PMBOK perspective. When reading it, please read their
“agile project manager” as ScrumMaster.

Some texts on team in general.

❑ The Wisdom of Teams, by Jon Katzenbach and Douglas Smith.
This is probably the most popular team reference and certainly
worth reading.

❑ The Five Dysfunctions of a Team, by Patrick Lencioni. Written
like a novel, it covers well the need for conflict in teams.

Cross-functional teams are described mainly in product develop-
ment literature. Some good texts:

https://less.works For Gene Gendel only, id:gene-gendel

214

8 — Teams

❑ Fast Cycle Time, by Chris Meyer. Recently republished (2007),
this is a true classic on product development and talks about
cross-functional (multifunctional) teams in detail.

❑ Revolutionizing Product Development, by Steven Wheelwright
and Kim Clark. Another classic in product development litera-
ture; has one chapter on cross-functional integration.

Some texts related to software development teams:

❑ Software for Your Head, by Jim and Michele McCarthy. Jim
and Michele spent years in ‘boot camps’ to find the most effi-
cient ways for teams to work. They documented this as a set of
protocols in this book.

❑ Peopleware, by Tom DeMarco and Tim Lister. This classic on
the importance of people in software development also has a
couple of chapters focusing on teams.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Chapter
• Try…One Product Owner and one Product Back-

log 217

• Try…Requirements areas 218

• Try…Moving whole teams between areas 223

• Transitioning to Requirement Areas 224

• Try…An all-at-once transition to requirement
areas 224

• Avoid…Development areas 224

• Tools 225

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

https://less.works For Gene Gendel only, id:gene-gendel

217

Chapter

9
REQUIREMENT AREAS

To be stupid, selfish, and have good health are three requirements for
happiness, though if stupidity is lacking, all is lost.

—Gustave Flaubert

A product with more than five or ten feature teams is difficult for

❑ teams…to work on the whole product

❑ the Product Owner…to work with so many teams

Therefore, feature teams are scaled up by grouping related teams in
a requirement area. Like a feature team, a requirement area is
customer centric; it is not an architectural sub-system. It is a set of
features that are strongly related from the customer perspective.
For example, network management and performance. The set of fea-
tures is put in an Area Backlog and managed independently from
other areas’ features. Requirement areas do not map directly to spe-
cific architectural components.

Try…One Product Owner and one Product Backlog

Delivering low-value features is a waste. Lean thinking and Scrum
focus on delivering high customer value, and that requires having
visibility to overall development. Therefore, every product—no mat-
ter its size—needs one Product Owner (PO) and one Product Backlog
(PB). But this can lead to

❑ the PO dealing with too many teams

❑ the PB becoming too large

❑ teams working on the whole system

https://less.works For Gene Gendel only, id:gene-gendel

218

9 — Requirement Areas

PO dealing with too many teams—With all the tasks the PO
needs to do, it seems impossible for him to work with more than a
couple of teams. How to solve this? One way is for teams to take over
the clarification of Product Backlog Item (PBI) work by including
subject matter experts on the team. An alternative is for someone to
assist the PO with clarification work. He joins the Product Owner
Team but does not make decisions related to prioritization. Using
these techniques, one PO can work with up to five or ten teams.
More than that will cause information overload for the PO and
makes iteration planning difficult.

PB becoming too large—Lean thinking promotes small batches
and short cycles. We suggest that each team have at least four PBIs
for each iteration that they can complete independently within that
iteration. With 50 teams this leads to a PB with 200 PBIs just for
one iteration. Prioritizing 200 PBIs per iteration is too much work
for one PO.

Teams working on the whole system—Feature teams are good,
and so is learning new parts of the system. But too much learning
without delivering value is not. This can happen when teams work
on completely unfamiliar features. They have no opportunity to spe-
cialize and this affects teams’ velocity. How to strike a balance?

TRY…REQUIREMENTS AREAS

Try…Affinity
clustering or
diagram for
finding
requirement
areas

Requirement areas are cus-
tomer-centric categories of PBIs.
Example requirement areas: for
a digital press printer, color
workflow and transaction print-
ing; for an internet portal area,
ads and news; for a telecom sys-
tem, protocols, performance, and
network management (see
Figure 9.1). Discovering the
requirement areas is surpris-
ingly easy. For example, in Berlin

we once simply wrote PBIs on cards, spread them on the floor, and

https://less.works For Gene Gendel only, id:gene-gendel

219

asked the PO and others to group them—affinity clustering into the
requirement areas.

Figure 9.1 require-
ment areas in PB

Note: An Area Backlog is a view into the PB based on the require-
ment area (Figure 9.2). Each PBI belongs to one Area Backlog, and
vice versa.

Area Backlog Items are finer-grained than PBIs. The PB contains
fewer items and they are more coarse-grained, making it manage-
able. Remember though, when a large item is split the priority of the
resulting fine-grained items is not the same. When this difference is
big, then it must be reflected in the PB so that it is visible to the PO.

Figure 9.2 Area
Backlogs

IPv6
performance 10x
HSDPA
performance stats
configuration of cells
new NMS solution
speed-up of build
improved upgrading support
stability to 99.999%

Backlog Item Requirement Area

protocols
performance
management
protocols
management
continuous integration
upgrades
management
reliability

Product Backlog

IPv6
performance 10x
HSDPA
performance stats
configuration of cells
new NMS solution
speed-up of build
improved upgrading support
stability to 99.999%

Product Backlog

performance 10x
performance 10x
...

Performance Area Backlog

IPv6
IPv6
HSDPA
...

Protocols Area Backlog

switch hardware
optimize DSP
...

simple connect
data sending
failed call
...

https://less.works For Gene Gendel only, id:gene-gendel

220

9 — Requirement Areas

The Area Backlog Items are split, clarified, and prioritized indepen-
dently of the other Area Backlog Items. This is done by a separate
person—an Area Product Owner (APO). She specializes in a cus-
tomer-centric area and acts as PO in relation to the teams for that
area (see Figure 9.3).

Figure 9.3 APO
works on Area
Backlog

see Product
Management in
companion book

Product Owner Team—The APOs and the PO together form a
team—the Product Owner Team. This team makes product-wide
prioritization decisions, but the PO always has the final decision.
Also, scope and schedule decisions stay with the PO—he decides
when to release what.

Teams are distributed over the requirement areas based on the PB
priority (see Figure 9.4). Areas are of different size in terms of effort
and so they contain a different number of teams. Too-small areas are
not a good idea because they result in many backlogs and many
APOs. The overview is lost and teams develop low-value features.
Rather, prefer a couple of small areas combined in one broader
area—increasing the flexibility within this area. On the other hand,
too-large areas are difficult for one APO. To strike a balance, con-
sider a minimum of four and a maximum of ten teams per area.

Backlog Item 1

…

...

Product Backlog
Backlog Item 1
Backlog Item 2
...

Performance

Backlog item 3
Backlog item 4
...

Protocols

Product
Owner

Area
Product
Owner

Area
Product
Owner

https://less.works For Gene Gendel only, id:gene-gendel

221

Figure 9.4 feature
teams working on
areas

Each team works in one area and focuses on related features. In
relation to the area teams, the APO acts as the PO in iteration plan-
ning and reviews. It is almost like the area is a separate product.
Every PBI fits by definition in exactly one area and therefore the
areas can work independently—from a requirement perspective.
However, from a code perspective teams need to coordinate and syn-
chronize their work with other areas. The areas are scaled-up
groups of feature teams, so all the inter-team code coordination
issues discussed in the Feature Teams chapter must be considered.

Requirement areas make it possible to

❑ have one PO and one PB

❑ specialize from a customer perspective

Backlog Item 1

…

...

Product Backlog

Backlog Items 1
Backlog Items 2
...

Performance

Backlog Item 3
Backlog Item 4
...

Protocols

feature
team

performance area feature teams

protocols area feature teams

Area
Product
Owner

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

feature
team

Area
Product
Owner

https://less.works For Gene Gendel only, id:gene-gendel

222

9 — Requirement Areas

❑ specialize on a part of the system

Have one PO and one PB—Even with hundreds of people in the
development, you can keep one PO who makes product-wide prioriti-
zations. He works with the Product Owner Team and therefore does
not need to know the details of all areas.

Several times we have helped create a single PB for a very large
product. Every time this was difficult and painful, and every time
the result was striking. Having one prioritized PB finally made
delivering low-value features truly visible. One PO discovered that
for the last two years fifty people were working on low-value items.

Specialize from customer perspective—Instead of teams spe-
cializing in a subsystem (a set of components; for example, the
“adaptations framework subsystem”) they now specialize in a cus-
tomer domain. For example, the “network management area.”
Teams share the same vocabulary with customers. They can be
directly involved in the communication and clarification of require-
ments, and this reduces handoff—one of the lean wastes.

Specialize on an architectural part of the system—This
sounds like a contradiction to what has been written above, because
requirement areas are a customer view and not an architectural
view. In other words, a requirement area does not map one-to-one
with a specific architectural subsystem. But fortunately, in most
products requirement areas do not map N-to-N either. Features in
the “color workflow” area are seldom randomly scattered across the
entire code base. Most work in one requirement area is likely to be in
a few predictable architectural subsystems. The teams specialize in
these subsystems ‘accidentally’ because most work in most area-fea-
tures is repeatedly in the same family of subsystems. This technical
specialization speeds up the development without the restriction of
component ownership as found in traditional large-scale develop-
ment (see sidebar). An analogy is “a point of gravity.” Several sub-
systems are at the center of the area. The further away from the
center, the less likely they need to be changed.

https://less.works For Gene Gendel only, id:gene-gendel

223

Try…Moving whole teams between areas

Scenario: The area where a team works used to have many high-pri-
ority items. But priorities change over time and now the items in the
area are a lower priority. Consequently, teams move between areas.
New areas are created and old areas cease to exist; areas shift
slowly over time.

The PO monitors the difference in PBI priorities between areas.
When the difference is too large, he moves a well-working, high-per-
forming feature team from one area to another. The whole team
together, as a stable long-lived team, learns the new area. This slows
a team down for some time, but they deliver higher-value features.
In the early days they will be asking for lots of help from the other
teams in that area.

Feature teams doing infrastructure work either have their own area
or, when the infrastructure area is small, are included in another
area. For example, teams may work in a combined area called “Pro-
tocols and Continuous Integration Infrastructure.”

Traditional Scaling

Traditional large product development organizes around component teams, and these are
grouped in subsystem departments. The subsystem department owns the subsystem. The
component teams and subsystem department map to the organizational hierarchy—the
subsystem department manager is usually a second-level manager. At the department
level you are likely to find an architect responsible for the subsystem architecture. He is
part of the “product architecture team.”

This way of organizing leads to more component team problems, which were discussed in
the Feature Team chapter. Development is slow, and coordination and integration between
departments is complex. Integration is awkward and needs to be carefully planned, and
the organization will automatically do sequential life cycle (“waterfall”) development.

Another common problem is the ivory tower architecture team. The subsystem architects
have lost touch with the code—the reality. The architecture team forces speculative archi-
tectures on the component teams. This is difficult because the organizational structure
are based on a speculative or out-dated technical architecture.

https://less.works For Gene Gendel only, id:gene-gendel

224

9 — Requirement Areas

TRANSITIONING TO REQUIREMENT AREAS

Changing to requirement areas is a big step. Two options are all-at-
once and gradual-via-Development Areas.

Try…An all-at-once transition to requirement areas

When transitioning all at once, you need to:

1. create requirement areas in the backlog

2. create Area Backlogs and assign APOs

3. move the feature teams in the areas

Take the skills of the existing feature teams into account when mov-
ing them in the requirement areas.

Most large changes are best done gradually. That said, we worked
with a few product groups who took a gradual approach and the
extra trouble was not worth it. Therefore…

Avoid…Development areas

Some product groups took an intermediate step in the change to
requirement areas by combining traditional scaling (see sidebar)
with feature teams. They created the areas based on the subsystem
department’s architectural components—called Development
Areas—with what they called “development area feature teams”
(these were not real feature teams).

It turned out that the Development Areas structure did not make
the change easier. They had and continue to have component-team
problems such as

❑ PBIs need to be split based on architectural components before
they are added to the Area Backlog

❑ work on the Area Backlog Items needs to be coordinated and
synchronized

https://less.works For Gene Gendel only, id:gene-gendel

225

Tools

❑ PBI analysis, in which the item is split and put in the Area
Backlog, needs to be done before the development iteration.

❑ PBI testing needs to be done separately from the development
areas, in separate testing teams

These “development area feature teams” are actually “multi-compo-
nent” teams that span more components but still do not do true end-
to-end customer features. It is a step in the right direction but does
not go all the way.

Each of the above component-team problems was ‘solved’ by adding
a role or team to the organization: architect, feature coordinator,
project manager, or system-testing team. These extra roles—plus
delivering value slower with more hand off and more sequential
development—are costs of a more gradual change.

One product group moved gradually from development areas to
requirement areas by blurring the boundaries between the develop-
ment areas. When a PBI covered multiple development areas, the
product group would find out which development area was most
affected and then move the whole item to that Area Backlog. When
the priorities were unbalanced, they would expand the responsibil-
ity of an area so they could work on high-priority items.

Avoid development areas unless it is impossible to move directly to
requirement areas. The drawbacks quickly outweigh the advantage
of a gradual change.

TOOLS

What tool supports managing large backlogs? Use a simple spread-
sheet. Not because a spreadsheet is so good; just because it is better
than the alternatives.

We have seen a PB of a multisite product in three countries with
four hundred people managed with spreadsheets. In this product,
there were inconsistencies in the backlogs, so the head of develop-
ment asked the PO, “Would buying a new tool help with the back-
log?” The PO responded insightfully, “I don’t think the tool is the
problem.” When managing backlogs, the tool is seldom the problem.

https://less.works For Gene Gendel only, id:gene-gendel

226

9 — Requirement Areas

Avoid these tools:

❑ traditional requirement management tools

❑ tools optimized for reporting

Avoid…
Traditional
requirement
management
tools

Traditional requirement management tools—These tools are
often database-based. This makes it hard to have one forced-ranked
list as in a PB. A common solution is to have a priority column. But
this does not work well and leads to an increase in effort needed to
maintain the backlog.

Avoid…Tools
optimized for
reporting

Tools optimized for reporting—Many tool vendors understand
that it is senior management who decides whether or not to buy a
tool. Therefore, many tools—including most “agile tools”—are opti-
mized for reporting rather than for real value work. Developers or
POs find the tool awkward and report that it slows them down, but
senior management see the reports they want—an obvious sub-opti-
mization. Notice that such tools may inhibit the lean Go See prac-
tice.

CONCLUSION

Requirement areas provide a consistent way to scale up Scrum and
feature teams for very large product development. They are also a
major organizational change. There are ways of moving to require-
ment areas gradually, but avoid them since their drawbacks out-
weigh their advantages.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Purpose and Strategy 233

• Task 234

• Structure 241

• Processes 255

• Rewards 267

• People 275

https://less.works For Gene Gendel only, id:gene-gendel

229

Chapter

10
ORGANIZATION

Most organizations have what appear to be suicidal tendencies.
—Philip Crosby

The subject of the organization is large, likewise this chapter.
Yet it is a fraction of what needs to be explored. The recom-
mended readings are relatively extensive to encourage study.

self-managing
cross-functional
teams p. 194

We have regularly been asked, “Since Scrum is a development
method, why would it lead to organizational change?” The answer is
that Scrum contains concepts and practices that challenge tradi-
tional organizational assumptions. Self-management and cross-
functionality of teams are high-impact examples—though neither
idea originates from Scrum. They have been applied in different con-
texts for decades and their impact on organizations is widely publi-
cized.

This chapter suggests deep and challenging changes in organiza-
tional design. These changes relate to assumptions behind organiza-
tions and how they should act. Adjusting organizational structure is
relatively easy, but changing mindset takes time, discussion, intro-
spection, and learning. Large organizations are…large. They employ
thousands of people, all with ideas about organizations—changing
organizational assumptions means changing people’s assumptions,
one at a time. This is a slow process, years in the making. Bear this
in mind when reading this chapter. We know some topics seem far
from reality in most organizations, but a vision directs the gradual
change. Be patient and good humored.

We who are introducing large-scale Scrum are not alone. The
changes in organizational assumptions are happening in many com-
panies and industries. Companies adopt new structures and differ-
ent management styles to compete in the new knowledge and

https://less.works For Gene Gendel only, id:gene-gendel

230

10 — Organization

innovation-driven world. Management guru Gary Hamel in The
Future of Management put it like this:

These new realities call for new organizational and managerial
capabilities. To thrive in an increasingly disruptive world, com-
panies must become as strategically adaptable as they are oper-
ationally efficient. To safeguard their margins, they must
become gushers of rule-breaking innovation. And if they’re
going to out-invent and outthink a growing mob of upstarts,
they must learn how to inspire their employees to give the very
best of themselves every day. [Hamel07]

Top Ten Organizational Impediments

To ensure that we highlighted important topics, we asked a group of
agile development experts working in and with large companies
about the most challenging organizational impediments. Mike Cohn,
author of two popular agile development books, and Clinton Keith, a
Scrum trainer specializing in game development, both replied with a
reference to their article “How to Fail with Agile” [CK08]. Their 20-
point list of impediments focuses more on the team level than the
organizational level, but it’s worth reading. We aggregated the other
responses in the top ten organizational impediments.

10. Jeff Sutherland, co-creator of Scrum, considers the failure to
remove organizational impediments the main obstacle in large
organizations. A common reason for not removing impediments is
“That’s the way we’ve always done business.” We also frequently
hear, “We won’t change because we invested so much in this.”1

9. Peter Alfvin, an experienced development manager involved with
introducing lean principles at Xerox, and Petri Haapio, head of the
agile coaching department at Reaktor Innovations, both mention
centralized departments looking for cost ‘savings’ and ‘syn-
ergy’ that leads to a local optimization as an impediment. Their
examples included a centralized tool department forcing one tool,
leading to slower development caused by the wrong tool for a job;
furniture police forcing cubicles to standardize and minimize cost,

1. The investment includes both money and reputations.

https://less.works For Gene Gendel only, id:gene-gendel

231

leading to inefficient workplaces; IT department limiting video con-
ferencing to lower network traffic, leading to less communication.

8. Sami Lilja, global coordinator of agile development activities at
Nokia Siemens Networks, noticed that some organizations con-
sider learning a waste of time and money. He believes this opin-
ion is a major impediment because those organizations educate and
coach people only “when there is time for it.” This view results in a
vicious fire fighting cycle—mistakes made because of constricted
developer skills, hasty emergency repairs, management unwilling-
ness to allot time to analyze earlier mistakes, more mistakes
made…

7. Larry Cai, a specialist at Ericsson Shanghai, mentions func-
tional organizations as one of the largest impediments. They cre-
ate barriers for communication and abet finger-pointing among
units.

6. Esther Derby, consultant, coach, expert facilitator, and author of
two books related to organizational learning, considers systems
that foster local optimization over global optimization a
major barrier. She gave several examples, including Management by
Objectives (MBO) and budgeting systems.

5. Mike Bria, a former agile coach at Siemens Medical Systems,
mentioned “do-it-yourself home improvement” as an impediment.
He highlighted the problem attitude of “we know how” after people
read one or two books. In other words, the problem of failure to
learn from outside expertise. The same is mentioned by Lasse
Koskela, the author of Test-Driven—unwillingness to look outside
the organization.

4. A. (name removed on request), a Scrum trainer at one of the larg-
est e-commerce sites, mentioned individual performance evalua-
tion and rewarding as a major obstacle. They frustrate developers
and managers, hinder team performance, and foster command-and-
control management.

3. Lü Yi, a Scrum trainer and department manager of a large devel-
opment group in Nokia Siemens Networks in Hangzhou, considers
“commitment games” and unrealistic promises to be the main
organizational obstacle. They lead to shortcuts, continuous fire

https://less.works For Gene Gendel only, id:gene-gendel

232

10 — Organization

fighting, and legacy code. We cover this topic in more detail in the
Legacy Code chapter of the companion book.

2. Diana Larsen, expert facilitator and, together with Esther Derby,
the author of Agile Retrospectives, simply stated, “Assuming it’s all
about developers.” We have seen this frequently—people who do
not think they need to change because agile and lean involves only
developers. They ask, “Why would it affect me?”

1. Almost everybody cited “silver bullet thinking and superfi-
cial adoption” as a major impediment. Dave Thomas, founder of
OTI, large-scale lean product development consultant, and manag-
ing director of ObjectMentor, mentioned the misunderstanding of
equating agility and productivity, and the lack of educated execu-
tives. This leads to the belief that meaningful problems can be
solved by saying “we do agile” and going through the motions, with
no deep understanding or change by the leadership team—cargo
cult process adoption. Ironically, this leads to no real change and no
real result, and the eventual predictable abandonment of lean prin-
ciples or agile development because “that doesn’t work.” A related
impediment is the mistaken belief that improvement in large prod-
uct groups would take nothing less than several years, given the
level of institutionalized problems.

The remainder of the chapter explores some of these organizational
obstacles and what you can do about them. It is structured around
the “Star Model”2 created by organizational design expert Jay Gal-
braith [Galbraith93]. The strategy of an organization drives the five
other elements of the model: task, people, rewards, processes, and
structure. The better these elements are aligned, the larger the
organizational capability (see Figure 10.1).

2. Since 1994, Galbraith made minor updates to the Star Model. We
chose the older version since it structured the chapter well.

https://less.works For Gene Gendel only, id:gene-gendel

233

Purpose and Strategy

Figure 10.1 Star
Model for
organizational
design

This model explicates why adopting Scrum requires change in the
whole organization. Scrum directly alters the processes and struc-
ture elements. The organizational capability then decreases unless
the other elements in the model are adjusted accordingly.

PURPOSE AND STRATEGY

Organizations are created with a goal—
a purpose. For example, Toyota’s goal is
to “strive for cleaner and safer car mak-
ing, and work to make the earth a better
place to live” [Toyota08]. Profit and mar-
ket share are needed for reaching this
broader goal. The founder of the Visa
organization, Dee Hock, stressed the
importance of a goal and wrote that a

“purpose is a clear, simple statement of intent that identifies and
binds the community together as worthy of pursuit.” Their vision:
Digital money [Hock99].

But not any goal will do for the enterprise that wants to endure and
attract great people. According to quality thought-leader W.
Edwards Deming, the goal of an organization should not merely be

Strategy Task

People

Rewards Processes

Structure

Strategy Task

People

Rewards Processes

Structure

https://less.works For Gene Gendel only, id:gene-gendel

234

10 — Organization

something short-sighted or monetary, such as maximizing next
year’s profit; it needs to be long term and deeply purposeful. The
first of Deming’s famous 14 points states that companies should
“create consistency of purpose toward improvement of product and
service, with the aim to become competitive and to stay in business,
and to provide jobs” [Deming82]. Less successful companies define
their goal only in terms of market share, profit, or shareholder
value. Reasonable pedestrian aspirations, but such goals rarely
inspire people.

A strategy describes how to reach that goal. It includes the markets
the company wants to be in and the type of products it wants to offer.
Also how the company expects to get there. It might include compet-
ing on the basis of time or agility, continuous improvement, or per-
fection. The interest in Scrum flows directly from a strategy, and
this drives the organizational elements in the Star Model.

TASK

feature teams
p. 149

This section examines designing the
work. In Scrum, teams finish complete
customer-centric Product Backlog items
each iteration. This has a big impact on
the organization of work, as discussed in
earlier chapters. Here, features and the
feature team structure are explored from
a different perspective—that of work
redesign.

Try…Work redesign

Is the potential of people at work fully realized? During the sixties
and seventies, this was a frequently asked question. Organizations
had grown to mammoth proportions, and because of specialization,
jobs became monotonous. It was common to hear statements such as
“it is clearly a waste of human resources to place bright people in bad
jobs because we fail to recognize their potential” [O’Toole77], or “as
division of labor increases in complexity in large-scale organizations,
individual roles may seem to lack organic connection with the whole

Strategy Task

People

Rewards Processes

Structure

https://less.works For Gene Gendel only, id:gene-gendel

235

Task

structure of roles, and the result is that the employee may lack under-
standing of the coordinated activity and a sense of purpose in his
work” [Blaumer64].

This led to the “Work Redesign” movement. Its goal? Make jobs more
challenging by enlarging (enriching) them—by broadening responsi-
bilities. How? By redesigning the work so that it maximizes the
skills of the people and the intrinsic motivations [HO80].

In a seminal book from the 1980s, Work Redesign, Harvard professor
Richard Hackman envisioned two alternative futures.

Hackman sadly predicted alternative 2 as the likely future. We
think he was right. Consider today’s resource management func-
tions, over-specialization, the focus on trying to ‘maximize’ resource
utilization, and the increasing emphasize on bribes or rewards to
influence workers.

But work has changed. More automation did lead to increased
responsibilities. And perhaps the biggest change is the mass emer-
gence of knowledge workers.

Did these changes make the work more challenging? No. In the 21st

century, it is still common to find statements such as “Despite all our
gains in technology, product innovations and world markets, most
people are not thriving in the organizations they work for. They are
neither fulfilled nor excited. They are frustrated… Can you imagine
the personal and organizational cost of failure to fully engage the

Alternative 1 Alternative 2

• job responsibilities broaden

• decision making is delegated to
the worker

• focus on intrinsic motivation
increases

• self-managing teams are common-
place

• fewer levels of management—
leaner organizations

• jobs become more specialized

• use of command-and-control man-
agement increases as information
technology increases information

• focus on extrinsic rewards such as
incentives

• focus on individual efficiency

• more supervision

https://less.works For Gene Gendel only, id:gene-gendel

236

10 — Organization

passion, talent and intelligence of the workforce” [Covey04], or “Bil-
lions of people show up for work every day, but way too many are
sleepwalking. The result: organizations that systematically under-
perform their potential” [Hamel07]. Nothing has changed.

We are at the same crossroads as 30 years ago. We have the choice
between the same two alternative futures. However, in today’s fast-
changing, global economy, alternative 1 is the only one that allows
our organizations to survive.

The only sustainable way to compete in the “flat world”
[Friedman06] is to realize and utilize the full potential of all employ-
ees. If you don’t, your competitor in Singapore will. How? The princi-
ples of work redesign still apply. Restructure today’s knowledge work
so that it is meaningful and encourages growth and learning,
instead of putting ‘resources’ in a specialized single-function box.

The five work design (or redesign) principles are

❑ combine tasks

❑ form natural work units

❑ establish client relationships

❑ vertically load the job (empowerment)

❑ open feedback channels

These principles, first elucidated in the 1980s, are still relevant to
knowledge workers today and in the future. Use them to structure
work. Organizing in feature teams instead of component teams is
one example of how you can apply work redesign principles.

Try…Distinguish between products and projects

parallel releases
p. 209

Most product development is organized as projects—every new prod-
uct release is a new project. Organizations manage development by
managing projects with tools such as a project management office or
project portfolio management. Each project is led by a project man-
ager, has its own management structure, and has clear goals about
what content must be finished when. Projects are managed indepen-
dently of one another. Organizing product development in this

https://less.works For Gene Gendel only, id:gene-gendel

237

Task

project-oriented manner had certain advantages when a traditional
sequential life cycle was used.

see Legacy Code
in companion
book

Should the notion of projects really be the hammer that changes the
whole world to nails? In fact, no. It is beneficial to distinguish
between product and project development.

Making the explicit distinction between project and product is not
new. In the classic book on matrix organizations, the authors point
out, “Because the temporary nature of program or project manage-
ment—completing a task within cost, schedule, and performance tar-
gets—the objectives of the project manager is to go out of business.
Product management is oriented in an almost opposite direction. It
aims to take an opportunity—an idea, a service, a technology, a prod-

Product Development Project Development

people work on the product over
multiple releases

at the end of the release, people
work on a different project

development continues until not
profitable, preempted by new
technology (or disrupted
[Christensen03, Levitt60]) or all
valuable features are imple-
mented

end of project is clear (usually,
after one release)

content decisions are “now or
next release?”

content decisions are “in or out?”

different releases are not inde-
pendent

projects are independent

short-term-view decisions (local
optimizations) lead to long-term
problems such as legacy code

making short-term-view deci-
sions are not (apparently) harm-
ful

same code base is used over
multiple releases

every project has a different
code base. (Though parts might
be shared, that leads to “prod-
uct-like” problems)

https://less.works For Gene Gendel only, id:gene-gendel

238

10 — Organization

uct, or a brand—and make it as profitable, extensive and long-lived
as possible” [DL77].

The distinction between product and project development is not
always clear. For example, after you have delivered the project, your
client asks for new features in a new release. This way, the project
gradually changes to a product. Having shared components among
projects is another common example in which the differentiation
between product and project is unclear. The shared components are
the organization’s product. Still, making the distinction is worth-
while because…

Avoid…Projects in product development

Try…Continuous
product
development

This tip expands the prior one and relates to one made in the Teams
chapter. Expressed positively, this tip is Try…Continuous product
development.

The work in different specialization areas levels out as a result of
Scrum. For example, whereas previously you needed testing at the
end of a release cycle or project, now testing is needed evenly
throughout the life of the product, day after day, iteration after iter-
ation. This removes one important reason for using projects in prod-
uct development—“resource management.” Before, you had to find
new work for a requirement specialist after the requirements phase
finished, but now he can stay on the product—in a feature team—
doing leveled work each iteration until the product is retired. There
is no need to move people between projects; there are long-lived
teams for the product.

continuous
product
development in
Scrum p. 322

see Planning in
companion

An alternative way of organizing product development work—the
Scrum model—is to think of it as continuous flow rather than as a
series of long projects. This is continuous product development.
The teams add value to the product iteration by iteration, and when
enough value is added to warrant a release, the Product Owner sim-
ply releases the product. From the teams’ perspective, the develop-
ment just continues…forever. In the perfection vision of Scrum, in
which it is possible to release at the end of any iteration, no extraor-
dinary shift is involved in releasing on Friday and starting a new
release on Monday. It’s just the next iteration. Even if lingering
finalization work is done in a Release Sprint, this is handled by the

https://less.works For Gene Gendel only, id:gene-gendel

239

Task

Product Owner and the stable teams within the normal Scrum
rhythm; no special overhead is required.

There is no project anymore—nor a project manager or other person
responsible for just one release. There is only the stable Product
Owner responsible for each release as the years pass. The manage-
ment structure for the product group does not change between
releases, it stays the same…‘forever.’ See Figure 10.2.

Figure 10.2 product
development in a
continuous flow
without ‘projects’

see Planning in
companion

This continuous product development is made possible by an even
distribution of planning over the release—continuous product back-
log refinement or rolling wave planning—instead of large upfront
release planning meetings. The main tool for this is the Product
Backlog that stays up-to-date at all times and gradually is refined.
Using the Product Backlog, the Product Owner is always able to
answer the critical questions, “What is the next release date?” and
“What is the release content?”

Try…Give projects to existing teams

long-lived teams
p. 199

The Teams chapter explores the concept of long-lived teams—keep
teams together forever. In product development, it is not hard to
imagine how that works. But what about project-oriented work?3

release N release N+1

repeat

cross-functional
Scrum feature
teams do all work
so that product
can potentially be
released each
iteration

a 2-4
week

iteration

true
release

potential
release

potential
release

continuous product development eliminates projects in
product development; there is simply an �endless� series of
iterations, each of which is similar in activities and each of
which ends in a potentially shippable product increment

Product
Backlog

https://less.works For Gene Gendel only, id:gene-gendel

240

10 — Organization

Isn’t the short-lived team disbanded and distributed when the
project finished? There is an alternative.

Most organizations use individuals as the unit for allocating work.
An alternative that fits well to Scrum is to use teams as the “unit of
performance.” Thus, when a new project is started, it is staffed with
an existing team instead of separate individuals.

The skills of the existing team will never match the skills needed in
the new project. This skill mismatch might slow down the start of
the project, but in the long run, the performance gained by long-
lived teams balances out this slowdown. Using teams as the perfor-
mance unit also creates an environment in which people—all the
time—are continuously facing challenges to learn and acquire new
skills.

There are situations in which difficult or tedious-to-learn, special-
ized new knowledge is needed quickly. For example, perhaps there is
a fixed-date contractual deadline in eight weeks. The stable team
already knows some things about the domain and technology, but
not all. In this case, consider inviting one or more outside specialists
(probably from other teams) to physically co-locate with the team.

Avoid…Resource
pools with
resource
management

This stable-team model is fundamentally different from the resource
pool and resource management of some traditional organizations.

organizational
processes p. 255

What if various projects are so small that each would only consume
a few days of an available team? This is discussed in the Processes
section.

3. We mean true one-time project work; not product work being inap-
propriately treated as sets of projects.

https://less.works For Gene Gendel only, id:gene-gendel

241

Structure

STRUCTURE

The structure section describes how
Scrum influences the organizational
structure. At the heart of Scrum are self-
managing cross-functional teams. The
impact of adopting teams on organiza-
tional structure and roles is extensively
reported. For example, one report on
team-based organizational design states,
“Teams violate the logic of the design of a
bureaucratic, hierarchical, segmented
organization” [MCM95].

Try…Keep the organization as flat as possible

The principle behind self-managing teams is to give teams more
management responsibility. The team becomes responsible for doing
and managing the work and work process.

It ought to be obvious, though painful, that you therefore need fewer
managers. Not only that, the role of management changes signifi-
cantly from managing the work to creating the conditions for teams
to thrive—from command-and-control to manager-teacher.

Removing people from management roles is hard work. Organiza-
tional systems (such as HR policies) change and the remaining man-
agers need education and coaching. The product groups we have
worked with have underestimated the amount of coaching that is
needed.

How many employees report to one manager? Late Japanese quality
expert Kaoru Ishikawa thought one hundred was about right. “Man
is by nature good… Through education and training, subordinates
become reliable, and the span of control becomes larger and larger.
My ideal is to have one supervisor for every one hundred workers”
[Ishikawa85].

When is your organization ready for fewer managers?

Strategy Task

People

Rewards Processes

Structure

https://less.works For Gene Gendel only, id:gene-gendel

242

10 — Organization

You cannot simply tell the team to take more responsibility and
expect them to do so. They will have to learn how. A chief architect of
a team starting their third Sprint once told us, “We had forgotten
what the word responsibility means. Before Scrum, we just did the
tasks assigned to us but we never really took responsibility for
them.”

Try…Make the
organization
slightly flatter
than it can
handle.

Most people “grew up” in traditional command-and-control organi-
zations. Therefore, it is hard for them to take more responsibility
while their traditional manager is around. Similarly, it is hard for
managers to change their role toward their earlier subordinates
[Fisher99]. You can break this deadlock by making the organization
slightly flatter than it can handle. As an example, “One organization
we studied discovered that it could not take a gradual approach to
changing management roles. Assessment data revealed that as long
as teams had managers, they simply did not become self-managing.
This company then eliminated two-thirds of the management struc-
ture and found that self-management emerged quickly” [MCM95].

We worked with one product group that used natural attrition to
shrink the overhead. The change to Scrum made some managers
uncomfortable and they left. Their positions were not refilled but
removed by expanding the responsibilities of the current managers.

Try…Invite
managers to join
teams to do
development
work

What to do with a manager surplus? Before managers became man-
agers, they often did real product work and most have not yet lost
that capability. Therefore, you can ask if they would like to join a
development team. Inviting people to leave management roles gives
a strong and needed message that not all career paths should lead to
becoming a manager, and reinforces the lean thinking vision of most
valuing the hands-on value work. We worked with one person who,
after five years in a management role, moved back to technical prod-
uct work. He has become a well-respected technical expert who con-
tributes and innovates faster than many others.

queuing theory
and small
batches p. 100

We worked at one large embedded-systems organization that clearly
had more managers than needed. The reason? Performance apprais-
als. Human Resources (HR) required two performance appraisals
per year at fixed times—a large batch indeed. The effect of this was
that managers did nothing but review performance and resulting
paperwork for two full months a year. An inefficient system. Start
improving it by helping HR people learn about queuing theory and

https://less.works For Gene Gendel only, id:gene-gendel

243

Structure

small batches. A larger can of worms in this situation is the very
notion of performance appraisals; we open the lid on that can in the
Rewards section.

Avoid…Functional units

organizational
impediment #7:
“functional
organizations”
p. 230

The traditional way of structuring organizations is around func-
tional specializations such as test, development, architecture, and
product marketing—functional units. One driving motive for this is
to provide functional learning and related professional development.
However, there is usually little time for learning since people are
always working on products; the intent is not fulfilled.

Functional units have drawbacks. They lead to local optimization of
functions. Also, the perspective of functional specialists is frequently
limited, with miscommunication and misunderstanding as a result.
The drawbacks of functional organizations outweigh their benefits.

A funny (well, to us) example of a local optimization occurred in a
large product group organized around functional units. Each of the
functional units set improvement targets for themselves. The man-
ager of the testing unit suggested that they could improve the test-
ing by…testing later. He said (to paraphrase), “By delaying testing
until the end, the software will be in a better shape and the testing
will take less time.” We guess we do not have to deconstruct on how
many levels this is an insanely bad idea.

Deming recommended, “Break down barriers between departments.
People in research, design, sales, and production must work as a
team, to foresee problems of production and in use that may be
encountered with the product or service” [Deming82]. Thus, an alter-
native to functional organizations is to…

Try…Scrum teams as organizational unit

In several organizations, we have been able to influence the organi-
zational design. Based on these experiences, we can give a concrete
example of an organizational structure. However, none of the prod-
uct groups we work with have implemented exactly this structure,
although our clients reading this section will find it familiar. The

https://less.works For Gene Gendel only, id:gene-gendel

244

10 — Organization

example is a combination of the different structures we have
encountered. Most product groups focus on development; therefore,
the focus of this section is on development structure rather than on
sales, marketing, and finance—topics for some future material.

Figure 10.3 product
group structure with
Scrum Teams and
requirement areas

The example organizational structure (Figure 10.3) has four units:

❑ Requirement Area unit

❑ ‘Undone’ unit

❑ Service and support unit

❑ Product Owner Team

These units are discussed in detail below.

Try…Organize around requirement areas

requirement
areas p. 217

Structure the product group primarily by requirement areas and
related Scrum feature teams—a Requirement Area unit. Each
unit has a requirement area manager whom the feature teams
“report to.” His (or her) prime role is to support new feature teams
that join the area. He will probably also have work stemming from
organizational policies such as budgeting, performance appraisals,
and so forth.

Product

Service
&

Support

Product
Owner
Team

Require-
ment
Area

Require-
ment
Area

Undone
Organ-
ization

Scrum
Feature
Team

Scrum
Feature
Team

Scrum
Feature
Team

https://less.works For Gene Gendel only, id:gene-gendel

245

Structure

The main advantage of this structure is that it keeps the organiza-
tion simple and flat. People are not distracted by organizational
complexity, policies, and politics. It increases the focus on the real
product work. And since a Requirement Area represents a large
domain of features relevant to customers (such as transaction print-
ing), the product group is organized toward the customer perspective,
not by an internal perspective (such as architectural components or
functions).

Try…Keep the
formal
organization
flexible

A ‘disadvantage’ of this structure is that there are changes in
Requirement Areas over time—not every month, but non-trivially.
What kind?

❑ teams move from a less to a more valuable area

❑ an area ceases to exist—there are no more high-value items

❑ a new area is created (3D printing, …)

These changes in the Requirement Areas need to be reflected in the
formal organization. This by itself is not a problem. However, some
HR practices or IT systems make frequent changes in the organiza-
tion difficult, or the Requirement Area manager does not want a
reduction in the number of people that report to her—a reduction in
status. These impediments need to be dealt with.

Try…Eliminating the ‘Undone’ unit by eliminating ‘Undone’ work

see “Definition of
Done” in
Planning in
companion

The goal of a group using Scrum is to create a Potentially Shippable
Product Increment each iteration—there is no more work to be done.
The Product Owner can then decide whether or not to ship it. This is
trivial for a one-team web application. But for organizations with
large embedded systems with piles of legacy code, being able to pro-
duce a product increment each new iteration that is honestly poten-
tially shippable takes years—if not decades—of continuous
improvement. Even though reaching this goal is frequently deemed
impossible, it should still be the goal of organizations with lots of
legacy code, and the current “Definition of Done” is the measure of
progress to this perfection challenge. By improving the skill of their
people, automating their tests, improving their build times, cleaning
their legacy, and other improvement activities, those organizations

https://less.works For Gene Gendel only, id:gene-gendel

246

10 — Organization

can gradually expand the “Definition of Done” until it is honestly
potentially shippable.4

‘Undone’ work is the activities that need to be performed before an
iteration starts, or between the end of the iteration and the actual
deployment to production use (‘release’). This work is unfortunately
often not performed by the Scrum teams and instead undertaken by
a separate organizational unit—the ‘Undone’ unit. Typical activi-
ties undertaken by this unit are higher-level testing, architecture
documentation, customer documentation, and so forth.

In lean thinking terms, this unit specializes in the waste of partially
done work. They create it or consume and finish it—the WIP unit.

Over time, the group improves their ways of working. As they do,
their “Definition of Done” expands, and work and people move from
the ‘Undone’ unit into the Requirement Area units. The improve-
ment goal of delivering a Potentially Shippable Product Increment
results in gradually eliminating the ‘Undone’ unit—the goal of the
‘Undone’ unit should be to remove themselves.

Try…Service and support unit

Scrum teams are responsible for all work needed to create a Poten-
tially Shippable Product Increment. Sometimes it is useful to move
supporting work to a separate unit. Beware this decision, since it
can lead to over-specialization and bottlenecks. Such a unit can offer
support for

❑ maintaining a shared resource

❑ tools and infrastructure

❑ facilitation and coaching

4. “Is it all honestly done?”… “Oh yeah, definitely!”… “Great, let’s ship
it tomorrow.”… “Well, actually there is just one tiny thing left…”

https://less.works For Gene Gendel only, id:gene-gendel

247

Structure

Maintaining a Shared Resource

A shared resource does not mean people but things. Large embedded
systems have special testing equipment that must be shared among
the teams: for example, an expensive telecom network element or
production digital printer press.

Each Scrum team reserves the testing equipment when it is needed.
And even when there is a lab support group, the Scrum team is still
responsible for keeping the test environment clean.

queuing theory
p. 93

A test lab support group can boost the productive use of these scarce
shared resources by, for example, applying queuing theory to reduce
the average wait time for the equipment.

Tools and Infrastructure

impediment #9
“central
organizations
leading to local
optimizations”

Tools and infrastructure support for tools are difficult to get right.
We all have the experience of being forced to use bad tools or being
unable to install our favorite profiler because it requires administra-
tor rights. On the other hand, doing all tool and infrastructure activ-
ities within the Scrum teams might be wasteful.

An example of a tools support role is a ‘toolsmith’ who keeps himself
up-to-date with the latest tools information. He can help you find a
tool, or perhaps ‘build’ and install some open source server applica-
tion.

Try…Internal
open source for
internal tools

A tool support group, if it exists, should support, not decide, the tools
used. Conforming to a central-tool-group-approved list will locally
optimize for conformance to a tool budget or other narrow objective,
while sub-optimizing value throughput or cycle time. Such lists
often reflect the limited insight of tool ‘specialists’ speculating in an
ivory tower. Instead, provide support for the tools that the develop-
ers choose to use—the tools that they find effective. If you have
internally developed tools, make sure that the source code is accessi-
ble to the people who use the tool so that they can improve it them-
selves when needed—internal open source.

Another common example of infrastructure support is a Software
Configuration Management (SCM) specialist. He maintains the

https://less.works For Gene Gendel only, id:gene-gendel

248

10 — Organization

SCM system, creates new repositories, and facilitates the creation of
standards. SCM specialists are trouble when they control the use of
the SCM system. Their role is to facilitate the creation of SCM
agreements, not to decide on them—the feature teams decide what
is most efficient.

Facilitation and Coaching

impediment #8
“considering
learning a waste”

Facilitation support is a valuable resource to Scrum teams. Experi-
enced and skilled facilitators can improve meetings and team com-
munication practices. Such a facilitator should pair with the team’s
ScrumMaster so that the ScrumMaster learns advanced facilitation
techniques and becomes more efficient in her work.

Facilitation support for Communities of Practice (CoP) is also indis-
pensable for their success. This support includes setting up forums
or discussion groups, facilitating meetings or gatherings, and help-
ing the CoP coordinator find ways to grow the community.

Practices such as test-driven development require a lot of coach-
ing—it is a major change in development style and can only be done
with pair programming coaches. These coaches can be located in the
support organization, joining different teams each Sprint.

Caution!

impediment #9
“centralized
organizations
leading to local
optimization”

Support organizations should support, not control. All too often,
they optimize their work and make decisions that should be made by
people who work on products. By taking this responsibility away
from Scrum teams, the support mutates into a burden. Make sure to
focus on support!

Try…Product Owner Team as organizational unit

Product Owner
Team p. 220; see
Product
Management in
companion

The Product Owner Team is composed of 1) the Product Owner, 2 the
Area Product Owners, and 3) perhaps others who clarify the require-
ments for teams (and, for some reason, are not in a team). The Prod-
uct Owner team members make cost, schedule, content decisions for
the whole product. Plus, they maintain the Product Backlog and
other artifacts needed for communicating the product’s vision.

https://less.works For Gene Gendel only, id:gene-gendel

249

Structure

Avoid…Project Management Office

impediment #9
“centralized
organizations
leads to local
optimization”

Some organizations have a Project Management Office (PMO) or a
Program Management Office (PMO). Their activities “range from
providing project management support functions to actually being
responsible for the direct management of projects” [PMBOK04]. By
looking at this description, it ought to be obvious that the PMO is no
longer needed (at least, not for development work) when Scrum is
adopted. Most project management responsibilities are moved into
the teams. Scrum support comes from the team of hands-on agile
coaches (who are not managers) in the service and support organiza-
tion. Responsibilities of releases, metrics, and other schedule- or
content-related issues move to the Product Owner Team.

Avoid…So-called
Agile PMO

Most agile literature recognizes that a traditional PMO is not
needed in an agile and lean development organization. Unfortu-
nately, not all of it concludes that the PMO role should be removed,
but instead recommends that it be changed to…something else.
Changed how? Some suggest that the “agile PMO” would provide
training and support for agile projects [SB08, TN07]. It gets worse:
One author even suggested that the “agile PMO” “most likely needs
to be expanded [more people] from its traditional model” [Kreb08].

Changing responsibilities of an existing organizational unit is argu-
ably more ‘safe’ than removing it. But is it a good idea?

Imagine you work as a ‘programmer.’ The predictions about artificial
intelligence and automatic programming have finally come true—
programming is no longer needed. Does it make sense to keep the
‘programmer’ job title but change the responsibilities? That would
be illogical. When a role does not include programming, why call it
programmer?

Naturally, the same applies to the PMO. When Scrum has been
adopted and the PMO does not—or at least, should not—do project-
management-related things, then calling this unit a PMO is illogi-
cal. It is interesting to examine why this change is difficult for orga-
nizations.

Likewise for “project manager.” When a role does not include project
management, do not call it project manager. We have seen good
Scrum adoptions where the organization kept calling a true Scrum-

https://less.works For Gene Gendel only, id:gene-gendel

250

10 — Organization

Master a “project manager” even when the team and Product Owner
took over all project management responsibilities. Perhaps people do
not like the name ‘ScrumMaster’; call it a team leader—a common
term in self-managing team literature [Fisher99, Hackman02].

Keeping a title but changing the responsibilities is a sure way to cre-
ate miscommunication, misunderstanding, and the recognition by
people that there is some dysfunction. Remove the PMO.

Avoid…Fake ScrumMasters

impediment #1
“silver bullet
thinking”

The preceding tip mentioned introducing real ScrumMasters yet
inconsistently sticking with an irrelevant project manager title. The
opposite is unfortunately more common: Changing the title of some-
one to ‘ScrumMaster’ while he acts like—and is encouraged by the
organization to act like—a project manager. Fake ScrumMasters.

This is an instance of cargo cult process adoption—adopting pieces of
an idea, such as names, without understanding the underlying prin-
ciples. Consider: “We adopted Scrum. Our Sprint length is the
length of our project. The Product Owner decides the items in the
Sprint and the project manager acts as ScrumMaster. He makes the
Sprint Backlog and assigns the tasks to people in the team.” Hear-
ing variations of this saddens us.

Fake ScrumMasters—most commonly, project managers or team
managers—fill the world with misunderstandings by resisting
change and refusing to learn. They create an illusion that the orga-
nization is actually trying to improve and in that way turn good
ideas into management fads and more organizational dysfunction.

Avoid…Matrix organizations in product development

A matrix organization is an organizational structure where some
people report to two managers—or even more. In product develop-
ment, a matrix with one or more project managers and a functional
manager is very common.

Matrix organizations tend to increase the amount of management in
an organization. This, according to the research of Capers Jones,

https://less.works For Gene Gendel only, id:gene-gendel

251

Structure

decreases the overall productivity in software development. To
repeat an earlier quote, “The matrix structure tends to raise the man-
agement head count for larger projects. Because software productiv-
ity declines as the management count goes up, this form of
organization can be hazardous for software” [Jones01].

A reason for matrix organization was an “information-processing
overload” for managers [DL77]. Matrix organizations have more
managers so that they can share the information-processing load.
Self-managing teams solve this problem by moving management
responsibilities to the teams.

Try…Self-organized team creation

How to create teams?5 The people in the organization know their
own skills and their own interests best, so they can organize them-
selves into teams.6 This is a startling practice for traditional com-
mand-and-control management groups who automatically assume
that they know better than the workers how to form suitable teams.
Sometimes they do know better. Sometimes not.

We worked with one product group in Asia wherein the manager of a
department did the following. He defined three rules: Teams must 1)
be cross-functional, 2) be cross-component, and 3) consist of seven to
nine people. All one hundred people met in one large room. The
manager put flip-chart paper on the wall for each potential team. He
explained the three rules and offered an exact two-hour timebox for
the people to decide how to form teams. If unresolved after that
time, he said that he would decide. For almost two hours it was cha-
otic but in the final stretch people formed into ten teams.

After a year, the department manager still considered it a good way
to form teams. However, upon reflection, he realized it did have
drawbacks. For example, all the “agile enthusiasts” formed enthusi-
astic agile teams and the “agile skeptics” formed skeptical teams.
Not surprisingly, the enthusiastic teams were much faster and more

5. We do not cover how Product Owners work together to decide which
teams work for which products.

6. These are sometimes called “self-designing teams.”

https://less.works For Gene Gendel only, id:gene-gendel

252

10 — Organization

successful in adopting agile practices. He speculated that adopting
practices might have been faster by mixing the people better.

In another product group, the manager did not give any guidelines
and simply asked the people to “form teams.” In the first attempt,
the programmers created a 40-person programming ‘team’ and
testers created a 30-person testing team! The manager explained
that this was not acceptable and that the teams need to be cross-
functional. In the second attempt, the people successfully formed
cross-functional teams.

These stories and mishaps highlight a principle of lean thinking: the
importance of a culture of manager-teachers who are deeply experi-
enced and knowledgeable in lean principles, and can act as skillful
coaches. The self-organizing teams concept does not imply that no
advice or coaching comes from experienced and talented managers.

Try…Form self-organizing teams based on skill

The previous tip was consistent with classic self-organization. It has
the drawback of potentially forming sub-optimal teams of people
who all think alike. Or the strongest people may decide to form their
own “A team” and hence deprive others of the coaching these tal-
ented people could offer—reduced organizational learning.

As an alternative, management can form the teams according to
skills and experience. This might balance the teams better. One
weakness is that it assumes that the decision maker’s opinion of
skill and balance is insightful. Another drawback is that people can
feel uncomfortable being forced into a self-organizing team; this
makes taking team responsibility difficult.

Try…Cultivate Communities of Practice

Communities of Practice are groups of people who share a con-
cern, a set of problems, or a passion about a topic, and who
deepen their knowledge and expertise in this area by interacting
on an ongoing basis [WMS02].

https://less.works For Gene Gendel only, id:gene-gendel

253

Structure

Communities of Practice (CoP) are rooted in self-organization.
They do not appear on an organization chart. Participation is volun-
tary—people engage because they have a passion to learn or contrib-
ute.

Organizations cannot form or put together CoPs like they can form
departments or projects. But organizations can promote them and
provide support—facilitators, IT infrastructure, budget.

CoPs and Scrum work well together; both embrace volunteering and
self-organization. A CoP needs an informal leader, called a CoP
coordinator, who emerges from the group because of a passion for
the subject. A part of cultivating CoPs is to support the CoP coordi-
nators. Sometimes coordinating activities becomes a full-time role,
and the coordinator may then move to the Support unit. However, be
wary of full-time CoP coordinators; ironically, they can lose touch
with their practice by no longer…practicing.

We worked with a multinational organization that had a ScrumMas-
ter CoP that was cultivated by the centralized support organization.
It consisted of hundreds of ScrumMasters discussing Scrum-related
issues on their mailing list. Every year, they organized an internal
Scrum Gathering, which was held as an OpenSpace conference.7

Try…Use CoPs for functional learning

Many organizations come to awareness of CoPs through the transi-
tion to cross-functional teams and the elimination of the matrix. We
were coaching at Lockheed-Martin some years ago during their
early days of agile adoption. Project or product groups had previ-
ously (usually) been organized into functional teams (analysts,
testers, and so on). Lockheed-Martin people realized that when they
transitioned to an agile approach, abolished matrix management,
and adopted long-lived cross-functional teams, there could be a prob-
lem in learning or knowledge sharing related to one function. For
example, they asked, “How will all the specialist testers learn—as a
group—about a new testing practice, when they are distributed to dif-
ferent cross-functional teams?” Because of this question, they discov-

7. OpenSpace is a style of organizing large discussions rooted in the
concept of self-organization [Owen97].

https://less.works For Gene Gendel only, id:gene-gendel

254

10 — Organization

ered CoPs and put in place a support system to cultivate their
growth.

Alternatives to CoPs include formal organizations such as councils
and study groups [HKL93]. However, we recommend CoPs as an
excellent informal approach to functional learning. “People who work
in cross-functional teams often form communities of practice to keep
in touch with their peers in various parts of the company and thus
maintain their expertise” [WMS02].

The learning culture of Toyota is to “spread knowledge laterally.”
This practice is called yokoten. The person who learned something
novel or improved a practice is responsible for sharing this. Toyota
people are supported in active sharing and pro-active seeking for
ideas and practices across groups and sites. The concept of CoP is
similar to yokoten.

Is a CoP not a matrix organization in new clothes? No, there are
clear conceptual differences between them.

Communities of practice provide a fundamental different
approach toward the same goal. The matrix structure only
focuses on the distribution of authority and the coordination of
resources by multiplying reporting relationships. It does not cre-
ate different structures for different purposes. Whereas a matrix
has reporting relationships on both arms, communities of prac-
tice provide a different kind of structure for focusing on knowl-
edge. They are based on collegial relationships, not reporting
relationships. Even community leaders [CoP coordinators] are
not your bosses; they are your peers. This combination of formal
and informal structures is fundamentally different from a
matrix. [WMS02]

https://less.works For Gene Gendel only, id:gene-gendel

255

Processes

PROCESSES

We discuss processes elsewhere when
they strongly relate to another element
in the Galbraith star model. For exam-
ple, the performance appraisal process is
covered in the Rewards section. Here, we
consider noteworthy processes that do
not fit neatly in another section, includ-
ing portfolio management, stage-gate®,
and budgeting.

Many processes have a clear relationship to Structure. For example,
both performance appraisal and budgeting processes are arranged
by organizational structure.

Scrum is a product-development framework by which the teams
evolve their own processes. This section does not cover Scrum or pro-
cesses inside development—these are covered in other chapters and
the companion book. However, this section does cover portfolio man-
agement and stage-gate. These are valid for both product develop-
ment and projects, but to simplify phrasing, we write product unless
we mean only a project.

Portfolio management—The product portfolio is the set of all the
products in the organization. Management of this portfolio implies
selecting, prioritizing, and killing products [PMI06]. Many organiza-
tions are not disciplined at prioritizing products—they want to do it
all. The predictable outcome is that they get little or nothing done—
too many products, too little focus [AMNS96]. Portfolio management
is the process to solve this problem. Its goals are [CEK01]

❑ maximize the total value—working on most valuable?

❑ balance—balancing types, markets, risks, and life span?

❑ strategic alignment—support the strategy?

Traditionally, organizations attempt to achieve these goals by hold-
ing long and intensive portfolio management meetings, typically
twice a year. The portfolio of products is reviewed and re-prioritized;
some live, some die.

Strategy Task

People

Rewards Processes

Structure

https://less.works For Gene Gendel only, id:gene-gendel

256

10 — Organization

Stage-gate—How do you ensure that product development is on
track and that one product is still important? A stage-gate process
[Cooper01] tries to answer these questions by dividing the develop-
ment into five stages with checkpoints (called gates) between them.
At the gates, a management team checks development progress and
the product’s relevancy. Based on these, they make a go/kill deci-
sion—fund the next stage for the product or not?

Stage-gate recognizes that uncertainty is high when product devel-
opment starts and that it (usually) decreases over time. Therefore,
the investments in early stages are relatively small, while the latter
stages have larger investments. Thus, management makes smaller
investment decisions when the risk is high and larger investment
decisions when the risk is low.

A pivotal aspect of stage-gate is a focus on marketing and product
management. It recognizes that products fail ‘simply’ because they
were not what the customer wanted. Consequently, stage-gate
emphasizes in-depth, high-quality market study in the early stages.

Portfolio management and stage-gate differ in that the former
involves a set of products whereas the latter’s focus is one product.
One commonality is that they both make go/kill decisions.

With these definitions in place, on to some organizational tips that
support scaling lean and agile product development…

Try…Merged product backlog for a set of products

Traditional high-level work prioritization is based on products and
not features. This creates a coarse-grained view—and decisions. The
relative priority of individual features is not considered.

Coarse-grained product prioritization leads to a local optimization in
which the low-priority items of a high-priority product are imple-
mented instead of the essential items of a lower-priority product.

We have worked with some smaller (100-person) companies for
which this was a problem. Their solution? Merge the Product Back-
logs of different products into one Product Backlog for the whole
company. The CEO acted as the Product Owner. This works espe-

https://less.works For Gene Gendel only, id:gene-gendel

257

Processes

cially well when the different products non-trivially share a common
code base or platform—common for smaller companies.

When the organization has one Product Backlog and one Product
Owner for the whole company, then the prioritization aspect of port-
folio management and prioritizing the Scrum Product Backlog are
the same activity. However, it is now done on the feature level—
avoiding the previous local optimization.

Requirement
Areas p. 217

What if your organization is larger than one hundred people, involv-
ing many products and tens of thousands of new features? Although
we have no experience in this, a company (or division) Product Back-
log can be scaled up with Requirement Areas.8 That is, if merged
feature-level prioritization is overwhelmingly long and detailed (and
it would be for some of our clients), we speculate that at least
Requirement-Area-level prioritization across a set of products is
manageable and useful; for example, deciding that the power man-
agement Requirement Area in one or more products is more impor-
tant than adding color workflow support to product X.

Try…Team works on multiple products

This tip is a corollary to the previous one.

We worked with an anti-virus company that had one large product
and many small products. Each of the latter required only one or two
people, so the company formed one- or two-person ‘teams’ and tried
to use Scrum. Did not work well.

An alternative is—as the prior tip suggested—to merge the smaller
Product Backlogs into one. Then form long-lived stable Scrum teams
of around seven people, and let them work on the combined Product
Backlog. During one iteration, a team might do four features for
large-product X and one for small-product Y.

As mentioned, this works best when the different products share a
common code base.

8. A merged Product Backlog view can easily be created with a spread-
sheet tool that links to other Product Backlog spreadsheets.

https://less.works For Gene Gendel only, id:gene-gendel

258

10 — Organization

Avoid…Stage-gate processes (if Scrum is adopted)

Most large organizations have adopted some variant of stage-gate
process for their product development. Stage-gate processes are def-
initely an improvement over no processes at all, and their emphasis
on good, early market analysis is commendable.

One key intention behind stage-gate is to make go/kill decisions
related to a product. But the gates are not the only means to make
these decisions in the stage-gate model. Although not everybody is
aware of this, the creator of stage-gate, Robert Cooper, proposes two
options for making these decisions [CEK01]:

❑ Option 1: Gates dominate—go/kill decisions are made at the
gates and confirmed at the portfolio management meetings.

❑ Option 2: Portfolio review/management meeting dominates—
go/kill decisions are made in portfolio management meetings
and only rarely at the gate review meetings.

Cooper recommends the first option when there is low change, and
the second option when the environment changes frequently—com-
mon and appropriate for software-intensive systems development,
as Cooper explicitly points out. To quote:

The result of the portfolio-review-dominates approach is a more
dynamic, constantly changing, portfolio of projects. The method
may suit faster-paced companies, such as software, IT, and elec-
tronics firms, but it requires a much stronger commitment by
senior management to the decision process. [CEK01]

Companies adopting large-scale Scrum probably belong to the sec-
ond case and thus would choose the second option.9

Not surprisingly, Cooper does not recommend that the entire stage-
gate framework be dropped if option 2 is adopted. His view is that
even though the gates may no longer be used or useful for go/kill
decisions in domains such as “software, IT, and electronics firms,” he
assumes—because his background does not include Scrum—that the

9. These days, “constantly changing environment” is almost certainly
the norm rather than the exception.

https://less.works For Gene Gendel only, id:gene-gendel

259

Processes

gates are still important for assuring that development is on track.
That is, even if the go/kill question is removed, three important
questions remain to be answered during each gate meeting.

❑ Are the deliverables in place and of sound quality?

❑ Is the project on time and within budget?

❑ Does the project remain a good investment? [CEK01]

These are excellent questions. So excellent that in Scrum a good
Product Owner asks himself exactly these questions at the end of
each iteration. And because each iteration involves real development
and a Sprint Review showing concrete deliverables, the Product
Owner has extraordinary, high-quality, realistic information to
answer these questions.

Scrum has replaced the traditional, long-cycle stage-gates with a
‘gate’ at each two-week iteration. The traditional stage-gate meet-
ings do not add any more value when Scrum is used. This is another
example in lean and agile methods of moving to shorter cycles and
smaller batches.

To summarize: When an organization (1) holds frequent and short
portfolio management meetings, and (2) all products use short time-
boxed iterations, then using a stage-gate process is arguably simply
unnecessary overhead. Hence, if the alternatives are in place, you
can…avoid stage-gate.

Caution: As mentioned, one intention of stage-gate is to include
skillful marketing work early in product development. This is
unequivocally a good idea. When avoiding or replacing stage-gate
with Scrum and frequent portfolio reviews, make sure marketing is
still involved from the beginning.

Stage-gate also has some weaknesses:

❑ it promotes large-batches and thus delay [Smith05].

❑ it favors large-investment decisions over frequent small ones.

❑ it tends to turn into waterfall development (see below).

❑ it examines individual products rather than the portfolio.

https://less.works For Gene Gendel only, id:gene-gendel

260

10 — Organization

❑ it advocates go/kill decisions rather than increasing or decreas-
ing the investment.

Avoid…Especially…traditional stage-gate

Unknown to most, Cooper’s stage-gate of today is not the stage-gate
of yesterday. “The notion of a rigid, lock-stepped process is dead!
Rather, today’s fast-paced NextGen Stage-Gate system is adaptable
and flexible” [Cooper07].

The world is changing, everybody is learning, and so are the creators
of stage-gate. The latest model is perhaps the fourth generation—
the count is unclear as the latest is “next generation stage gate.”10

Evolving the stage-gate model is salutary, yet naturally creates con-
fusion… In every discussion or communication, one needs to clarify
which generation the other person refers to. This is quite important.
The recommendations from 1993 are different from the ones in
2001, and the 2008 ones are different again.

Unfortunately, many companies ‘installed’ their stage-gate process
years ago and did not bother keeping up with Cooper’s evolution.
Make sure your company is aware of these developments and learns
about “the fourth generation” or “the NextGen” stage-gate.

Avoid…Stage-gate becoming a waterfall

If a stage-gate process remains in place, make sure it does not
become a sequential life cycle.

In the description of ‘NextGen’ stage-gate [Cooper08], Robert Cooper
lists misconceptions about stage-gate. In the “not a functional,
phased review process,” he explains that every stage should be cross-
functional. Most of the stage-gate processes we have seen in large
organizations resemble a sequential life-cycle process (requirements
finished and handed off to a design team, …), so this is indeed a
common misconception.

10. Perhaps the next generation will be called post-modern stage-gate.

https://less.works For Gene Gendel only, id:gene-gendel

261

Processes

The stage-gate process itself shares some of the blame for this mis-
conception. Even in the 2008 generation, three of the stages are
Business Case, Development, and Test. For most people, this resem-
bles a waterfall and thus, it does not come as a surprise that most
stage-gate processes evolve into a sequential life cycle process.

The stage-gate model is generic—for any kind of product. In the con-
text of physical product development, such as a washing machine,
there is naturally a final Test stage that follows Development
(although good mechanical engineers know to also test early during
development). But an insight of ever-growing appreciation is that
software is a unique novel domain. Many of our old physical-prod-
uct-development notions of how to work are unnecessary or ill-con-
ceived. The ability to eliminate test-at-the-end through continuous
integration and acceptance test-driven-development are examples.
The creators of stage-gate are not unaware of these techniques.

Try…Beyond budgeting

The transformation [of finance’s traditional role and practices]
requires reexamining and, probably, abandoning some of the
vestiges of finance’s previous management control tools. In par-
ticular, several companies in Europe and North America have
questioned their use of the annual operating budget, a
management tool introduced at General Motors nearly a cen-
tury ago by CEO Alfred Sloan and CFO Donaldson Brown.
Although the operating budget was a great innovation at the
time, today’s dynamic and highly volatile environment
has made an annual fixed operating plan an anachro-
nism. The counter-reaction to the high preparation cost, in time
and money, of the annual budget and its inflexibility in light of
rapidly changing external circumstances and internal opportu-
nities has launched the Beyond Budgeting movement.
[Bogsnes09] (emphasis added)

https://less.works For Gene Gendel only, id:gene-gendel

262

10 — Organization

this relates to
impediment #6
“local
optimization over
global
optimization”

The above quotation is from Robert Kaplan, a well-known thought
leader in the world of finance and management accounting, Harvard
Business School professor, creator of the balanced scorecard, and
member of the Accounting Hall of Fame. Some in the accounting and
finance field are not yet aware of the coming sea change in financial
and accounting practice that Kaplan cites: the Beyond Budgeting
movement that profoundly changes the budgeting process.

There is non-trivial influence from financial policies on the way
product development can be done, and on the degree of adaptability.
For example, traditional accounting emphasizes maximizing
resource utilization rather than maximizing value throughput. An
annual operating budget can constrain investment in a new product
or feature opportunity that was not foreseen (or foreseeable) when
the budget was created.

The annual ritual of speculating what applications will be built over
the next year (and their content and cost) is based largely on wishful
thinking and assumptions that seldom play out in reality. The dedi-
cation of large sums of money to these far-future conjectures inhibits
financial adaptability and skillful use of capital. For example, per-
haps some budgeted future applications should have lower priority
than new ideas discovered during the year. The highly speculative
estimates force wasteful padding of application budgets, to avoid
complaints. Complaints for deviation from the original budget (and
rewards for appearing to comply with it) engenders management
opacity and gaming of the numbers—and less transparency means
less ability to inspect and adapt in Scrum. Small application invest-
ments cannot be shifted with agility month by month as new learn-
ing arises. Investment risk is large, not small. Contrast this with the
classic investment risk management practice of dollar cost averag-
ing, where one spreads out smaller investments over many (often
monthly) periods, adjusting choices as fresh information emerges.

The annual budgeting cycle is far out of sync with the bi-weekly or
monthly cycle of results and decision making in Scrum. Plus, a slow
annual cycle does not exploit the new opportunity for real fine-
grained control through transparency and adaptability that Scrum
offers. Traditional accounting lags behind this evolution in product
development responsiveness.

https://less.works For Gene Gendel only, id:gene-gendel

263

Processes

More broadly, notice that the annual budgeting process involves big
batches and long cycle times, decidedly un-lean practices that
inhibit enterprise adaptation and organizational learning. With the
insight of queueing theory, it is also easy to see that a massive-batch
budgeting process is inefficient.

Short frequent cycles of investment decision making (versus an
annual budget) seem ‘wasteful’ to traditional financial managers
because of the high transaction cost (overhead) of each approval
cycle. But as examined in the “Indirect Benefits of Reducing Batch
Size and Cycle Time” section on page 112, the move to short fre-
quent cycles engenders out-of-the-box thinking of radically different
and more efficient mechanisms—in this case, Beyond Budgeting…

The Beyond Budgeting movement started in 1970 at Handelsban-
ken bank in Sweden. CEO Jan Wallander decided to eliminate the
traditional management ‘controls’ that he could see did not work
well, including budgets, hierarchy, and individual rewards. Since
1972, the bank has consistently been more profitable than the aver-
age of competitors, and is among the most cost efficient in the world.

Another well-publicized example of Beyond Budgeting was the elim-
ination in 1995 of the annual operating budget at Borealis, the larg-
est European petrochemicals company. This initiative was led by
Bjarte Bogsnes, the head of finance and accounting (who has also
served as a director of HR). Bogsnes started with the local goal of
dramatically improving financial management systems. He has
since gone on to lead toward a system goal and to communicate the
need for a system change in management values and practices to
realize the enterprise goals of Beyond Budgeting.

In the 1990s a group of financial management researchers and prac-
titioners realized that the traditional annual budget was an out-
dated and inadequate practice. They formed the Beyond Budgeting
Round Table (BBRT11), a Community of Practice of companies
(including StatoilHydro, the 59th largest company in the world in
2008) that were moving…beyond budgeting. This CoP also led to the
books Beyond Budgeting [HF03] and Implementing Beyond Budget-
ing [Bogsnes09].

11. See also www.bbrt.org.

https://less.works For Gene Gendel only, id:gene-gendel

www.bbrt.org

264

10 — Organization

These financial leaders came to the same realization behind the
agile development movement: Many traditional ideas of manage-
ment (including financial management) are ineffective or counter-
productive and merely create an illusion of control—at least in
today’s world of accelerating business change and competition based
on knowledge workers. This is the point emphasized by manage-
ment guru Peter Drucker:

Uncertainty—in the economy, society, politics—has become so
great as to render futile, if not counterproductive, the kind of
planning most companies still practice: forecasting based on
probabilities. [Drucker92]

The response in the Beyond Budgeting movement is to replace the
“illusion of control” fostered by detailed planning and annual bud-
gets with a new set of mechanisms that emphasize transparency
and adaptive processes. Jeremy Hope, a founding member of the
BBRT, summed up the vision of Beyond Budgeting in a phrase stun-
ningly reflective of the message of Scrum: “Transparency is the new
control system.”

Beyond Budgeting recognizes certain myths and false dichotomies in
traditional financial management, including

❑ no centralized control = chaos and anarchy

❑ good performance = hitting the budget numbers

❑ no budget = cost explosion

❑ no individual bonus = no performance

❑ more details = more quality

In companies adopting Beyond Budgeting, one early step involves
the management team learning the evidence to deconstruct these
myths. They also examine other ideas behind traditional financial
management and move to new models. These include the following:

Trust and transparency—Move to a high-trust and high-trans-
parency model with employees. This includes trust related to spend-
ing and investment. It does not mean the end of safeguards to
inhibit betting the bank on currency speculations.

https://less.works For Gene Gendel only, id:gene-gendel

265

Processes

Cost management—Abandon the belief that a cost budget is the
only or the most effective way to manage costs. Stop creating an
annual operating budget.

Target setting and evaluation—Move from absolute to relative
targets. Use holistic evaluation in which real leaders do in-depth,
nuanced, qualitative evaluation of performance rather than simplis-
tic “did you hit the numbers?”

Bonus—Stop individual bonuses. Research shows they do not work,
they locally sub-optimize performance, and they increase “gaming
the system.” If bonuses are ‘necessary,’ use group-based sharing.

Rhythm or Cadence—Traditional financial practices create an
uneven rhythm (or no rhythm) in planning, evaluation, and adapta-
tion. The cycle is too long. Move to short cycles (for example,
monthly or quarterly) and establish an even cadence.

Quality—Traditional budgets try to do too much, consolidating
three goals: (1) good targets, (2) good forecasts, and (3) good resource
allocation. Trying to serve all masters leads to no master being well
served—traditional budgets are a poor solution to improving quality
in these goals. Beyond Budgeting separates all three.

Efficiency—One study estimates that 25,000 person-days are
spent in annual budgeting for each one billion USD in revenue. It is
an extraordinarily wasteful process with limited benefit.

Moving from these myths and issues to solutions, Beyond Budgeting
offers a new model based on 12 principles.

Leadership Principles:

1. Customers. Focus everyone on improving customer outcomes,
not on hierarchical relationships.

2. Organization. Organize as a network of lean, accountable
teams, not around centralized functions.

3. Responsibility. Enable everyone to act and think like a leader,
not merely follow the plan.

4. Autonomy. Give teams the freedom and capability to act; do not
micromanage them.

https://less.works For Gene Gendel only, id:gene-gendel

266

10 — Organization

5. Values. Govern through a few clear values, goals, and bound-
aries, not detailed rules and budgets.

6. Transparency. Promote open information for self-management;
do not restrict it hierarchically.

Process Principles:

7. Goals. Set relative goals for continuous improvement; do not
negotiate fixed performance contracts.

8. Rewards. Reward shared success based on relative perfor-
mance, not on meeting fixed targets.

9. Planning. Make planning a continuous and inclusive process,
not a top-down annual event.

10. Controls. Base controls on relative indicators and trends, not
on variances against plan.

11. Resources. Make resources available as needed, not through
annual budget allocations.

12. Coordination. Coordinate interactions dynamically, not
through annual planning cycles.

There is an extraordinary similarity between these principles and
the lean or agile families of principles. Beyond Budgeting is the
financial management model that complements agile development.

This introduction only scratches the surface. In-depth study of the
resources is necessary to understand the detailed practices and start
the implementation journey.

https://less.works For Gene Gendel only, id:gene-gendel

267

Rewards

REWARDS

The next two sections examine a topic
bursting with opinions, taboos, and
assumptions—Human Resources (HR)
policies and practices. Teams drive agile
development but traditional HR prac-
tices focus on individuals. This causes
systemic conflict. HR practices need to
change to consider and foster real teams.
Practices such as rewarding and perfor-
mance review are based on assumptions
that are not supported by the evidence
available. This section investigates some
of these assumptions.

Try…Engage HR

HR practices are a major obstacle in numerous large organizations
we have worked with. Only a few have succeeded in changing them.
But you will never succeed changing HR practices without engaging
the HR specialists in your organization.

HR specialists consider it their job to improve the situation of the
employees in an organization. They do this according to what they
were taught and assumptions they have. You cannot expect them to
suddenly change because of “this lean thing.” HR, like any other
supporting function, needs to be educated in why lean affects their
policies. HR should be your partner, not your enemy.

In some organizations, we have invited HR people to participate in
Scrum courses and in product groups’ agile-adoption workshops so
that they could start to appreciate the ideas and changes. This
helped them change policies to fit better to self-managing teams.
One HR specialist even used Scrum principles to manage HR work.

Try…Ask HR for credible research evidence

Convincing the specialists in the global corporate HR ivory tower
might turn out to be futile even when you provide them with experi-

Strategy Task

People

Rewards Processes

Structure

https://less.works For Gene Gendel only, id:gene-gendel

268

10 — Organization

ence reports, research, literature, and other evidence. They might
have some basic assumptions that are hard to change. There-
fore…ask for the evidence upon which they base their practices and
assumptions.

And what kind of evidence? Stanford professors Pfeffer and Sutton
are two proponents of evidence-based management, which recom-
mends the use of evidence from academically credible empirical
research as the foundation for policies and practices. They especially
set their sights on HR practices, as the currently popular practices
are inconsistent with evidence [PS06a, PS06b, PS06c].12

We asked for evidence related to the HR practices at one company
that emphasized individual target setting. Their reply was, “There
are articles to prove anything.” But they failed to provide any arti-
cles to support their policies, and successfully avoided further dis-
cussion.

However, they did ask the agile-support group to remove from the
intranet the group’s advice on dealing with individual target setting,
because it was in conflict with HR policies. One of this company’s
corporate values is…Openness.

The rest of this section contains tips for changing HR practices. But
because changing them seems impossible, this section also provides
tips for dealing with HR practices that cannot yet be changed.

Avoid…Incentives linked to performance

impediment #4
“individual
performance
evaluation”

Rewarding people for their performance is a common practice, but
what are the assumptions behind it? It assumes that people are

❑ in control of their performance

❑ motivated by rewards, which leads to improved performance

systems thinking
p. 9

Both assumptions are questionable. Most work, especially product
development, is interdependent. Quality guru Deming frequently
pointed out that everybody was part of a larger system and therefore
does not have full influence on their performance. What is the effect

12. For more, see www.evidence-basedmanagement.com.

https://less.works For Gene Gendel only, id:gene-gendel

www.evidence-basedmanagement.com

269

Rewards

of promising rewards for work that people cannot fully influence?
De-motivation. Alfie Kohn, author of the provocative book Punished
by Rewards, therefore recommends to “decouple the task from the
compensation” [Kohn93].

Assuming it was possible to create performance measurements over
which people had full control, then their motivation and perfor-
mance would surely increase by putting an incentive on this target.
Not so.

Psychologist Frederick Herzberg, author of one of the most popular
Harvard Business Review articles, “One More Time: How Do You
Motivate Employees,” explains that incentives create movement, not
motivation. Giving a reward for a job well done motivates a person
for the reward but not for the job. This is an important distinction—
the motivation is short term and the focus is on the reward, not the
job [Herzberg87].

Is there anything wrong with creating movement instead of motiva-
tion? Not by itself, but rewards have the side effect of decreasing the
intrinsic motivation and the very performance that managers hoped
to improve. Deming said:

What they [the present style of rewards] do is to squeeze out
from an individual, over his lifetime, his innate intrinsic moti-
vation, self-esteem, dignity. They build into him fear, self-
defense, extrinsic motivation. We have been destroying our peo-
ple, from toddlers on through the university, and on the job. We
must preserve the power of intrinsic motivation, dignity, cooper-
ation, curiosity, joy in learning, that people are born with.
[Deming94]

Deming is not the only one warning us against rewards. A great deal
of research establishes the harm of pay-per-performance. Stanford
professor Jeffrey Pfeffer concludes, “The evidence for widespread dis-
satisfaction with such pay plans is pervasive. Both employees and
company survey data suggest that the likelihood of success is low and
the odds of problems and dissatisfaction are high” [Pfeffer07].

Michael Beer, professor at Harvard Business School, studied 13 pay-
per-performance experiments at HP. Every single one of them failed.

https://less.works For Gene Gendel only, id:gene-gendel

270

10 — Organization

“Managers came to believe that employees were too focused on pay
and insufficiently focused on the task” [BC04].

Toyota Japan does not link rewards to individual performance. The
only bonus they pay is based on the performance of the whole com-
pany. “Pay is the same for all within a given classification, and
bonuses (as a percentage) are the same for all members” [LH08].

What can you do if your company insists on pay-per-performance?

Try…De-emphasize incentives

Managers love to play with the incentives tool. “Tinkering with pay
appears to be easier than fixing organizational culture and leader-
ship capabilities” [Pfeffer07]. But emphasizing incentives creates a
fascinating organizational dynamic (Figure 10.4).

Figure 10.4 focus
on incentives
increases
dissatisfaction

challenging work
p. 195; work
redesign p. 234

Pfeffer states in his Harvard Business Review article, “Six Danger-
ous Myth about Pay,” “Emphasizing pay as the primary reward
encourages people to come and stay for the wrong reasons”
[Pfeffer98]. By emphasizing incentives, managers increase their
importance. Potential motivation is short-lived and in the longer
term the result is discontent with the reward system. This triggers
managers to once again change and emphasize incentives, without
realizing the downward spiral of incentive dissatisfaction. When you
cannot remove the incentive system, at least de-emphasize it
[Poppendieck04]. Emphasize other aspects that increase intrinsic
motivation, such as challenging and meaningful work, learning,
achievement, and personal growth.

amount of
management focus

on incentives

amount of interest
in incentives

amount of
dissatisfaction with

incentives

https://less.works For Gene Gendel only, id:gene-gendel

271

Rewards

Avoid…Putting incentives on productivity measures

‘Productivity’ is a popular incentive target…“Rewarding high pro-
ductivity undoubtedly improves performance” is a common assump-
tion. Even if this were so, it implies that measuring knowledge
worker productivity is even possible.

Several ways of measuring productivity in software development
have been proposed. One of the first and unfortunately still widely
used ‘productivity’ metrics is lines of code (LOCs) per time period.

What will happen if one puts an incentive on LOCs? More lines of
code will be generated—but is that desirable? We worked with a cli-
ent for which a programmer, in response to a small change request
in existing functionality, copied a 20-thousand-LOC module,
changed 50 lines, and said “done!” He did this repeatedly and was
declared the productivity hero.

We worked with one product group in Hungary who added a feature
and refactored the code to eliminate duplication. The result: more
functionality and fewer total LOCs. So, did they have negative pro-
ductivity? Over beer, we have speculated whether “lines of code
removed” would be a good productivity metric. But when we look at
the entries of the Obfuscated C competition,13 we changed our
minds.

Capers Jones has spent most of his career deconstructing and dis-
crediting LOC measurements as productivity measures [Jones08].
The alternatives are elegant but hard to measure. And whether they
measure all aspects of productivity is doubtful [Fowler03].

The conclusion: “Productivity metrics” are measuring only part of
the output. In that case, would putting incentives on these metrics
improve part of the output? Perhaps, but not without an important
drawback. Rob Austin, in Measuring and Managing Performance in
Organizations, created a model for examining incentives. He distin-
guishes between full and partial measurements and shows that par-
tial measurements lead to optimizing effort toward the metric
instead of toward the goal; this is called measurement dysfunction.

13. The Obfuscated C competition has made writing ugly code an art
form. See www0.us.ioccc.org/main.html

https://less.works For Gene Gendel only, id:gene-gendel

www0.us.ioccc.org/main.html

272

10 — Organization

For example, the goal in software development is not more LOCs but
more functionality—more LOCs are not necessarily more functional-
ity. LOCs are only an indirect measure of functionality. The more
indirect, the larger the distortion in output.

secret toolbox; see
Legacy Code in
companion book

In software development, measurement dysfunction makes incen-
tives for productivity more harmful than beneficial. They result in
developers using the “secret developer toolbox” and therefore an
increase of hazardous legacy code, leading to competitive problems.

Try…Team incentives instead of individual incentives

You are not convinced that incentives are harmful? Or is your situa-
tion that you can’t do anything about removing them?

At least, set team incentives rather than individual incentives for
self-managing cross-functional Scrum teams. “Talking about team-
work and cooperation and then not having a group-based component
to the pay system matters because paying solely on individual basis
signals what the organization believes is actually important—indi-
vidual behavior and performance” [Pfeffer98] (emphasis added).

Switching from individual to team-based incentives systems sounds
easy, but in our experience even this change is difficult for large
organizations. In one of them, the corporate HR stated, “If individ-
ual targets are set well, then they do not disturb teamwork.” By
stating this, they ignored the vast body of team literature, for exam-
ple [Hackman02, MCM95, WBW91], that states individual incen-
tives are a problem for self-managing teams.

Team-based incentives might also create resistance from employees.
An example in a company moving to team based-incentives:

In the organizations we studied, the more people were paid for
individual performance, the more they felt fairly paid and satis-
fied with work, even though the performance of their teams was
adversely affected! [MCM95]

This resistance changed over time as people came to see the team-
based reward system as fair:

https://less.works For Gene Gendel only, id:gene-gendel

273

Rewards

As people work in team-based settings, they begin to adopt the
logic of the new organization and perceive reward practices that
are consistent with that new logic as fair. This change in view-
point takes time. [MCM95]

Toyota Japan does not use pay-per-performance, but when they
expanded into North America, they knew the reward system had to
be adjusted to Western beliefs. They created a metric for plant per-
formance and linked it to rewards. Still, they were for team (or
plant) performance rather than for individual results. “All hourly
employees receive the same percentage bonus. This fits the Western
culture of rewards that are within control of the employees though it
is not tied to individual performance” [LH08].

Try…Team-based targets without rewards

challenging
performance
target p. 195

Just to make sure the earlier tips are not misunderstood, setting
targets for teams is essential. Linking incentives to targets is not
essential and is arguably harmful.

Avoid…Performance appraisals

impediment #4
“individual
performance
evaluation”

One sacred-incentive-cow sacrificed. Another
relates to the (semi-)annual performance review/
appraisal. Twice a year, every manager must
review the performance of his subordinates, set
their individual objectives, and discuss their indi-
vidual learning. How do performance appraisals
fit in a team environment?

The thought-provoking book Abolishing Performance Appraisals
examines the assumptions behind appraisals and the research about
their effectiveness. They come to the startling conclusion that there
is absolutely no evidence that they are worthwhile. Instead, they are
usually more harmful than beneficial and it is therefore a good idea
to stop them [CJ02].

What are the problems with performance appraisals? Numerous. It
is not only the individual-focused aspect of appraisals that nega-
tively influences teamwork. The whole concept of performance

https://less.works For Gene Gendel only, id:gene-gendel

274

10 — Organization

appraisals is rooted in command-and-control management assump-
tions, such as “managers are responsible for the results, targets, and
personal learning of their subordinates.” Or “managers can indepen-
dently or effectively judge the performance of their subordinates.”
Or “managers need a formal process for giving feedback to their sub-
ordinates; otherwise, managers won’t give feedback.” Appraisals
result in employees wondering why they did not receive this feed-
back before, or worse, disagreeing with their manager about their
performance. Appraisals backfire and de-motivate.

There is nothing new or unique about this. Deming’s 12th point of
his famous 14 points to get Out of the Crisis, appeals for the removal
of performance appraisals [Deming82]. Also, the third item on his
list of seven deadly diseases of Western companies is “evaluation of
performance, merit rating, or annual review.” Quality guru Philip
Crosby and Deming rarely agreed on anything except when it came
to performance appraisals. Crosby’s conclusion on appraisals: “The
result of all this is to make reviews counterproductive” [Crosby84].

But you might wonder, “Without performance review, how do we
know the amount of pay increase?” Toyota, as pointed out earlier,
pays everybody the same within a given classification. So, then
there is no need for an annual performance review to determine pay
increase. The increase is decided for a certain classification and
determined by the cost of living and market value of certain skills
[Derby07b].

Go See p. 52
How can you know when to promote someone to a higher classifica-
tion without an annual review? If your managers need an annual
review to determine this, there is a lack of Go See behavior.

Are organizations without annual bonuses necessarily less attrac-
tive to employees? No. Most companies have a fixed compensation
budget that consists of salary, incentives, and other benefits. This
budget does not need to decrease; instead, the incentive part
decreases and the other parts increase. Companies that abolished
their incentive pay and performance appraisals frequently pay
employees above market-average salaries [CJ02].

https://less.works For Gene Gendel only, id:gene-gendel

275

People

Avoid…ScrumMasters do performance appraisals

A ScrumMaster evaluating the performance of the team or its indi-
vidual members leads to a dysfunctional environment. “Creating a
higher status position (evaluator) is an impediment to the team self-
organizing” [Derby07a]. It destroys the openness and transparency
that are so needed in self-managing teams.

Try…Discuss with your team how to do appraisals

What do you do if it is impossible to get rid of appraisals? One alter-
native is to ask the team how to deal with them. Explain to them the
problems with appraisals and why they need to do them anyway—
HR policy.

Try…Fill in the forms

De-emphasize appraisals. Explain to your team why they are dys-
functional and harmful. Fill in the needed forms and send them to
HR. Focus on doing and improving the real work instead.

PEOPLE

The first agile value highlights the
importance of individuals—their skill,
morale, and other qualities. The 10th

Toyota Way principle emphasizes finding
and developing exceptional people, and
Toyota is extraordinarily careful in their
hiring practices [LH08]. Lean product
development emphasizes a culture of
long-term, hands-on engineers with
“towering technical excellence.”

This last section offers people-related tips consistent with lean and
agile principles. Suggestions cover job titles, career paths, hiring,
and training.

Strategy Task

People

Rewards Processes

Structure

https://less.works For Gene Gendel only, id:gene-gendel

276

10 — Organization

Avoid…Limiting peoples’ perspective

This is a generalization of many of the following tips.

impediment #2
“thinking it’s all
about developers”

Some organizational systems stimulate or force people to specialize
in only one skill or function. The deep knowledge of a skillful spe-
cialist is unquestionably an important organizational asset. These
systems also offer people a clear direction in their career. However,
by doing so they limit the cross-functional learning pivotal for fast
cycle time development and for agility. You do not want people to be
exceptionally skillful in just one specialty. Products rarely need one
specialty; they need an integration of talent from different areas.

Having excessively narrow specialists leads to communication and
integration problems because those specialists do not understand or
appreciate one another’s domain. Thus, organizational systems need
to support the creation of deep specialized knowledge and stimulate
broad learning. It does not have to be a false dichotomy.

Avoid…Job titles

Job titles promote hierarchy and specialization.

Hierarchy—Job titles reflect status and hierarchy that often leads
to less openness within a group. You do not want John to agree with
Charles simply because Charles has a higher position. You want
John to agree because he thinks that is the best way forward.
Removing hierarchy is critical when establishing self-organizing
teams.

Specialization—Job titles also reflect specialization, which leads
to a narrow perspective of work. For example, developer John will
not help with (or learn about) testing tasks because “I am a devel-
oper, not a tester.”

In Scrum, there are no predefined roles in the team because mem-
bers of a self-organizing team think in terms of skill, not roles or job
titles. For example, Sanjay does most of the testing because he is a
true expert. However, when there are many testing tasks, John
helps out—and learns more.

https://less.works For Gene Gendel only, id:gene-gendel

277

People

Try…Create only one job title

An alternative to removing job titles is to define only one. Some-
times this is easier because it does not require a change of HR policy.

W. L. Gore is an unusual company that practices ‘unmanagement’
and ‘unstructure’ [MS95]. The size of every plant is limited to 200
people. When the unit grows above 200, it is split in two. The com-
pany has no organizational chart or formal hierarchy. Every
employee has exactly the same job title: ‘associate.’

Try…Let people make their own titles; encourage funny titles

Another technique for removing status and hierarchy from job titles
is to let all employees make up their own. Semco, an unconventional
Brazilian company does this and they had three ‘gods’ working in
the company. Having everyone select their own job title can lead to
less resistance when a job title matters to people in their social envi-
ronment.

Try…(if all else fails) Generic title with levels

Suppose none of the preceding options is feasible in the short term
because HR insists on job titles with gradations or levels. An alter-
native in some companies is to use a relatively generic title with a
level, such as “R&D member—level 3.”

Try…Simple internal titles map to special external titles

In some societies, job title status and moving up is understandably
critical to people. It is not very impressive to tell your mother-in-law,
or next prospective employer, that your official job title is…team
member. A solution that strikes a balance is to define both an inter-
nal and external title. The internal title may be R&D member but
when a person leaves the company, something more special may be
provided to help the person in the job market, such as senior archi-
tect or senior manager.

https://less.works For Gene Gendel only, id:gene-gendel

278

10 — Organization

Avoid…Job descriptions

Specific job descriptions and job titles lead to the same dysfunctions.
Job descriptions might lead to people following them—the lean
waste of under-realized talent or potential. This can also increase a
blaming culture in which people look at the job descriptions to find
the guilty party…“Well, he’s the tester. It says on page two that he
should have done that.”

Try…Simple general job descriptions

The time and energy that people use to define specific job descrip-
tions may in fact significantly contribute to the heat death of the uni-
verse. For months, pages of detailed points are passed around and
reviewed for the “Fault Manager” job description. We wonder if the
person who finally does this job ever reads the list.

If removing job descriptions is not currently an option then at least
make them simple, broad, and high level. For example, the descrip-
tion of “team member”: A team member has the shared responsibility
for the outcome of an iteration. High-level general job descriptions
promote thinking, innovating, learning, and doing whatever is nec-
essary to deliver the product, rather than strictly following limited
responsibilities

Avoid…Career paths

Large organizations promise their employees a future inside the
company by providing road maps—career paths.

We have seen and coached many organizations with career paths,
and in all cases they fomented de-motivation and disappointment
and stifled the multi-talented potential of people. Employees became
frustrated because they wanted to follow the path faster and this
resulted in more single-specialization.

Large-scale Scrum can lead to major changes in career paths. One
product group we worked with used to have three paths:

https://less.works For Gene Gendel only, id:gene-gendel

279

People

❑ Project manager career path—This ceased to exist after the
move to Scrum.

❑ Management career path—This became less attractive in a
flatter organization where management responsibilities moved
to Scrum teams.

❑ Technical/engineering career path—Originally, this meant to
move away from hands-on programming and become a “Power
Point architect.” Scrum renewed the focus on the real-value
work of development.

Predefined career paths made these changes more difficult because
they upset people who had bet their career on one particular path.

Try…Job rotation

Job rotation—changing your job to a different functional domain—is
an excellent way to create cross-functional learning. These ‘rota-
tions’ can be for a few months or a few years.

I (Bas here) used to work in Nokia and always considered job rota-
tion to be one of the strengths of the company. It was common to
meet people who started their Nokia career in a completely different
functional area. Why was this so common? One reason is the history.
Nokia was founded as a paper company and transformed itself into a
rubber company, then to a steel cable company, then to a consumer
electronics company, and lately to a telecommunication company
[Steinbock01]. I met people who joined Nokia when it was a steel
cable company. My first manager moved from engineering to sales
and back to engineering, and this gave him a broad perspective.

Nokia is not unique in this. Honda lets engineers work in a different
department for one week every year [Galbraith93]. W. L. Gore
encourages its ‘associates’ to find their own work [MS95]. And, Toy-
ota uses job rotation as one way of broadening people’s perspective.

Acquiring experience in several job functions or aspects of busi-
ness operation equips managers to make better system-wide
decisions. It takes time to develop this competence and requires
hands-on experience and multiple job rotations. [OST08]

https://less.works For Gene Gendel only, id:gene-gendel

280

10 — Organization

Try…Start people with job rotation

When to start exposing people to a different functional areas? As
soon as possible.

During their first year at Toyota, new people go through “general
training,” in which they build cars in the factory for a couple of
months. They then work for a dealership to sell cars, even door to
door (in Japan). This general training creates a broad feel for what
their business is about. “The message is clear: Each employee works
for Toyota, not for a specific function” [LM06b].

Try…Hire the best

Great people are arguably the most important success factor in new
product development. So companies that are serious about products
invest time to make sure they hire the right people. For example,
Microsoft and Google are famous for their strict hiring policies—and
for talented developers.

Great developers attract more great developers. They love working
in a challenging environment with peers who are doing the challeng-
ing. Therefore, one way of hiring the best is to…hire the best.

In 2000, Joel Spolsky, an ex-Microsoft Excel developer, was looking
for a great place to work [Spolsky08]. But he could not find a com-
pany where a focus on great developers was paramount. So he
decided to start his own company—Fogs Creek. What was his busi-
ness plan?

Figure 10.5 Joel’s
business plan

Eight years later, Joel is still proud of the way his company treats
developers. They also build successful products and have been prof-

good
environment

good people
great

software
profit

https://less.works For Gene Gendel only, id:gene-gendel

281

People

itable ever since the company was founded. Their foundation: Hire
great developers [Spolsky07].

Avoid…Hiring when you cannot find the best

Though this tip seems obvious, it is not a common practice. In some
large companies, the planned “head count” for a department deter-
mines how many people they should hire. And if the department
does not hire them now, then they will not be allowed to hire them
later. This policy triggers these departments to locally optimize and
hire “the best available” instead of “the best.” In product develop-
ment it is better to hire a few great people than many average peo-
ple. If you cannot find great people, then it’s better not to hire at all.

Try…Team does the hiring

How will you know whether a new hire will fit in a team? Involve
the team in the hiring; better yet, let the team do the interviewing
and let them make the final decision.

Michael Lopp, author of Managing Humans, feels that involving
“some team members” is not good enough. He writes “Everyone on
the team needs to interview every candidate” [Lopp07].

Semco, the extraordinary Brazilian company, practices collective
interviewing. They internally broadcast upcoming interviews and
invite anyone to join. Having thirty plus people interviewing one
candidate is not an exception. The more important positions attract
more interviewers and—they say—this leads to a better selection. In
one instance, no interviewer showed up for an interview and there-
fore that position was cancelled. It must not be needed if no one was
interested in acting as an interviewer [Semler03].

Try…Long and in-depth hands-on evaluation

“So, are you a good programmer?”… “Well, pretty good. I’ve been
programming for seven years. On my resume you can see the prod-
ucts I’ve worked on.”… “Great! Next question. …”

https://less.works For Gene Gendel only, id:gene-gendel

282

10 — Organization

Not good enough. Talking about programming is easy. At
ObjectSpace where I (Craig here) used to work, a candidate would
have to spend six or more hours in a room with expert developers.
During this period the candidate would have to sketch out (on the
whiteboard) detailed design solutions for problems, and do relatively
long and in-depth programming. The reviewers would carefully look
at the code. If you want to hire great talent, inspect the real work of
a candidate through some kind of long and in-depth, hands-on eval-
uation.

Although this tip used developer candidates as an example, it
applies more broadly to other categories—digital electronics engi-
neers, graphic designers, and more.

Try…Pair programming with developer candidates

Arguably the most in-depth approach to really seeing what a devel-
oper candidate can create and how they work with others is to evalu-
ate them through long pair programming sessions. The candidate
may write great code but be difficult to work with. Pair program-
ming with a developer starts to expose his or her true technical and
social work skills. Pair a candidate for a half-day or one day with one
or more potential future team members.

Nothing beats evaluating a candidate on real work. Therefore…

Try…Trial iteration

How do you know if someone will really fit in with the team and has
the right mix of skills? If the candidate passes the first round of pair
programming evaluations, consider a second round of evaluation in
which the candidate joins the team for one iteration. Of course, he
would be compensated for working that iteration.

Try…Lots of formal education and coaching

impediment #5
“failure to learn
from outside”

Agile development and lean thinking involves new thinking tools,
technical skills, behaviors, mindset, Scrum, test-driven develop-
ment, continuous integration, self-managing teams…it’s a non-triv-
ial list.

https://less.works For Gene Gendel only, id:gene-gendel

283

People

The most common education mistake is: too little for too few.

Within the Xerox lean development initiative, on the other hand,
each team goes through at least four weeks of in-depth education
and coaching in lean principles, Scrum, and agile development
skills, both in the classroom and at their team location.

In another product group we coached in adopting large-scale Scrum,
50 percent of the people went through a ScrumMaster course even
they were not all going to serve as a ScrumMaster. It provided com-
mon broad understanding.

It is important that virtually everyone in the product group is well
educated in the new non-technical topics—Scrum and lean thinking,
for example. All people need a common understanding and vocabu-
lary of the big picture. Plus, development staff need in-depth educa-
tion and coaching in agile development skills.

Unequivocally, the large product groups that have been most suc-
cessful in adopting agile and lean development focused on education
and coaching.

Try…Lots of coaching

impediment #5
“failure to learn
from outside
expertise”

Some ideas can be well taught in a classroom or workshop. Some
cannot. A good example is test-driven development (TDD). We have
given many TDD courses, but when we ask the participants after
some months whether they use it, a frequent reply is, “The course
was great! We really want to use this, but we are currently working
with this legacy code and it doesn’t apply there.”

Well, it does apply there as well. This is an example of the kind of
skill that requires coaching for weeks or months at the person’s
place of work, during their regular tasks.

The same is true for other practices. Educating a novice ScrumMas-
ter while an expert coach facilitates the Sprint Retrospective is
much more effective than a course in retrospective techniques. Have
an experienced ScrumMaster come in and coach the team for the
first few iterations and let other ScrumMasters observe.

https://less.works For Gene Gendel only, id:gene-gendel

284

10 — Organization

Our advice to the organizations that we work with is to have some
structured classroom education, but to primarily focus on using
expert coaches who spend time with Scrum teams and the Product
Owner Team during their Scrum events and during their day-to-day
work.

CONCLUSION

Lean and agile development principles and practices, self-managing
cross-functional teams, and other related concepts should lead to
non-trivial change in all elements of an organization. Otherwise, the
implications of these have probably not been grasped. This change is
caused by fundamentally different assumptions about workers,
teams, work, and the way in which work should be structured.

Do not expect this to go fast; it will take years or perhaps decades—
in fact, forever, considering the pillar of continuous improvement. A
good sense of humor, an informal supportive community of practice,
and patience is especially helpful in organizational improvement.
Celebrate small steps forward. Especially in the work of organiza-
tional redesign, we encourage our clients to keep in mind systems
thinking and the dynamic of local optimization.

RECOMMENDED READINGS

This chapter covered many topics. Most were given cursory treat-
ment; therefore this section has a relatively large set of recom-
mended readings.

The task, structure, and process sections covered structuring tasks
and forming the formal organization. Much has been written about
organizational design, but not so much in an agile and lean develop-
ment context. Some recommendations:

❑ Work Redesign, by Richard Hackman. A book written in 1980s
and mainly focused on administration and factory work. But
the ideas in this book are as insightful today as they were

https://less.works For Gene Gendel only, id:gene-gendel

285

People

thirty years ago. In the last part, Hackman made predictions
about the future of work that are surprisingly accurate.

❑ One More Time: How Do You Motivate Employees? by Frederick
Herzberg. The first part of this classic article is about motiva-
tion and the hygiene/motivator theory. The last part looks at
work redesign from a slightly different angle than that of
Hackman.

❑ Communities of Practice: The Organizational Frontier, by Eti-
enne Wenger and William Snyder. This is a Harvard Business
Review article and is a short and easy-to-read introduction to
the concept of CoP.

❑ Cultivating Communities of Practice by Etienne Wenger, Rich-
ard Dermott, and William Snyder. What, why, and how? These
questions are answered with lots of practical examples.

The Rewards section covered topics related to incentives and
appraisals, without diving into the details. Plenty of good material is
available on this subject:

❑ Six Dangerous Myths About Pay, by Jeffrey Pfeffer. This short
article not only covers the pay-per-performance myth, but also
several other pay-related myths.

❑ Punished by Rewards, by Alfie Kohn. Are incentive systems the
only reward-related problem or is more going on? Kohn takes a
deep dive in the subject of rewarding at work and in the class-
room. This analysis challenges some fundamental assumptions
behind rewarding.

❑ Abolishing Performance Appraisals, by Tom Coens and Mary
Jenkins. Are performance appraisals rooted in good insight,
credible organizational research, and evidence? This analysis
concludes that no evidence exists that they work and that the
assumptions behind performance appraisals are shaky at best.

❑ Measuring and Managing Performance in Organizations, by
Rob Austin. What happens if you give incentives but are not
able to measure all the workers’ output? This is one of the
questions Rob Austin tries to answer in his book. His model
shows that measurement dysfunctions are the outcome, ironi-
cally resulting in poorer performance.

https://less.works For Gene Gendel only, id:gene-gendel

286

10 — Organization

One great way of learning about organizations is to study modern
companies. Their ideas are not hypothetical. Organizations such as
Google, W. L. Gore, Semco, and Visa are interesting cases to study:

❑ Maverick, by Richardo Semler. Semco, a Brazilian company
from São Paolo has gradually freed its employees. Once a fairly
traditional company, Semco went through a major change and
became one the most studied companies in the world because of
their innovative HR practices. Maverick describes this change.

❑ Birth of the Chaordic Age, by Dee Hock. “Self-management
cannot happen in traditional industries such as banking.” Not
so. Dee Hock is the founder of Visa and describes how it was
build on the principles of self-organization.

❑ Business Without Bosses, by Charles Manz and Henry Sims.
What would happen without managers? Would there be total
chaos? Not at W. L. Gore. They practice ‘unmanagement’ and
do not have an organization chart at all. Chapter 6 of Business
Without Bosses describes how W. L. Gore operates.

❑ The Google Story, by David Vise. One of the most successful
companies of the last decade: Google. This book describes the
history of Google and some of the interesting practices within
Google. It is a little superficial, but still worth reading.

❑ The Future of Management, by Gary Hamel. “What will be the
future role of management?” is the key question in Hamel’s
book. Chapters 4–6 study three companies with innovative
organizational practices: Whole Foods Market, W. L. Gore, and
Google.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Overview 290

• Try…Large-scale Scrum FW-1 for up to ten
teams 291

• Try…Large-scale Scrum FW-2 for ‘many’ teams
298

• Scaling Some Issues 301

https://less.works For Gene Gendel only, id:gene-gendel

289

Chapter

11
LARGE-SCALE SCRUM

Cabbage: A familiar kitchen-garden vegetable
about as large and wise as a man’s head.

—Ambrose Bierce

Large-scale Scrum is Scrum.

It is not “new and improved Scrum.” Rather, it is regular Scrum, an
empirical process framework that can inspect and adapt to any
method weight and work in a group of any size. Large-scale Scrum
is a label—for brevity in writing—to imply regular Scrum plus the
set of tips that we have seen work in large multiteam, multisite, and
offshore agile development.1 These tips are experiments to try in the
context of the classic Scrum framework. That is why the tips start
with “Try…”, to suggest no more than an experiment.

Be dubious of messages such as “Scrum 2.0,” “Scrum++,” “Scrum#,”,
“UnifiedScrum,” “OpenScrum,” or “new and improved Scrum that
should replace regular Scrum.” They may miss the point of empirical
process and the implications of Scrum. To reiterate a quote by Ken
Schwaber, the co-creator of Scrum:

There will be no Scrum Release 2.0…Why not? Because the
point of Scrum is not to solve [specific problems of develop-
ment]… Scrum unearths the problems caused by the complexity
and lets the organization solve them, one by one, over and over
again. [Schwaber07]

Regular Scrum is a simple framework that exposes organizational
problems. We are not suggesting that new ideas cannot arise and
improve the framework. But attempts to ‘improve’ it are most often

1. The companion book Practices for Scaling Lean & Agile Develop-
ment consolidates many of these tips.

https://less.works For Gene Gendel only, id:gene-gendel

290

11 — Large-Scale Scrum

(1) avoidance of dealing with the weaknesses exposed when regular
Scrum is really applied, (2) conformance to status quo policies or
entrenched groups, (3) a belief in a new silver bullet practice or tool,
(4) fuzzy understanding of Scrum and empirical process control, or
(5) an attempt by the traditional consulting companies to take your
money—“Accenture Scrum/Agile,” “IBM Scrum/Agile,” and so on.

Large-scale Scrum, as regular Scrum, is a framework for develop-
ment in which the concrete details need to be filled in by the teams
and evolved iteration by iteration, team by team. It reflects the lean
thinking pillar of continuous improvement. It is a collection of sug-
gestions for inspecting and adapting the product and process when
there are many teams—at least two teams but also for groups of 500
or 1000 people.

It is said that Scrum is easy to understand but hard to use because it
brings weaknesses to light. In the case of a small group adopting
Scrum (for example, 7 people) within a large organization, the prob-
lems revealed and dealt with may be quite local. But in a larger
product group (say, 500 people) adopting large-scale Scrum, systemic
weaknesses are exposed in the organizational design—in structure,
processes, rewards, people, and tasks. In this case, large-scale
Scrum is a force for organizational change. This dynamic reflects the
lean metaphor of lowering the water level—Scrum is a framework
for making the rocks visible. Lowering the water is easy, the hard
part is removing the rocks—especially when they involve organiza-
tional policy and structure.

This is why thinking tools and organizational tools are presented
before this chapter. Sooner or later the existing enterprise structure
will clearly be seen as limiting the success of maximizing ROI with
large-scale Scrum. These tools are relevant to dealing with these
enterprise limitations and the issues of organizational redesign that
will be roused when large-scale Scrum is introduced.

OVERVIEW

This chapter provides an overview of some suggestions for large-
scale Scrum and points to related concepts and tips in the Organiza-
tional Tools section. Many “action tool” or practice tips (multisite,

https://less.works For Gene Gendel only, id:gene-gendel

291

Overview

offshore, design, requirements, coordination, planning, contracts, …)
are covered in the companion book.

Scrum Primer
p. 305

The following descriptions only emphasize what is noteworthy in the
context of scaling. Regular Scrum elements are not explained unless
we felt that reiteration was useful. Basic Scrum knowledge is
assumed; see the Scrum Primer chapter for a synopsis.2

For large-scale Scrum we suggest two alternative frameworks. One
is for up to about ten teams in a product group. The other goes
beyond that—scaling to at least many hundreds, if not thousands, of
people in a product group.

TRY…LARGE-SCALE SCRUM FW-1 FOR UP TO TEN TEAMS

Introduction

The first framework is appropriate for one Product Owner (PO) and
up to ‘ten’ teams. ‘Ten’ is not a magic number for choosing between
framework-1 and framework-2. The tipping point is context depen-
dent; sometimes less. At some point the PO (1) can no longer grasp
an overview of the entire product and, (2) can no longer effectively
interact with the teams. When the PO is no longer able to focus on
high-level product management, something should change.

Before moving to framework-2, first consider if the PO can be helped
by delegating more work to the teams or by providing other domain
experts who can work with the PO. For example, requirements split-
ting and fine-grained analysis can be done by the teams or other
subject matter experts who support the PO. Encourage the teams to
directly interact with real customers to reduce handoff and reduce
the burden on the PO. Most project management should be done by
the teams. The PO does not need to be involved in low-level details;
they should be able to focus on true product management.

2. Terminology point: This chapter (and book) uses iteration rather
than Sprint because of the former’s familiarity and use in other iter-
ative methods. We occasionally use the latter term when it is imper-
ative in context.

https://less.works For Gene Gendel only, id:gene-gendel

292

11 — Large-Scale Scrum

Figure 11.1 large-
scale Scrum, FW-1

Roles

❑ Product Owner

❑ Scrum Feature Teams

❑ ScrumMasters

Product Owner—The Product Owner role and responsibilities are
the same as in regular one-team classic Scrum. What are those?
There has been some confusion, so it may be worthwhile to review…

1 day

2-4 week
Sprint

Sprint
Retrospective

Sprint
Review

Joint
Retro-
spective

Product Backlog
Refinement

Potentially
Shippable
Product
Increment

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

Product
Backlog

Product
Owner

(2-4 h)
(2-4 h)

 (5-10% of Sprint)

(1.5-3h)

Scrum
Feature
Team

+
ScrumMaster

Sprint
Backlog

Daily
Scrum

https://less.works For Gene Gendel only, id:gene-gendel

293

Overview

[The Product Owner] owns the vision for the total product port-
folio, the business plan, the road map, and the dates. They are
accountable for the revenue stream…The POs are business
focused on product so there is not a one-to-one mapping to
teams. [Sutherland08]

The Product Owner’s focus is return on investment (ROI)…The
Product Owner uses the Product Backlog to give the highest pri-
ority to the requirements that are of highest value to the busi-
ness, to insert nonfunctional requirements that lead to
opportunistic releases and implementations of functionality,
and to constantly adjust the product in response to changing
business conditions, including new competitive offerings.
[Schwaber04].

And from the Certified ScrumMaster course [Schwaber05], the Prod-
uct Owner…

❑ defines the features of the product, decides on release date and
content

❑ is responsible for the profitability of the product (ROI)

❑ prioritizes features according to market value

❑ can change features and priority [every iteration]

❑ accepts or rejects work results

see Product
Management in
the companion
book

In Scrum the PO is called “the single wringable neck” in terms of
responsibility for product success or failure. The classic Scrum PO
role has several classic product manager responsibilities, though
they are distinguished from only being a traditional product man-
ager by also using a prioritized and evolving Product Backlog and
Scrum to maximize ROI, and by meeting with teams each iteration
to present goals and to review the results. In a product group with
existing product managers, the chief (or only) product manager
serves as PO. Note that skillful product management expertise is
critical to being an effective PO.

In the case of internal application development (such as internal
financial application rather than a product for the market), the PO
role is played by one business customer, who often represents a
group of users or stakeholders.

https://less.works For Gene Gendel only, id:gene-gendel

294

11 — Large-Scale Scrum

When there are multiple teams there are many product items, and
that means more work for the Product Owner. Therefore, he or she
may be helped by the teams (a good first option), subject matter
experts, business analysts, customer representatives, or other peo-
ple in product management. These supporters may work within the
Scrum Feature Teams or with product management (close to the
Product Owner) to help with the myriad requirement details and
other minutiae, ensuring that the Product Owner can focus on the
big picture—the overall product.

As the name suggests, there is one and only one Product Owner for a
product, whether there are five or fifty-five teams in the group. This
is necessary to optimally prioritize the overall Product Backlog from
a product perspective.

The companion book’s Product Management chapter explores this
role in more detail.

Scrum Feature Teams—These are normal Scrum teams that take
whole customer-centric features from the Product Backlog and inde-
pendently complete them. They are self-managing and cross-func-
tional teams. Because they are feature teams, there should be little
need for the teams to interact or coordinate, except at the level of
integration of code, which is resolved through continuous integra-
tion. Scrum Feature Teams are explored in the Feature Teams and
Teams chapters.

ScrumMasters—These are regular ScrumMasters that (1) act as
Scrum-method coaches for their teams and the Product Owner, (2)
help their team become a real team by facilitating conflict and
removing obstacles, (3) help the Product Owner, (4) remind the team
of their goal, and (5) bring change to the organization so that overall
product development is optimized and maximum ROI is realized.

In the context of scaling and multiteam development, there are
many opportunities for a team to require a representative at meet-
ings. It is useful for a ScrumMaster to not act as the team represen-
tative. One Scrum goal is an engaged self-managing team; thus, a
good ScrumMaster will avoid taking any management-like role or
activity, including team representative. Other team members need
to learn to take on all management-related roles and activities.3

https://less.works For Gene Gendel only, id:gene-gendel

295

Overview

Artifacts

❑ Product Backlog

❑ Sprint Backlogs

❑ Potentially Shippable Product Increment

Product Backlog—This is a regular backlog. For scaling, user story
format is especially well suited to express Product Backlog Items
because of the ease of splitting user stories. The companion book’s
Requirements chapter explores this in more detail, especially focus-
ing on how to split large user stories (for example, one user story
that will take 150 people two years) into smaller ones—a common
problem in large-scale development that involves mammoth require-
ments.

Sprint Backlog—Each team has its own regular Sprint Backlog.

Potentially Shippable Product Increment—One perfection
challenge in Scrum is that the output of each iteration is a poten-
tially shippable product increment. This is not a difficult goal in a
small product group, but requires a multi-year journey of improve-
ment in a gargantuan group that has institutionalized weaknesses.
Note that the product increment is not per team. Rather, all teams
need to integrate their output into one potentially shippable incre-
ment. This means the teams need to continuously integrate their
code and coordinate in any other way required. These issues are
explored in the companion book’s Continuous Integration and Coor-
dination chapters.

3. In an ideal organization with few impediments and all participants
understanding Scrum, most ScrumMasters would or should disap-
pear. We have seen a few groups that were good enough so that one
ScrumMaster could serve three teams.

https://less.works For Gene Gendel only, id:gene-gendel

296

11 — Large-Scale Scrum

Events

Sprint Planning—As usual, consists of two timeboxed steps:

Part One—One participant is the Product Owner. If there are only a
few teams and they can all fit comfortably together in one room, the
second ‘participant’ could be all team members. Otherwise, the sec-
ond ‘participant’ is one or two representatives from each team; we
prefer two so that each team has more than one perspective. As
usual, the ScrumMaster should not represent the team in meetings,
including this one. What happens in Part One? The usual goals and
activities, but now involving several teams in one room. For exam-
ple, backlog items are now offered to a set of teams, and any one of
them may volunteer for an item. Note that when groups consistently
do the Product Backlog Refinement (PBR) meeting each itera-
tion, then Part One will be simple and quick, because almost all
questions will have been previously resolved in the PBR meeting. If
Part One is filled with questions and clarifications, or takes too
much time, the PBR meetings are not being done skillfully. The com-
panion book’s Planning chapter has more tips.

Part Two—At the end of Part One, the representatives or teams
return to their room and, in parallel, each team holds a normal
Sprint Planning Part Two and creates their own Sprint Backlog. The
companion book’s Planning, Design, and Requirements chapters
offers some relevant tips.

Daily Scrum—This is the usual Scrum event. In a multiteam con-
text, it is sometimes useful to know what one or two other particular
teams are doing. If these teams hold their Daily Scrum at different
times, then it is possible to send scouts to observe other meetings as
a Chicken. The companion book’s Coordination chapter has other
tips.

❑ Sprint Planning

❑ Daily Scrum

❑ Product Backlog Refine-
ment

❑ Sprint Review

❑ Sprint Retrospectives

❑ Joint Retrospective

https://less.works For Gene Gendel only, id:gene-gendel

297

Overview

Product Backlog Refinement—This is the usual Scrum activity
of continuously grooming4 the Product Backlog. Scrum recommends
that five or ten percent of each iteration be dedicated to this refine-
ment but does not say how to do it. However, in the context of multi-
ple teams, we suggest it be done as a focused workshop—such as a
four-hour meeting once per iteration—so that all teams or team rep-
resentatives can come together with the Product Owner. The com-
panion book’s Planning, Requirements, and Multisite chapters have
related tips.

Sprint Review—Once again, the normal Scrum event. Participants
include either all members of all teams or representatives. Because
a ScrumMaster has a special responsibility in the Sprint Review to
alert the Product Owner to any items that did not meet the Defini-
tion of Done, ScrumMasters will need to attend if there are any vio-
lations. The companion book’s Inspect & Adapt chapter has a few
relevant tips.

Sprint Retrospectives—Each team has its own individual retro-
spective. The companion book’s Inspect & Adapt chapter has a few
relevant tips.

Joint Retrospective (optional)—To improve the system as a
whole, a Joint Retrospective is useful. We observe that these work
best with only a few representatives from each team. In contrast to
the usual guideline to avoid including a ScrumMaster as a team rep-
resentative at meetings, in this case consider including the Scrum-
Master (along with other team representatives) because the
retrospective is a place to learn more about systemic impediments to
effective Scrum—an issue directly related to ScrumMaster responsi-
bilities. This meeting is held after the individual team retrospec-
tives. Since individual retrospectives are routinely held at the very
end of the iteration, we see that groups are likely to hold a Joint Ret-
rospective early during the first week of the subsequent iteration.
The companion book’s Inspect & Adapt chapter has some relevant
tips.

4. ‘Grooming’ is a popular term for this activity, but it is an English
word often not understood by non-native speakers.

https://less.works For Gene Gendel only, id:gene-gendel

298

11 — Large-Scale Scrum

Other Elements

Definition of Done (DoD)—The DoD applies to all items for all
teams. Therefore, the DoD reflects what all teams are capable of
achieving. We usually see large product groups write the product-
level DoD on a wiki page that all teams refer to, perhaps during
Sprint Planning Part One. The Joint Retrospective is a good place to
explore changes to the DoD. The companion book’s Planning chapter
has a few relevant tips.

Continuous Integration (CI)—CI takes on special prominence in
multiteam development. As explored in the Feature Teams chapter,
feature teams shift the focus of coordination away from planning
and toward code. Rock-solid CI for all developers—whether 20 or
200—is an absolute foundation for successful large-scale Scrum. The
companion book’s Continuous Integration chapter has some tips.

TRY…LARGE-SCALE SCRUM FW-2 FOR ‘MANY’ TEAMS

Large-scale Scrum framework-2 builds on—rather than replaces—
framework-1.

Beyond ten teams (or even less), the Product Owner cannot effec-
tively work with all the teams or all the details in the Product Back-
log. At this point it is useful to identify the major requirement
areas and then divide the Product Backlog into separate Area
Backlogs, each with its own Area Product Owner (APO) and its
own dedicated Scrum Feature Teams. This is explored in the
Requirement Areas chapter.

Consequently, framework-2 of large-scale Scrum introduces two new
roles, Area Product Owner and Product Owner Team (all APOs
and the Product Owner), and one more artifact, Area Backlog. To
be precise, the Area Backlog is not a separate backlog; it is simply a
view onto the Product Backlog for one area.

Note that there may also be a Product Owner Team in framework-1,
but in that case, the helpers are not APOs.

https://less.works For Gene Gendel only, id:gene-gendel

299

Overview

Figure 11.2 large-
scale Scrum FW-2

Potentially
Shippable
Product

Increment

Product
Owner

Area
Product
Owner

Area
Product
Backlog

Product
Backlog

S
pr

in
t R

et
ro

sp
ec

tiv
e

S
pr

in
t R

ev
ie

w

Jo
in

t R
et

ro
sp

ec
tiv

e

1 day

2-4 week
Sprint

Product Backlog
Refinement

Sprint
Planning

Part 2

Sprint
Planning

Part 1

(2-4 h)

(15 min)

(2-4 h)

 (5-10% of Sprint)

Scrum Feature
Team

+
ScrumMaster

Sprint
Backlog

Daily Scrum

https://less.works For Gene Gendel only, id:gene-gendel

300

11 — Large-Scale Scrum

There are some changes to events in framework-2:

Pre-Sprint Planning—Before Sprint Planning, usually in the last
week of the prior iteration, the Product Owner Team needs to coordi-
nate the overall prioritization of the Product Backlog. The Product
Owner usually wants to discuss priorities in each Area Backlog, and
the members want feedback from each other on their ideas. More
broadly, this team wants to meet each iteration to consider where
they are and where they want to go as a whole product.

Sprint Planning—There is separate Sprint Planning for each
requirement area. Each involves an Area Product Owner and the
teams of that area. It is otherwise the same as framework-1.

Product Backlog Refinement—There is a separate refinement
activity for each area, with the Area Product Owner and teams.

Sprint Review—There is a separate Sprint Review for each area.
Each involves the Area Product Owner and teams. The Product
Owner may attend particular reviews that he or she is especially
interested in. It is otherwise the same as framework-1.

Joint Review (optional)—There are times when the Product Owner
Team (plus representatives from various Scrum Feature Teams)
wants to hold a product-level joint review. They discuss issues,
improvements, and features of interest to the majority of the Prod-
uct Owner Team. Not surprisingly, they demo items that are of
broad interest or that are critical to the next release.

Joint Retrospectives (optional)—As in framework-1, representa-
tives from multiple teams may want to hold a retrospective for sys-
tems-level learning and improvement. This may happen at the area
level and/or at the overall product level, with representatives from
different areas. As mentioned in the Multisite chapter of the com-
panion book, a (physical) site-level Joint Retrospective is also com-
mon, because improvement issues are often related to the physical
or cultural environment of one site… “We need more whiteboards in
this building.”

https://less.works For Gene Gendel only, id:gene-gendel

301

Scaling Some Issues

SCALING SOME ISSUES

When adopting large-scale Scrum, certain issues, dysfunctions, or
misconceptions are highlighted. These include the following…

fake
ScrumMaster
p. 250

Fake ScrumMasters—In large groups there is usually an existing
cadre of established project or first-level team managers. It is not
uncommon that these assign themselves the title of ScrumMasters
or are assigned this title by higher management.

Coordination Meetings and Scrum of Scrums (SoS)—The SoS is one
mechanism proposed in Scrum for multiteam coordination. There
are alternatives. Comments:

❑ One coordination and/or SoS dysfunction is that the coordina-
tion activity is co-opted by an existing management layer
rather than handled by regular team members. As discussed in
the Teams chapter (and the Coordination chapter of the com-
panion book), healthy self-managing teams are themselves
responsible for their coordination and communication with
other groups.

❑ A variant dysfunction is that a coordination meeting (such as a
SoS) is attended by ScrumMasters—fake or real. This inhibits
real self-managing teams that can function independently of
ScrumMasters. We suggest rotating representatives from
teams to attend coordination meetings.

❑ Another potential misconception and/or dysfunction—perhaps
surprising—is the assumption that the group needs a multi-
team coordination meeting such as an SoS. Why is coordination
needed? It may be a sign that there are not real cross-func-
tional, cross-component feature teams that can work indepen-
dently on a complete feature, or a sign that there is not a focus
on coordination at the code level through continuous integra-
tion.

❑ There are cases for which a coordination meeting is important.
However, a misconception is that the meeting must involve the
whole product group. In fact, it may be sufficient for one
requirement area or some other subset of teams.

https://less.works For Gene Gendel only, id:gene-gendel

302

11 — Large-Scale Scrum

❑ Arguably the most common misconception regarding the SoS is
the assumption that it is the best or only way to hold a coordi-
nation meeting in Scrum. The SoS seemed a reasonable idea
when first proposed (based on limited experiments), but there
are alternatives that people now realize may work better, such
as Open Space Technology meetings or Town Hall meetings.
The Coordination chapter in the companion book elaborates.

CONCLUSION

Cornerstones for effective large-scale Scrum are the thinking tools
and organizational tools explored in this book. The companion Prac-
tices book explores many concrete action tools.

https://less.works For Gene Gendel only, id:gene-gendel

Miscellany

https://less.works For Gene Gendel only, id:gene-gendel

Book
1 Introduction 1

Thinking Tools
2 Systems Thinking 9
3 Lean Thinking 39

4 Queueing Theory 93

5 False Dichotomies 125

6 Be Agile 139

Organizational Tools
7 Feature Teams 149

8 Teams 193

9 Requirement Areas 217

10 Organization 229

11 Large-Scale Scrum 289

Miscellany
12 Scrum Primer 305

Recommended Readings 327

Bibliography 333

Index 343

Chapter
• Traditional Software Development 305

• Agile Development and Scrum 307

• Scrum Summary 308

• Scrum Roles 309

• Starting Scrum 311

• Sprint Planning 313

• Daily Scrum 316

• Updating Sprint Backlog & Sprint Burndown
Chart 317

• Product Backlog Refinement 318

• Ending the Sprint 319

• Sprint Review 319

• Sprint Retrospective 320

• Updating Release Backlog & Burndown Chart
320

• Starting the Next Sprint 322

• Release Sprint 322

• Release Planning & Initial Product Backlog
Refinement 322

• Application or Product Focus 323

• Common Challenges 324

• Results from Scrum 325

https://less.works For Gene Gendel only, id:gene-gendel

305

Chapter

12
SCRUM PRIMER

by Pete Deemer & Gabrielle Benefield1

(see www.scrumprimer.com for more)

A note to readers: There are many concise descriptions of Scrum available online, and
this primer aims to provide the next level of detail on the practices. It is not intended
as the final step in a Scrum education; teams that are considering adopting Scrum
are advised to equip themselves with Ken Schwaber’s Agile Project Management with
Scrum or Agile Software Development with Scrum, and take advantage of the many
excellent Scrum training and coaching options that are available; full details are at
scrumalliance.org. Our thanks go to Ken Schwaber, Dr. Jeff Sutherland, Mike Cohn,
Craig Larman, and Bas Vodde for their generous input.

TRADITIONAL SOFTWARE DEVELOPMENT

The traditional way to build software, used by companies big and small, was
a sequential life cycle commonly known as “the waterfall.” There are many
variants (such as the V-Model), but it typically begins with a detailed plan-
ning phase, where the end product is carefully thought through, designed,
and documented in great detail. The tasks necessary to execute the design
are determined, and the work is organized using tools such as Gantt charts
and applications such as Microsoft Project. The team arrives at an estimate
of how long the development will take by adding up detailed estimates of
the individual steps involved. Once stakeholders have thoroughly reviewed
the plan and provided their approvals, the team starts to work. Team mem-
bers complete their specialized portion of the work, and then hand it off to
others in production-line fashion. Once the work is complete, it is delivered
to a testing organization (some call this Quality Assurance), which com-
pletes testing prior to the product reaching the customer. Throughout the
process, strict controls are placed on deviations from the plan to ensure that
what is produced is actually what was designed.

1. This chapter is in slightly smaller font, reflecting the original
primer, and signaling this chapter is a copy from another source.

https://less.works For Gene Gendel only, id:gene-gendel

www.scrumprimer.com

306

12 — Scrum Primer

This approach has strengths and weaknesses. Its great strength is that it is
supremely logical – think before you build, write it all down, follow a plan,
and keep everything as organized as possible. It has just one great weak-
ness: humans are involved.

For example, this approach requires that the good ideas all come at the
beginning of the release cycle, where they can be incorporated into the plan.
But as we all know, good ideas appear throughout the process – in the begin-
ning, the middle, and sometimes even the day before launch, and a process
that does not permit change will stifle this innovation. With the waterfall, a
great idea late in the release cycle is not a gift, it’s a threat.

The waterfall approach also places a great emphasis on writing things down
as a primary method for communicating critical information. The very rea-
sonable assumption is that if I can write down on paper as much as possible
of what’s in my head, it will more reliably make it into the head of everyone
else on the team; plus, if it’s on paper, there is tangible proof that I’ve done
my job. The reality, though, is that most of the time these highly detailed 50-
page requirements documents just do not get read. When they do get read,
the misunderstandings are often compounded. A written document is an
incomplete picture of my ideas; when you read it, you create another
abstraction, which is now two steps away from what I think I meant to say
at that time. It is no surprise that serious misunderstandings occur.

Something else that happens when you have humans involved is the hands-
on “aha” moment – the first time that you actually use the working product.
You immediately think of 20 ways you could have made it better. Unfortu-
nately, these very valuable insights often come at the end of the release
cycle, when changes are most difficult and disruptive – in other words, when
doing the right thing is most expensive, at least when using a traditional
method.

Humans are not able to predict the future. For example, your competition
makes an announcement that was not expected. Unanticipated technical
problems crop up that force a change in direction. Furthermore, people are
particularly bad at planning uncertain things far into the future – guessing
today how you will be spending your week eight months from now is some-
thing of a fantasy. It has been the downfall of many a carefully constructed
Gantt chart.

In addition, a sequential life cycle tends to foster an adversarial relationship
between the people that are handing work off from one to the next. “He’s
asking me to build something that’s not in the specification.” “She’s chang-
ing her mind.” “I can’t be held responsible for something I don’t control.”
And this gets us to another observation about sequential development – it is
not much fun. The waterfall model is a cause of great misery for the people
who build products. The resulting products fall well short of expressing the
creativity, skill, and passion of their creators. People are not robots, and a
process that requires them to act like robots results in unhappiness.

https://less.works For Gene Gendel only, id:gene-gendel

307

Agile Development and Scrum

A rigid, change-resistant process produces mediocre products. Customers
may get what they first ask for (at least two translation steps removed), but
is it what they really want once they see the product? By gathering all the
requirements up front and having them set in stone, the product is con-
demned to be only as good as the initial idea, instead of being the best once
people have learned or discovered new things.

Many practitioners of a sequential life cycle experience these shortcomings
again and again. But, it seems so supremely logical that the common reac-
tion is to turn inward: “If only we did it better, it would work” – if we just
planned more, documented more, resisted change more, everything would
work smoothly. Unfortunately, many teams find just the opposite: the
harder they try, the worse it gets! There are also management teams that
have invested their reputation – and many resources – in a waterfall model;
changing to a fundamentally different model is an apparent admission of
having made a mistake. And Scrum is fundamentally different...

AGILE DEVELOPMENT AND SCRUM

The agile family of development methods evolved from the old and well-
known iterative and incremental life cycle approaches. They were born out
of a belief that an approach more grounded in human reality – and the prod-
uct development reality of learning, innovation, and change – would yield
better results. Agile principles emphasize building working software that
people can get hands on quickly, versus spending a lot of time writing speci-
fications up front. Agile development focuses on cross-functional teams
empowered to make decisions, versus big hierarchies and compartmental-
ization by function. And it focuses on rapid iteration, with continuous cus-
tomer input along the way. Often when people learn about agile
development or Scrum, there’s a glimmer of recognition – it sounds a lot like
back in the start-up days, when we “just did it.”

By far the most popular agile method is Scrum. It was strongly influenced
by a 1986 Harvard Business Review article on the practices associated with
successful product development groups; in this paper the term “Scrum” was
introduced, relating successful development to the game of Rugby in which
a self-organizing (self-managing) team moves together down the field of
product development. It was then formalized in 1993 by Ken Schwaber and
Dr. Jeff Sutherland. Scrum is now used by companies large and small,
including Yahoo!, Microsoft, Google, Lockheed Martin, Motorola, SAP, Cisco,
GE, CapitalOne and the US Federal Reserve. Many teams using Scrum
report significant improvements, and in some cases complete transforma-
tions, in both productivity and morale. For product developers – many of
whom have been burned by the “management fad of the month club” – this
is significant. Scrum is simple and powerful.

https://less.works For Gene Gendel only, id:gene-gendel

308

12 — Scrum Primer

SCRUM SUMMARY

Try…Learn and do standard Scrum

Scrum is an iterative, incremental framework for projects and product or
application development. It structures development in cycles of work called
Sprints. These iterations are 1-4 weeks in length, and take place one after
the other. The Sprints are of fixed duration – they end on a specific date
whether the work has been completed or not, and are never extended. They
are timeboxed. At the beginning of each Sprint, a cross-functional team
selects items (customer requirements) from a prioritized list. They commit
to complete the items by the end of the Sprint. During the Sprint, the cho-
sen items do not change. Every day the team gathers briefly to report to
each other on progress, and update simple charts that orient them to the
work remaining. At the end of the Sprint, the team reviews the Sprint with
stakeholders, and demonstrates what they have built. People obtain feed-
back that can be incorporated in the next Sprint. Scrum emphasizes work-
ing product at the end of the Sprint that is really “done”; in the case of
software, this means code that is integrated, fully tested and potentially
shippable. Key roles, artifacts, and events are summarized in Figure 12.1.

A major theme in Scrum is “inspect and adapt.” Since development inevita-
bly involves learning, innovation, and surprises, Scrum emphasizes taking a
short step of development, inspecting both the resulting product and the
efficacy of current practices, and then adapting the product goals and pro-
cess practices. Repeat forever.

Figure 12.1 Scrum
roles, artifacts, and
events

https://less.works For Gene Gendel only, id:gene-gendel

309

Scrum Roles

SCRUM ROLES

In Scrum, there are three primary roles: The Product Owner, The Team, and
The ScrumMaster. The Product Owner is responsible for maximizing
return on investment (ROI) by identifying product features, translating
these into a prioritized feature list, selecting the features for the next
Sprint, and continually re-prioritizing and refining the list. The Product
Owner has profit and loss responsibility for the product, assuming it is a
commercial product. In the case of an internal application, the Product
Owner is not responsible for ROI in the sense of a commercial product (that
will generate revenue), but they are still responsible for maximizing ROI in
the sense of choosing – each Sprint – the highest-business-value lowest-cost
items. In some cases, the Product Owner and the customer are the same
person; this is common for internal applications. In others, the customer
might be millions of people with a variety of needs, in which case the Prod-
uct Owner role is similar to the Product Manager or Product Marketing
Manager position in many product organizations. However, the Product
Owner is somewhat different than a traditional Product Manager because
they actively and frequently interact with the team, personally offering the
priorities and reviewing the results each two- or four-week iteration, rather
than delegating development decisions to a project manager. It is important
to note that in Scrum there is one and only one person who serves as – and
has the final authority of – Product Owner.

The Team builds the product that the customer is going to use: the applica-
tion or website, for example. The team in Scrum is “cross-functional” – it
includes all the expertise necessary to deliver the potentially shippable
product each Sprint – and it is “self-organizing” (self-managing), with a very
high degree of autonomy and accountability. In Scrum, teams are self-orga-
nizing rather than being led by a team manager or project manager. The
team decides what to commit to, and how best to accomplish that commit-
ment; in Scrum lore, the team are known as “Pigs” and everyone else in the
organization are “Chickens” (which comes from a joke about a pig and a
chicken deciding to open a restaurant called “Ham and Eggs,” and the pig
having second thoughts because “he would be truly committed, but the
chicken would only be involved”).

The team in Scrum is seven plus or minus two people, and for a software
product the team might include analysts, developers, interface designers,
and testers. The team develops the product and provides ideas to the Prod-
uct Owner about how to make the product great. In Scrum, the team should
be 100 percent dedicated to the work for one product during the Sprint;
avoid multitasking across multiple products or projects. Stable teams are
associated with higher productivity, so avoid changing team members.
Application groups with many people are organized into multiple Scrum
teams, each focused on different features for the product, with close coordi-
nation of their efforts. Since one team does all the work (planning, analysis,
programming, and test) for a complete customer-centric feature, Scrum
teams are also known as feature teams.

https://less.works For Gene Gendel only, id:gene-gendel

310

12 — Scrum Primer

The ScrumMaster helps the product group learn and apply Scrum to
achieve business value. The ScrumMaster does whatever is in their power
to help the team be successful. The ScrumMaster is not the manager of the
team or a project manager; instead, the ScrumMaster serves the team, pro-
tects them from outside interference, and educates and guides the Product
Owner and the team in the skillful use of Scrum. The ScrumMaster makes
sure everyone on the team (including the Product Owner, and those in man-
agement) understands and follows the practices of Scrum, and they help
lead the organization through the often difficult change required to achieve
success with agile development. Since Scrum makes visible many impedi-
ments and threats to the team’s and Product Owner’s effectiveness, it is
important to have an engaged ScrumMaster working energetically to help
resolve those issues, or the team or Product Owner will find it difficult to
succeed. Scrum teams should have a dedicated full-time ScrumMaster,
although a smaller team might have a team member play this role (carrying
a lighter load of regular work when they do so). Great ScrumMasters can
come from any background or discipline: Engineering, Design, Testing,
Product Management, Project Management, or Quality Management.

The ScrumMaster and the Product Owner cannot be the same individual; at
times, the ScrumMaster may be called upon to push back on the Product
Owner (for example, if they try to introduce new deliverables in the middle
of a Sprint). And unlike a project manager, the ScrumMaster does not tell
people what to do or assign tasks – they facilitate the process, supporting
the team as it organizes and manages itself. If the ScrumMaster was previ-
ously in a position managing the team, they will need to significantly
change their mindset and style of interaction for the team to be successful
with Scrum. In the case that an ex-manager transitions to the role of
ScrumMaster, it is best to serve a team other than the one that previously
reported to the manager, otherwise the social or power dynamics are in
potential conflict.

Note there is no role of project manager in Scrum. Sometimes an (ex-)project
manager can step into the role of ScrumMaster, but this has a mixed record
of success – there is a fundamental difference between the two roles, both in
day-to-day responsibilities and in the mindset required to be successful. A
good way to understand thoroughly the role of the ScrumMaster, and start
to develop the core skills needed for success, is the Scrum Alliance’s Certi-
fied ScrumMaster training.

In addition to these three roles, there are other contributors to the success of
the product, including managers. While their role changes in Scrum, they
remain valuable. For example:

❑ they support the team by respecting the rules and spirit of Scrum

❑ they help remove impediments that the team identifies

❑ they make their expertise and experience available to the team

In Scrum, these individuals replace the time they previously spent playing
the role of “nanny” (assigning tasks, getting status reports, and other forms

https://less.works For Gene Gendel only, id:gene-gendel

311

Starting Scrum

of micromanagement) with time as “guru” and “servant” of the team (men-
toring, coaching, helping remove obstacles, helping problem-solve, providing
creative input, and guiding the skills development of team members). In
this shift, managers may need to change their management style; for exam-
ple, using Socratic questioning to help the team discover the solution to a
problem, rather than simply deciding a solution and assigning it to the
team.

STARTING SCRUM

The first step in Scrum is for the Product Owner to articulate the product
vision. Eventually, this evolves into a refined and prioritized list of features
called the Product Backlog. This backlog exists (and evolves) over the life-
time of the product; it is the product road map (Figure 12.2). At any point,
the Product Backlog is the single, definitive view of “everything that could
be done by the team ever, in order of priority”. Only a single Product Back-
log exists; this means the Product Owner is required to make prioritization
decisions across the entire spectrum.

Figure 12.2 Product
Backlog

The Product Backlog includes a variety of items, primarily new customer
features (“enable all users to place book in shopping cart”), but also engi-
neering improvement goals (“rework the transaction processing module to
make it scalable”), exploratory or research work (“investigate solutions for
speeding up credit card validation”), and, possibly, known defects (“diagnose
and fix the order processing script errors”), if there are only a few problems.
(A system with many defects usually has a separate defect tracking system.)
Many people like to articulate the requirements in terms of “user stories”
concise, clear descriptions of the functionality in terms of its value to the
end user of the product.

https://less.works For Gene Gendel only, id:gene-gendel

312

12 — Scrum Primer

The subset of the Product Backlog that is intended for the current release is
known as the Release Backlog, and in general, this portion is the primary
focus of the Product Owner.

The Product Backlog is continuously updated by the Product Owner to
reflect changes in the needs of the customer, new ideas or insights, moves by
the competition, technical hurdles that appear, and so forth. The team pro-
vides the Product Owner with estimates of the effort required for each item
on the Product Backlog. In addition, the Product Owner is responsible for
assigning a business value estimate to each individual item. This is usually
an unfamiliar practice for a Product Owner. As such, it is something a
ScrumMaster may help the Product Owner learn to do. With these two esti-
mates (effort and value) and perhaps with additional risk estimates, the
Product Owner prioritizes the backlog (actually, usually just the Release
Backlog subset) to maximize ROI (choosing items of high value with low
effort) or secondarily, to reduce some major risk. As will be seen, these effort
and value estimates may be refreshed each Sprint as people learn; conse-
quently, this is a continuous re-prioritization activity the Product Backlog is
ever-evolving.

Scrum does not mandate the form of estimates in the Product Backlog, but
it is common to use relative estimates expressed as “points” rather than
absolute units of effort such as person-weeks.

Over time, a team tracks how many relative points they implement each
Sprint; for example, averaging 26 points per Sprint. With this information
they can project a release date to complete all features, or how many fea-
tures can be completed by a fixed date.

The items in the Product Backlog can vary significantly in size or effort.
Larger ones are broken into smaller items during the Product Backlog
Refinement workshop or the Sprint Planning Meeting, and smaller ones
may be consolidated.

One of the myths about Scrum is that it prevents you from writing detailed
specifications; in reality, it is up to the Product Owner and Team to decide
how much detail is required, and this will vary from one backlog item to the
next, depending on the insight of the team, and other factors. State what is
important in the least amount of space necessary – in other words, do not
describe every possible detail of an item, just make clear what is necessary
for it to be understood. Low priority items, far from being implemented and
usually “coarse grained” or large, have less requirements details. High pri-
ority and fine-grained items that will soon be implemented tend to have
more detail.

https://less.works For Gene Gendel only, id:gene-gendel

313

Sprint Planning

SPRINT PLANNING

At the beginning of each Sprint, the Sprint Planning Meeting takes
place. It is divided into two distinct sub-meetings, the first of which is called
Sprint Planning Part One.

In Sprint Planning Part One, the Product Owner and Team (with facilita-
tion from the ScrumMaster) review the high-priority items in the Product
Backlog that the Product Owner is interested in implementing this Sprint.
They discuss the goals and context for these high-priority items on the Prod-
uct Backlog, providing the Team with insight into the Product Owner’s
thinking. The Product Owner and Team also review the “Definition of Done”
that all items must meet, such as, “Done means coded to standards,
reviewed, implemented with unit test-driven development (TDD), tested
with 100 percent test automation, integrated, and documented.” Part One
focuses on understanding what the Product Owner wants. According to the
rules of Scrum, at the end of Part One the (always busy) Product Owner
may leave although they must be available (for example, by phone) during
the next meeting. However, they are welcome to attend Part Two...

Sprint Planning Part Two focuses on detailed task planning for how to
implement the items that the team decides to take on. The Team selects the
items from the Product Backlog they commit to complete by the end of the
Sprint, starting at the top of the Product Backlog (in others words, starting
with the items that are the highest priority for the Product Owner) and
working down the list in order. This is a key practice in Scrum: The team
decides how much work they will commit to complete, rather than having it
assigned to them by the Product Owner. This makes for a more reliable com-
mitment because the team is making it based on their own analysis and
planning, rather than having it “made” for them by someone else. While the
Product Owner does not have control over how much the team commits to,
he or she knows that the items the team is committing to are drawn from
the top of the Product Backlog – in other words, the items that he or she has
rated as most important. The team has the authority to also select items
from further down the list; this usually happens when the team and Product
Owner realize that something of lower priority fits easily and appropriately
with the high priority items.

The Sprint Planning Meeting will often last a number of hours – the team is
making a serious commitment to complete the work, and this commitment
requires careful thought to be successful. The team will probably begin the
Sprint Planning Part Two by estimating how much time each member has
for Sprint-related work – in other words, their average workday minus the
time they spend attending meetings, doing email, taking lunch breaks, and
so on. For most people this works out to 4-6 hours of time per day available
for Sprint-related work. See Figure 12.3.

https://less.works For Gene Gendel only, id:gene-gendel

314

12 — Scrum Primer

Figure 12.3 hours
available calculation

Once the time available is determined, the team starts with the first item on
the Product Backlog – in other words, the Product Owner’s highest priority
item – and working together, breaks it down into individual tasks, which are
recorded in a document called the Sprint Backlog (Figure 12.4). As men-
tioned, the Product Owner must be available during Part Two (such as via
the phone) so that clarification is possible. The team will move sequentially
down the Product Backlog in this way, until it’s used up all its available
hours. At the end of the meeting, the team will have produced a list of all the
tasks with estimates (typically in hours or fractions of a day).

Scrum encourages multi-skilled workers, rather than only “working to job
title” such as a “tester” only doing testing. In other words, team members
“go to where the work is” and help out as possible. If there are many testing
tasks, then all team members may help. This does not imply that everyone
is a generalist; no doubt some people are especially skilled in testing (and so
on) but team members work together and learn new skills from each other.
Consequently, during task generation and estimation in Sprint Planning, it
is not necessary – nor appropriate – for people to volunteer for all the tasks
“they can do best.” Rather, it is better to only volunteer for one task at a
time, when it is time to pick up a new task, and to consider choosing tasks
that will on purpose involve learning (perhaps by pair work with a special-
ist).

All that said, there are rare times when John may do a particular task
because it would take far too long or be impossible for others to learn – per-
haps John is the only person with any artistic skill to draw pictures. Other
team members could not draw a “stick man” if their life depended on it. In
this rare case – and if it is not rare and not getting rarer as the team learns,
there is something wrong – it may be necessary to ask if the total planned
drawing tasks that must be done by John are feasible within the short
Sprint.

Many teams also make use of a visual task-tracking tool, in the form of a
wall-sized task board where tasks (written on Post-It Notes) migrate during
the Sprint across columns labeled “Not Yet Started,” “In Progress,” and
“Completed.” See Figure 12.5.

https://less.works For Gene Gendel only, id:gene-gendel

315

Sprint Planning

Figure 12.4 Sprint
Backlog

Figure 12.5 visual
management with
Sprint Backlog on
cards; Daily Scrum

One of the pillars of Scrum is that once the Team makes its commitment,
any additions or changes must be deferred until the next Sprint. This means
that if halfway through the Sprint the Product Owner decides there is a new
item he would like the team to work on, he cannot make the change until
the start of the next Sprint. If an external circumstance appears that signif-
icantly changes priorities, and means the team would be wasting its time if
it continued working, the Product Owner or the team can terminate the
Sprint. The team stops, and a new Sprint Planning meeting initiates a new
Sprint. The disruption of doing this is usually great; this serves as a disin-
centive for the Product Owner or team to resort to this dramatic decision.

There is a powerful, positive influence that comes from the team being pro-
tected from changing goals during the Sprint. First, the team gets to work
knowing with absolute certainty that its commitments will not change, that
reinforces the team’s focus on ensuring completion. Second, it disciplines the
Product Owner into really thinking through the items he or she prioritizes
on the Product Backlog and offers to the team for the Sprint.

By following these Scrum rules the Product Owner gains two things. First,
he or she has the confidence of knowing the team has made a commitment

https://less.works For Gene Gendel only, id:gene-gendel

316

12 — Scrum Primer

to complete a realistic and clear set of work they have chosen. Over time a
team can become quite skilled at choosing and delivering on a realistic com-
mitment. Second, the Product Owner gets to make whatever changes he or
she likes to the Product Backlog before the start of the next Sprint. At that
point, additions, deletions, modifications, and re-prioritizations are all pos-
sible and acceptable. While the Product Owner is not able to make changes
to the selected items under development during the current Sprint, he or
she is only one Sprint’s duration or less away from making any changes they
wish. Gone is the stigma around change – change of direction, change of
requirements, or just plain changing your mind – and it may be for this rea-
son that Product Owners are usually as enthusiastic about Scrum as any-
one.

DAILY SCRUM

Once the Sprint has started, the Team engages in another of the key Scrum
practices: The Daily Scrum. This is a short (15 minutes or less) meeting
that happens every workday at an appointed time. Everyone on the Team
attends. To keep it brief, it is recommended that everyone remain standing.
It is the team’s opportunity to report to each other on progress and obsta-
cles. In the Daily Scrum, one by one, each member of the team reports three
(and only three) things to the other members of the team: (1) What they were
able to get done since the last meeting; (2) what they are planning to finish
by the next meeting; and (3) any blocks or impediments that are in their
way. Note that the Daily Scrum is not a status meeting to report to a man-
ager; it is a time for a self-organizing team to share with each other what is
going on, to help them coordinate. Someone makes note of the blocks, and
the ScrumMaster is responsible to help team members resolve them. There
is no discussion during the Daily Scrum, only reporting answers to the three
questions; if discussion is required it takes place immediately after the
Daily Scrum in a follow-up meeting, although in Scrum no one is required to
attend this. This follow-up meeting is a common event where the team
adapts to the information they heard in the Daily Scrum: in other words,
another inspect and adapt cycle. It is generally recommended not to have
managers or others in positions of perceived authority attend the Daily
Scrum. This risks making the team feel “monitored” – under pressure to
report major progress every day (an unrealistic expectation), and inhibited
about reporting problems – and it tends to undermine the team’s self-man-
agement, and invite micromanagement. It would be more useful for a stake-
holder to instead reach out to the team following the meeting, and offer to
help remove any blocks that are slowing the team’s progress.

https://less.works For Gene Gendel only, id:gene-gendel

317

Updating Sprint Backlog & Sprint Burndown Chart

UPDATING SPRINT BACKLOG & SPRINT BURNDOWN CHART

Every day, the team members update their estimate of the amount of time
remaining to complete their current task in the Sprint Backlog
(Figure 12.6). Following this update, someone adds up the hours remaining
for the team as a whole, and plots it on the Sprint Burndown Chart
(Figure 12.7). This graph shows, each day, a new estimate of how much work
(measured in person hours) remains until the team’s tasks are finished. Ide-
ally, this is a downward sloping graph that is on a trajectory to reach “zero
effort remaining” by the last day of the Sprint. Hence it is called a burn-
down chart. And while sometimes it looks good, often it does not; this is the
reality of product development. The important thing is that it shows the
team their progress towards their goal, not in terms of how much time was
spent in the past (an irrelevant fact in terms of progress), but in terms of
how much work remains in the future – what separates the team from their
goal. If the burndown line is not tracking downwards towards completion
near the end of the Sprint, then the team needs to adjust, such as to reduce
the scope of the work or to find a way to work more efficiently while still
maintaining a sustainable pace.

While the Sprint Burndown chart can be created and displayed using a
spreadsheet, many teams find it is more effective to show it on paper on a
wall in their workspace, with updates in pen; this “low-tech/high-touch”
solution is fast, simple, and often more visible than a computer chart.

Figure 12.6 new
estimated remaining

https://less.works For Gene Gendel only, id:gene-gendel

318

12 — Scrum Primer

Figure 12.7 Sprint
Burndown chart

PRODUCT BACKLOG REFINEMENT

One of the lesser known, but valuable, guidelines in Scrum is that five or
ten percent of each Sprint must be dedicated by the team to refining (or
“grooming”) the Product Backlog. This includes detailed requirements anal-
ysis, splitting large items into smaller ones, estimation of new items, and re-
estimation of existing items. Scrum is silent on how this work is done, but
we suggest a focused workshop near the end of the Sprint, so that the team
and Product Owner can dedicate themselves to this work without interrup-
tion. For a two-week Sprint, five percent of the duration implies that each
Sprint there is a half-day Product Backlog Refinement workshop. This
refinement activity is not for items selected for the current Sprint; it is for
items for the future, most likely in the next one or two Sprints. With this
practice, Sprint Planning becomes relatively simple because the Product
Owner and Scrum Team start the planning with a clear, well-analyzed and
carefully estimated set of items. A sign that this refinement workshop is not
being done (or not being done well) is that Sprint Planning involves signifi-
cant questions, discovery, or confusion.

https://less.works For Gene Gendel only, id:gene-gendel

319

Ending the Sprint

ENDING THE SPRINT

One of the core tenets of Scrum is that the duration of the Sprint is never
extended – it ends on the assigned date regardless of whether the team has
completed the work it committed to. Teams typically over-commit in their
first few Sprints and fail to meet their objectives. They might then overcom-
pensate and under-commit, and finish early. But by the third or fourth
Sprint, teams typically have figured out what they are capable of delivering
(most of the time), and they will meet their Sprint goals more reliably after
that. Teams are encouraged to pick one duration for their Sprints (say, two
weeks) and not change it. A consistent duration helps the team learn how
much it can accomplish, which helps in both estimation and longer-term
release planning. It also helps the team achieve a rhythm for their work;
this is often referred to as the “heartbeat” of the team in Scrum.

SPRINT REVIEW

After the Sprint ends, there is the Sprint Review, where the team reviews
the Sprint with the Product Owner. This is often mislabeled the “demo” but
that does not capture the real intent of this meeting. A key idea in Scrum is
inspect and adapt. To see and learn what is going on and then evolve based
on feedback, in repeating cycles. The Sprint Review is an inspect and adapt
activity for the product. It is a time for the Product Owner to learn what is
going on with the product and with the team (that is, a review of the Sprint);
and for the team to learn what is going on with the Product Owner and the
market. Consequently, the most important element of the Review is an in-
depth conversation between the team and Product Owner to learn the situa-
tion, to get advice, and so forth. The review includes a demo of what the
team built during the Sprint, but if the focus of the review is a demo rather
than conversation, there is an imbalance.

A useful – but often overlooked – Scrum guideline is that the ScrumMaster
is responsible for knowing the “Definition of Done” that was defined during
Sprint Planning, and then during this meeting is responsible for telling the
Product Owner if any of the items implemented by the team did not meet
the definition. In this way, there is increased visibility regarding the quality
of the work; teams cannot fake the quality by presenting software that
appears to work well, but may be implemented with a messy pile of poor
quality and untested code.

Present at this meeting are the Product Owner, Team members, and Scrum-
Master, plus customers, stakeholders, experts, executives, and anyone else
interested. The demo portion of the Sprint Review is not a “presentation”
the team gives – there is no slideware. A guideline in Scrum is that no more
than 30 minutes should be spent preparing for the demo, otherwise it sug-

https://less.works For Gene Gendel only, id:gene-gendel

320

12 — Scrum Primer

gests something is wrong with the work of the team. It is simply a demo of
what has been built. Anyone present is free to ask questions and give input.

SPRINT RETROSPECTIVE

The Sprint Review involves inspect and adapt regarding the product. The
Sprint Retrospective, which follows the Review, involves inspect and
adapt regarding the process. This is a practice that some teams skip, and
that’s unfortunate, because it’s the main mechanism for taking the visibility
that Scrum provides into areas of potential improvement, and turning it
into results. It’s an opportunity for the team to discuss what’s working and
what’s not working, and agree on changes to try. The Team and ScrumMas-
ter will attend, and the Product Owner is welcome but not required to
attend. Sometimes the ScrumMaster can act as an effective facilitator for
the retrospective, but it may be better to find a neutral outsider to facilitate
the meeting; a good approach is for ScrumMasters to facilitate each others’
retrospectives, which enables cross-pollination among teams.

A simple way to structure the Sprint Retrospective is to draw two columns
on a whiteboard, labeled “What’s Working Well” and “What Could Work Bet-
ter” – and then go around the room, with each person adding one or more
items to either list. As items are repeated, check marks are added next to
them, so the common items become clear. Then the team looks for underly-
ing causes, and agrees on a small number of changes to try in the upcoming
Sprint, along with a commitment to review the results at the next Sprint
Retrospective.

A useful practice at the end of the Retrospective is for the team to label each
of the items in each column with either a “C” if it is caused by Scrum (in
other words, without Scrum it would not be happening), or an “E” if it is
exposed by Scrum (in other words, it would be happening with or without
Scrum, but Scrum makes it known to the team), or a “U” if it’s unrelated to
Scrum (such as the weather). The team may find a lot of C’s on the “What’s
Working Well” side of the board, and a lot of E’s on the “What Could Work
Better”; this is good news, even if the “What Could Work Better” list is a
long one, because the first step to solving underlying issues is making them
visible, and Scrum is a powerful catalyst for that.

UPDATING RELEASE BACKLOG & BURNDOWN CHART

At this point, some items have been finished, some have been added, some
have new estimates, and some have been dropped from the release goal. The
Product Owner is responsible for ensuring that these changes are reflecting
in the Release Backlog (and more broadly, the Product Backlog). See
Figure 12.8. In addition, Scrum includes a Release Burndown chart that

https://less.works For Gene Gendel only, id:gene-gendel

321

Updating Release Backlog & Burndown Chart

shows progress towards the release date (Figure 12.9). It is analogous to the
Sprint Burndown chart, but is at the higher level of items (requirements)
rather than fine-grained tasks. Since a new Product Owner is unlikely to
know why or how to create this chart, this is another opportunity for a
ScrumMaster to help the Product Owner.

Figure 12.8 new
estimated remaining

Figure 12.9 a
Release Burndown
chart

https://less.works For Gene Gendel only, id:gene-gendel

322

12 — Scrum Primer

STARTING THE NEXT SPRINT

Following the Sprint Review, the Product Owner may update the Product
Backlog with any new insight. At this point, the Product Owner and team
are ready to begin another Sprint cycle. There is no down time between
Sprints – teams normally go from a Sprint Retrospective one afternoon into
the next Sprint Planning the following morning (or after the weekend).

One of the principles of agile development is “sustainable pace,” and only by
working regular hours at a reasonable level can teams continue this cycle
indefinitely.

RELEASE SPRINT

The perfection vision of Scrum is that the product is potentially shippable at
the end of each Sprint, which implies there is no wrap up work required,
such as testing or documentation. Rather, the implication is that everything
is completely finished every Sprint; that you could actually ship it or deploy
it immediately after the Sprint Review.

However, many organizations have weak development practices and cannot
achieve this perfection vision, or there are other extenuating circumstances
(such as, “the machine broke”). In this case, there will be some remaining
work, such as final production environment integration testing, and so there
will be the need for a “Release Sprint” to handle this remaining work.

Note that the need for a Release Sprint is a sign of some weakness; the ideal
is that it is not required. When necessary, Sprints continue until the Prod-
uct Owner decides the product is almost ready for release, at which point
there will be a Release Sprint to prepare for launch. If the team has followed
good development practices, with continuous refactoring and integration,
and effective testing during each Sprint, there should be little pre-release
stabilization or other wrap-up work required.

RELEASE PLANNING & INITIAL PRODUCT BACKLOG REFINEMENT

A question that is sometimes asked is how, in an iterative model, can long-
term release planning be done. There are two cases to consider: (1) a new
product in its first release, and (2) an existing product in a later release.

In the case of a new product, or an existing product just adopting Scrum,
there is the need to do initial Product Backlog refinement before the first
Sprint, where the Product Owner and team shape a proper Scrum Product
Backlog. This could take a few days or a week, and involves a vision work-

https://less.works For Gene Gendel only, id:gene-gendel

323

Application or Product Focus

shop, some detailed requirements analysis, and estimation of all the items
identified for the first release.

Surprisingly in Scrum, in the case of an established product with an estab-
lished Product Backlog, there should not be the need for any special or
extensive release planning for the next release. Why? Because the Product
Owner and team should be doing Product Backlog refinement every Sprint
(five or ten percent of each Sprint), continuously preparing for the future.
This continuous product development mode obviates the need for the dra-
matic punctuated prepare-execute-conclude stages one sees in traditional
sequential life cycle development.

During an initial Product Backlog refinement workshop and during the con-
tinuous backlog refinement each Sprint, the Team and Product Owner will
do release planning, refining the estimates, priorities, and content as they
learn.

Some releases are date-driven; for example: “We will release version 2.0 of
our project at a trade-show on November 10.” In this situation, the team will
complete as many Sprints (and build as many features) as is possible in the
time available. Other products require certain features to be built before
they can be called complete and the product will not launch until these
requirements are satisfied, however long that takes. Since Scrum empha-
sizes producing potentially shippable code each Sprint, the Product Owner
may choose to start doing interim releases, to allow the customer to reap the
benefits of completed work sooner.

Since they cannot possibly know everything up front, the focus is on creat-
ing and refining a plan to give the release broad direction, and clarify how
trade-off decisions will be made (scope versus schedule, for example). Think
of this as the road map guiding you towards your final destination; which
exact roads you take and the decisions you make during the journey may be
determined en route.

Most Product Owners choose one release approach. For example, they will
decide a release date, and will work with the team to estimate the Release
Backlog items that can be completed by that date. In situations where a
“fixed price / fixed date / fixed deliverable” commitment is required – for
example, contract development – one or more of those parameters must
have a built-in buffer to allow for uncertainty and change; in this respect,
Scrum is no different from other approaches.

APPLICATION OR PRODUCT FOCUS

For applications or products – either for the market or for internal use
within an organization – Scrum moves groups away from the older project-
centric model toward a continuous application/product development model.
There is no longer a project with a beginning, middle, and end. And hence no

https://less.works For Gene Gendel only, id:gene-gendel

324

12 — Scrum Primer

traditional project manager. Rather, there is simply a stable Product Owner
and a long-lived self-managing team that collaborate in an “endless” series
of two- or four-week Sprints, until the product or application is retired. All
necessary “project” management work is handled by the team and the busi-
ness owner – who is an internal business customer or from Product Manage-
ment. It is not managed by an IT manager or someone from a Project
Management Office.

Scrum can also be used for true projects that are one-time initiatives (rather
than work to create or evolve long-lived applications); still, in this case the
team and Product Owner do the project management.

What if there is insufficient new work from one or more existing applica-
tions to warrant a dedicated long-lived team for each application? In this
case, a stable long-lived team may take on items from one application in one
Sprint, and then items from another in the next Sprint; in this situation the
Sprints are often quite short, such as one week.

Occasionally, there is insufficient new work even for the prior solution, and
the team may take on items from several applications during the same
Sprint; however, beware this solution as it may devolve into unproductive
multitasking across multiple applications. A basic productivity theme in
Scrum is for the team to be focused on one product or application for one
Sprint.

COMMON CHALLENGES

Scrum is not only a concrete set of practices – rather, and more importantly,
it is a framework that provides visibility to the team, and a mechanism that
allows them to “inspect and adapt” accordingly. Scrum works by making vis-
ible the dysfunction and impediments that are impacting the Product
Owner and the team’s effectiveness, so that they can be addressed. For
example, the Product Owner may not really know the market, the features,
or how to estimate their relative business value. Or the team may be
unskillful in effort estimation or development work.

The Scrum framework will quickly reveal these weaknesses. Scrum does not
solve the problems of development; it makes them painfully visible, and pro-
vides a framework for people to explore ways to resolve problems in short
cycles and with small improvement experiments.

Suppose the team fails to deliver what they committed to in the first Sprint
due to poor task analysis and estimation skill. To the team, this feels like
failure. But in reality, this experience is the necessary first step toward
becoming more realistic and thoughtful about their commitments. This pat-
tern – of Scrum helping make visible dysfunction, enabling the team to do
something about it – is the basic mechanism that produces the most signifi-
cant benefits that teams using Scrum experience.

https://less.works For Gene Gendel only, id:gene-gendel

325

Results from Scrum

One common mistake teams make, when presented with a Scrum practice
that challenges them, is to change Scrum, not change themselves. For exam-
ple, teams that have trouble delivering on their Sprint commitment might
decide to make the Sprint duration extendable, so they never run out of time
– and in the process, ensure they never have to learn how to do a better job
of estimating and managing their time. In this way, without coaching and
the support of an experienced ScrumMaster, organizations can mutate
Scrum into just a mirror image of its own weaknesses and dysfunction, and
undermine the real benefit that Scrum offers: Making visible the good and
the bad, and giving the organization the choice of elevating itself to a higher
level.

Another common mistake is to assume that a practice is discouraged or pro-
hibited just because Scrum does not specifically require it. For example,
Scrum does not require the Product Owner to set a long-term strategy for
his or her product; nor does it require engineers to seek advice from more
experienced engineers about complex technical problems. Scrum leaves it to
the individuals involved to make the right decision; and in most cases, both
of these practices (along with many others) are well advised.

Something else to be wary of is managers imposing Scrum on their teams;
Scrum is about giving a team space and tools to manage themselves, and
having this dictated from above is not a recipe for success. A better approach
might begin with a team learning about Scrum from a peer or manager, get-
ting comprehensively educated in professional training, and then making a
decision as a team to follow the practices faithfully for a defined period; at
the end of that period, the team will evaluate its experience, and decide
whether to continue.

The good news is that while the first Sprint is usually very challenging to
the team, the benefits of Scrum tend to be visible by the end of it, leading
many new Scrum teams to exclaim: “Scrum is hard, but it sure is a whole lot
better than what we were doing before!”

RESULTS FROM SCRUM

The benefits of Scrum reported by teams come in various aspects of their
experience. At Yahoo!, we migrated nearly 200 teams to Scrum over three
years, totaling over 2000 people. These have ranged from consumer-facing,
design-heavy websites such as Yahoo! Photos, to the mission-critical back-
end infrastructure of services such as Yahoo! Mail, which serves hundreds of
millions of customers.

Several times each year we surveyed everyone at Yahoo! using Scrum
(including Product Owners, Team Members, ScrumMasters, and the func-
tional managers of those individuals) and ask them to compare Scrum to the
approach they were using previously. Some summary data is presented
here:

https://less.works For Gene Gendel only, id:gene-gendel

326

12 — Scrum Primer

❑ Productivity: 68% of respondents reported Scrum is better or much
better (4 or 5 on a 5-point scale); 5% reported Scrum is worse or much
worse (1 or 2 on a 5-point scale); 27% reported Scrum is about the
same (3 on a 5-point scale).

❑ Team Morale: 52% of respondents reported Scrum is better or much
better; 9% reported Scrum is worse or much worse; 39% reported
Scrum is about the same.

❑ Adaptability: 63% of respondents reported Scrum is better or much
better; 4% reported Scrum is worse or much worse; 33% reported
Scrum is about the same.

❑ Accountability: 62% of respondents reported Scrum is better or
much better; 6% reported Scrum is worse or much worse; 32%
reported Scrum is about the same.

❑ Collaboration and Cooperation: 81% of respondents reported
Scrum is better or much better; 1% reported Scrum is worse or much
worse; 18% reported Scrum about the same.

❑ Team productivity increased an average of 36%, based on the esti-
mates of the Product Owners.

❑ 85% of team-members stated that they would continue using Scrum if
the decision were solely up to them (15% said either “No” or “Unde-
cided”).

RECOMMENDED READINGS

❑ The first book on Scrum was Agile Software Development with Scrum
(Schwaber and Beedle) and this is well worth study. It highlights
aspects of Scrum—such as the relationship to complex adaptive sys-
tems—that are not always emphasized but are important.

❑ Agile Project Management with Scrum (Schwaber) is valuable; it
includes significant discussion on the role of a ScrumMaster.

https://less.works For Gene Gendel only, id:gene-gendel

327

Systems Thinking

•W. Edwards Deming’s Out of the Crisis is a master work by arguably the most well-known
systems thinker and quality expert. It opens with the modest goal, “The aim of this book is
transformation of the style of American management… It requires a whole new structure,
from foundation upward.” Deming also advocates the System of Profound Knowledge in which
managers (1) appreciate there is a system, (2) understand common-cause and special-cause
variation (queueing theory is related to variation), (3) understand limitations of knowledge
and reasoning mistakes, and (4) know credible psychology and social research results so that
behavior- or motivation-related policies are not based on “common sense.” The core of the book
centers around his famous 14 Points for Management, including (for example), “Eliminate
management by objective. Eliminate management by numbers, numerical goals. Substitute
leadership.”

•Jay Forrester’s Industrial Dynamics is the classic text on system dynamics—well written
and insightful. Although written in the early 1960s, it is as relevant today as when published.
It goes beyond cause-effect modeling to also model the flow and inventories of information,
money, and material in systems. The book includes formal mathematical modeling but this is
not obligatory to appreciate system dynamics.

•Weinberg’s Quality Software Management: Systems Thinking and An Introduction to Gener-
al Systems Thinking are worthwhile. Written from the perspective of an experienced consult-
ant in systems development.

•Senge’s The Fifth Discipline is a classic that advocates the need for leadership to apply sys-
tems thinking (it is the fifth discipline) and other key disciplines for a great, sustainable en-
terpise. The others include leaders with (1) personal mastery and (2) reflection on their beliefs
and faulty reasoning, the (3) definition and communication of a meaningful shared vision, and
(4) the ability of teams to learn. We recommend ignoring—at least during the first few years
of practice—the ‘archetypes’ notion presented in the book. It was well meant as a learning aid
but has been observed to distract and intimidate people from learning and applying basic sys-
tem dynamics modeling. The ‘archetypes’ are not part of original system dynamics.

•The Fifth Discipline Fieldbook is an in-depth resource, written from the viewpoint of many
practitioners and consultants.

•The organizational-learning writings from Argyris, Putnam, McLain, and Schön. Important
concepts include double-loop learning and high-advocacy/high-inquiry dialogue. Classic
works include Action Science and Organizational Learning.

•The publications and resources available through the Society for Organizational Learning
(www.solonline.org).

Lean Thinking

•Dr. Jeffrey Liker’s The Toyota Way is a thorough cogent summary from a researcher who has
spent decades studying Toyota and their principles and practices.

•Inside the Mind of Toyota by Professor Satoshi Hino. Hino spent many years working in
product development, followed by an academic career. Hino has “spent more than 20 years re-
searching the subject of this book.” This is a data-driven book that looks at the evolution and
principles of the original lean thinking management system.

RECOMMENDED READINGS

https://less.works For Gene Gendel only, id:gene-gendel

www.solonline.org

328

•Extreme Toyota by Osono, Shimizu, and Takeuchi is a well-researched analysis of the Toyota
Way values, contradictions, and culture, based on six years of research and 220 interviews. It
includes an in-depth analysis of Toyota’s strong business performance. Hirotaka Takeuchi
was also co-author of the famous 1986 Harvard Business Review article “The New New Prod-
uct Development Game” that introduced key ideas of Scrum.

•Lean Product and Process Development by Allen Ward and The Toyota Product Development
System by Liker and Morgan are useful for insights into development from a lean perspective.

•Toyota Culture by Liker and Michael Hoseus. Hoseus has worked both as a plant manager
and HR manager at Toyota, bringing an insider’s in-depth understanding to this book on the
heart of what makes a lean enterprise work.

•Lean Thinking by Drs. Womack and Jones is an entertaining and well-written summary of
some lean principles by authors who know their subject well. As cautioned earlier in this
chapter it presents an anecdotal and condensed view that may give the casual reader the
wrong impression that the essential key of lean is waste reduction rather than a culture of
manager-teachers who understand lean thinking and help build the pillars of respect for peo-
ple and continuous improvement with Go See and other behaviors.

•The Machine That Changed the World: The Story of Lean Production by Womack, Jones, and
Roos was based on a five-year study at MIT into lean and the Toyota system.

•Workplace Management by Taichii Ohno is a short book by the creator of the Toyota Produc-
tion System. It was out-of-print but has been recently re-translated by Jon Miller and is now
available. The book does not talk much about TPS but it contains a series of short chapters
that show well how Taichii Ohno thought about management and lean systems.

•Mary and Tom Poppendieck’s books Lean Software Development and Implementing Lean
Software Development are well-written books that make important connections between lean
thinking, systems thinking, and agile development.

Queueing Theory

•Managing the Design Factory by Don Reinertsen is a classic introduction on queueing theory
and development. Reinertsen has a broad and deep grasp of both product development and
business economics and weaves these insights together into one of our favorite books on prod-
uct development. This is the book that popularized the model of thinking tools for process im-
provement and organizational change.

•Flexible Product Development by Preston Smith was the first widely-popular general prod-
uct development book that introduced agile software development concepts—including Scrum
and Extreme Programming—to a broader audience. This text includes an analysis of queue-
ing theory and variability, and their relationship to development.

False Dichotomies

Be Agile

•Agile Software Development by Alistair Cockburn. Emphasizes the principles and theory un-
derlying agile methods, with a special focus on communication.

•Agile Software Development with Scrum (Schwaber and Beedle) and Agile Project Manage-

https://less.works For Gene Gendel only, id:gene-gendel

329

ment with Scrum (Schwaber) both explore how to be agile.

•Agile & Iterative Development: A Manager’s Guide (Larman) summarizes the key ideas and
introduces Scrum, Extreme Programming, and older iterative methods such as Evo.

•Extreme Programming Explained: Embrace Change (2E) by Kent Beck with Cynthia Andres.
Although both Scrum and the DSDM agile methods predate XP, this is the book and Beck is
the person that really kicked off the widespread popularity of agile development. Beck credits
his 1980s co-worker Ward Cunningham with making seminal agile contributions. Beck and
Cunningham are also noteworthy for having introduced the idea of design patterns to the soft-
ware community [BC88], and Cunningham created the widely popular wiki concept and tech-
nology that is used for Wikipedia (www.wikipedia.org) and within many companies applying
agile methods.

Feature Teams

•Dynamics of Software Development by Jim McCarthy. Originally published in 1995 but re-
published in 2008. Jim’s book is a true classic on software development. Already in 1995 it
emphasized feature teams. The rest of the book is stuffed with insightful tips related to soft-
ware development.

•“XP and Large Distributed Software Projects” by Karlsson and Andersson. This early large-
scale agile development article is published in Extreme Programming Perspectives. It is a in-
sightful and much under-appreciated article describing the strong relationship between fea-
ture teams and continuous integration.

•“How Do Committees Invent?” by Mel Conway. This 40-year article is as insightful today as
it was 40 years ago. It is available via the authors website at www.melconway.com.

•Agile Software Development in the Large by Jutta Eckstein. This is the first book published
on the topic of scaling agile development. It describes the experience of a medium-sized
(around 100 people) project and stresses the importance of feature teams in large-scale devel-
opment.

•“Promiscuous Pairing and Beginner’s Mind” by Arlo Belshee. This article is not directly re-
lated to feature teams or large-scale development but it does contain some fascinating exper-
iments that question some of the assumptions behind specialization.

Teams

•Leading Teams, by Richard Hackman. Harvard professor Richard Hackman is a long-time
team researcher. His book is currently our favorite team-related book. It has a strong focus on
helping management in their change to team-based work.

•Leading Self-Directed Work Teams, by Kimball Fisher. This book has a strong focus on the
change in role when one becomes a team leader of a self-directed team.

•The Project Manager’s Bridge to Agility, by Michele Sliger and Stacia Broderick. Michele and
Stacia are two Scrum Trainers and also PMI-certified PMPs. Traditional project managers
will find here an explanation of the difference in thinking from a PMI PMBOK perspective.
When reading it, please read their “agile project manager” as ScrumMaster.

•The Wisdom of Teams, by Jon Katzenbach and Douglas Smith. This is probably the most
popular team reference and certainly worth reading.

https://less.works For Gene Gendel only, id:gene-gendel

www.wikipedia.org
www.melconway.com

330

•The Five Dysfunctions of a Team, by Patrick Lencioni. Written like a novel, it covers well the
need for conflict in teams.

•Fast Cycle Time, by Chris Meyer. Recently republished (2007), this is a true classic on prod-
uct development and talks about cross-functional (multifunctional) teams in detail.

•Revolutionizing Product Development, by Steven Wheelwright and Kim Clark. Another clas-
sic in product development literature; has one chapter on cross-functional integration.

•Software for Your Head, by Jim and Michele McCarthy. Jim and Michele spent years in ‘boot
camps’ to find the most efficient ways for teams to work. They documented this as a set of pro-
tocols in this book.

•Peopleware, by Tom DeMarco and Tim Lister. This classic on the importance of people in
software development also has a couple of chapters focusing on teams.

Requirement Areas

Organization

•Work Redesign, by Richard Hackman. A book written in 1980s and mainly focused on admin-
istration and factory work. But the ideas in this book are as insightful today as they were thir-
ty years ago. In the last part, Hackman made predictions about the future of work that are
surprisingly accurate.

•One More Time: How Do You Motivate Employees? by Frederick Herzberg. The first part of
this classic article is about motivation and the hygiene/motivator theory. The last part looks
at work redesign from a slightly different angle than that of Hackman.

•Communities of Practice: The Organizational Frontier, by Etienne Wenger and William Sny-
der. This is a Harvard Business Review article and is a short and easy-to-read introduction to
the concept of CoP.

•Cultivating Communities of Practice by Etienne Wenger, Richard Dermott, and William
Snyder. What, why, and how? These questions are answered with lots of practical examples.

•Six Dangerous Myths About Pay, by Jeffrey Pfeffer. This short article not only covers the
pay-per-performance myth, but also several other pay-related myths.

•Punished by Rewards, by Alfie Kohn. Are incentive systems the only reward-related problem
or is more going on? Kohn takes a deep dive in the subject of rewarding at work and in the
classroom. This analysis challenges some fundamental assumptions behind rewarding.

•Abolishing Performance Appraisals, by Tom Coens and Mary Jenkins. Are performance ap-
praisals rooted in good insight, credible organizational research, and evidence? This analysis
concludes that no evidence exists that they work and that the assumptions behind perfor-
mance appraisals are shaky at best.

•Measuring and Managing Performance in Organizations, by Rob Austin. What happens if
you give incentives but are not able to measure all the workers’ output? This is one of the ques-
tions Rob Austin tries to answer in his book. His model shows that measurement dysfunctions
are the outcome, ironically resulting in poorer performance.

•Maverick, by Richardo Semler. Semco, a Brazilian company from São Paolo has gradually
freed its employees. Once a fairly traditional company, Semco went through a major change

https://less.works For Gene Gendel only, id:gene-gendel

331

and became one the most studied companies in the world because of their innovative HR prac-
tices. Maverick describes this change.

•Birth of the Chaordic Age, by Dee Hock. “Self-management cannot happen in traditional in-
dustries such as banking.” Not so. Dee Hock is the founder of Visa and describes how it was
build on the principles of self-organization.

•Business Without Bosses, by Charles Manz and Henry Sims. What would happen without
managers? Would there be total chaos? Not at W. L. Gore. They practice ‘unmanagement’ and
do not have an organization chart at all. Chapter 6 of Business Without Bosses describes how
W. L. Gore operates.

•The Google Story, by David Vise. One of the most successful companies of the last decade:
Google. This book describes the history of Google and some of the interesting practices within
Google. It is a little superficial, but still worth reading.

•The Future of Management, by Gary Hamel. “What will be the future role of management?”
is the key question in Hamel’s book. Chapters 4–6 study three companies with innovative or-
ganizational practices: Whole Foods Market, W. L. Gore, and Google.

Large-Scale Scrum

Scrum Primer

•The first book on Scrum was Agile Software Development with Scrum (Schwaber and Beedle)
and this is well worth study. It highlights aspects of Scrum—such as the relationship to com-
plex adaptive systems—that are not always emphasized but are important.

•Agile Project Management with Scrum (Schwaber) is valuable; it includes significant discus-
sion on the role of a ScrumMaster.

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

333

BIBLIOGRAPHY

AB07 Ancona, D., Bresman, H. 2007. X-Teams: How to Build Teams That Lead, Innovate
and Succeed. Harvard Business School Press

Ambler03 Ambler, S., 2003. “Isn’t That Special?” Dr. Dobbs Journal, Jan. 2003

AMNS96 Adler, P., Mandelbaum, A., Nguyen, V., Schwerer, E., 1996. “Getting the Most Out
of Your Product Development Process,” Harvard Business Review, Mar–Apr 1996

Ancona05 Ancona, D., 2005. Leadership in an Age of Uncertainty, at http://sloanleader-
ship.mit.edu/pdf/LeadershipinanAgeofUncertainty-researchbrief.pdf

Anderson07 Anderson, D., 2007. “Kanban in Action,” Agile Management Blog, at http://
www.agilemanagement.net/Articles/Weblog/KanbaninAction.html

APS85 Argyris, C., Putnam, R., Smith, D. 1985. Action Science. Jossey-Bass

AS95 Argyris, C., Schon, D. 1995. Organizational Learning II: Theory, Method, and
Practice. Prentice Hall

Austin96 Austin, R., 1996. Measuring and Managing Performance in Organizations, Dorset
House

BA03 Berczuk, S., Appleton, B., 2003. Software Configuration Management Patterns,
Addison-Wesley

Baker95 Baker, B., 1995. “On Finding Duplication and Near-Duplication in Large Software
Systems,” Proceedings of the Working Conference on Reverse Engineering, 1995

BC88 Beck, K., Cunningham, W., 1988. “Using Pattern Languages for Object-Oriented
Programs,” Conference Proceedings: OOPSLA 1987, ACM

BC04 Beer, M., Cannon, M., 2004. Promise and Peril in Implementing Pay for Perfor-
mance, HBR Working paper, at http://www.hbs.edu/research/facpubs/workingpa-
pers/abstracts/0102/02-064.html

BCHW94 Bowen, K., Clark, K., Holloway, C., Wheelwright, S., 1994. “Development Projects:
The Engine of Renewal,” Harvard Business Review, Sep 1, 1994, also in [CW95]

Beck99 Beck, K., 1999. Extreme Programming Explained: Embrace Change (1st edition),
Addison-Wesley

Beck04 Beck, K., with Andres, C., 2004. Extreme Programming Explained: Embrace
Change (2nd edition), Addison-Wesley

Belshee05a Belshee, A., 2005. “Promiscuous Pairing and Beginner’s Mind,” Proceedings of
Agile 2005 Conference

https://less.works For Gene Gendel only, id:gene-gendel

http://www.agilemanagement.net/Articles/Weblog/KanbaninAction.html
http://www.agilemanagement.net/Articles/Weblog/KanbaninAction.html
http://www.hbs.edu/research/facpubs/workingpapers/abstracts/0102/02-064.html
http://www.hbs.edu/research/facpubs/workingpapers/abstracts/0102/02-064.html
http://sloanleadership.mit.edu/pdf/LeadershipinanAgeofUncertainty-researchbrief.pdf
http://sloanleadership.mit.edu/pdf/LeadershipinanAgeofUncertainty-researchbrief.pdf

334

Belshee05b Belshee A., 2005. “Promiscuous Pairing and the Least Qualified Implementer,”
Agile Toolkit Podcast, at http://agiletoolkit.libsyn.com/index.php?post_id=15636

BF00 Beck, K., Fowler, M., 2000. Planning Extreme Programming, Addison-Wesley

Blaumer64 Blaumer, R., 1964. Alienation and Freedom, University of Chicago Press

Boehm00 Boehm, B., 2000. Software Cost Estimation with Cocomo II, Prentice Hall

Bogsnes09 Bogsnes, B., 2009. Implementing Beyond Budgeting, John Wiley

Brooks75 Brooks, F., 1975. The Mythical Man-Month. Addison-Wesley

Brooks95 Brooks, F., 1995. The Mythical Man-Month: Essays on Software Engineering (2nd
Edition), Addison-Wesley

BT03 Boehm, B., Turner, R., 2003. Balancing Agility and Discipline: A Guide for the Per-
plexed, Addison-Wesley

CEK01 Cooper, R., Edgett, S., Kleinschmidt, E., Portfolio Management for New Products,
Basic Books

CF91 Clark, K., Fujimoto, T. 1991. Product Development Performance, Harvard Business
School Press

Christensen03 Christensen, C., 2003. The Innovators Dilemma, Collins Business

CJ02 Coens, T., Jenkins, M., 2002. Abolishing Performance Appraisals, Berrett-Koehler

Cockburn01 Cockburn, A., 2001. Agile Software Development, Addison-Wesley

Cockburn04 Cockburn, A., 2004. Crystal Clear: A Human-Powered Methodology for Small
Teams, Addison-Wesley

CK08 Cohn, M., Keith, C., 2008. “How to Fail with Agile: 20 Tips to Help You Avoid Suc-
cess,” Better Software Magazine. Jul–Aug 2008

Conway68 Conway, M., 1968. “How Do Committees Invent?” Datamation Magazine, Apr 1968

Cooper01 Cooper, R., 2001. Winning at New Products: Accelerating the Process from Idea to
Launch, Basic Books

Cooper07 Cooper, R., “Winning at New Products: Pathways to Profitable Innovation,” Stage-
gate Product Innovation Papers Reference #22, at http://www.stage-gate.com/
knowledge.php

Cooper08 Cooper, R., “The Stage-Gate Idea-to-Launch Process — Update, What’s New and
NexGen Systems,” Stage-gate Product Innovation Papers Reference #30, at http://
www.stage-gate.com/knowledge.php

Covey04 Covey, S., 2004. The 8th Habit: From Effectiveness to Greatness, Free Press

Crosby84 Crosby, P., 1984. Quality Without Tears, McGraw-Hill

CS95 Cusumano, M., Selby, W., 1995. Microsoft Secrets, Simon & Schuster

CW92 Clark, K., Wheelright S., 1992. Revolutionizing Product Development, Harvard
Business School Press

https://less.works For Gene Gendel only, id:gene-gendel

http://www.stage-gate.com/knowledge.php
http://www.stage-gate.com/knowledge.php
http://www.stage-gate.com/knowledge.php
http://www.stage-gate.com/knowledge.php
http://agiletoolkit.libsyn.com/index.php?post_id=15636

335

CW95 Clark, K., Wheelwright, S., 1995. The Product Development Challenge, Harvard
Business School Press

Davis97 Davis, M., 1997. Game Theory: A Nontechnical Introduction, Dover Publications

Deming67 Deming, W. E., 1967. “Walter A. Shewhart, 1891-1967,” The American Statistician,
Apr 1967

Deming82 Deming E. W., 1982. Out of the Crisis, MIT Press

Deming94 Deming, E. W., 1994. The New Economics, MIT Press

DeMarco01 DeMarco, T., 2001. Slack. Random House

DeMarco08 DeMarco, T., 2008. Adrenaline Junkies and Template Zombies: Understanding
Patterns of Project Behavior, Dorset House

Derby07a Derby, E., 2007. “Should a ScrumMaster Give Performance Appraisals?” Scrum
Alliance Articles, at http://www.scrumalliance.org/articles/8-should-a-scrummas-
ter-give-performance-appraisals

Derby07b Derby, E., 2007. “Performance Without Appraisal,” Scrum Alliance Articles, at
http://www.scrumalliance.org/articles/50-performance-without-appraisal

DL77 Davis, S., Lawrence, P., 1977. Matrix, Addison-Wesley

DL99 DeMarco, T., Lister, T., 1999. Peopleware: Productive Projects and Teams, Dorset
House

Drucker92 Drucker, P., 1992. “Planning for Uncertainty,” The Wall Street Journal, Jul 22 1992

Eckstein04 Eckstein, J., 2004. Agile Software Development in the Large, Dorset House

Eckstein09 Eckstein, J., 2009. Agile in the Face of Global Software Development, Draft

Fisher99 Fisher, K., 1999. Leading Self-Directed Work Teams, McGraw-Hill

Forrester58 Forrester, J. W., 1958. “Industrial Dynamics—A Major Breakthrough for Decision
Makers,” Harvard Business Review, Volume 36, Number 4

Forrester61 Forrester J. W., 1961. Industrial Dynamics, Pegasus Communications

Fowler03 Fowler, M., 2003. “Cannot Measure Productivity,” at http://martinfowler.com/bliki/
CannotMeasureProductivity.html

FPE05 Franklin, G., Powell, J. D., Emami-Naeini, A., 2005. Feedback Control of Dynamic
Systems, Prentice Hall

Friedman06 Friedman, T., 2006, The World is Flat, Farrar, Straus and Giroux

Fujimoto99 Fujimoto, T., 1999. The Evolution of a Manufacturing System at Toyota, Productiv-
ity Press

Galbraith93 Galbraith, J., 1993. Competing with Flexible Lateral Organizations, Addison-Wes-
ley

George02 George, M., 2002. Lean Six Sigma: Combining Six Sigma Quality with Lean Pro-
duction Speed, McGraw-Hill

https://less.works For Gene Gendel only, id:gene-gendel

http://www.scrumalliance.org/articles/8-should-a-scrummaster-give-performance-appraisals
http://www.scrumalliance.org/articles/8-should-a-scrummaster-give-performance-appraisals
http://www.scrumalliance.org/articles/50-performance-without-appraisal
http://martinfowler.com/bliki/CannotMeasureProductivity.html
http://martinfowler.com/bliki/CannotMeasureProductivity.html

336

GH98 Gross, D., Harris, C. M., 1998. Fundamentals of Queueing Theory, Wiley-Inter-
science

Goldratt84 Goldratt, E. M., 1985. The Goal, North River Press

Goldratt97 Goldratt, E. M., 1997. Critical Chain, Gower

Hackman02 Hackman, R., 2002. Leading Teams, Harvard Business School Press

Hamel06 Hamel, G., 2006, “The Why, What and How of Management Innovation,” Harvard
Business Review, Feb 2006

Hamel07 Hamel, G., 2007. The Future of Management, Harvard Business School Press

Hayashi08 Hayashi, N., 2008. “Top Engineer Explains How Toyota Develops People,” Nikkei
Business Online, Translated at http://www.gembapantarei.com/2008/08/
toyotas_top_engineer_on_how_to_develop_thinking_pe.html

Herzberg87 Herzberg, F., 1987. “One More Time: How Do You Motivate Employees?” Harvard
Business Review, Sep–Oct 1987

HF03 Hope, J., and Fraser, R., 2003. Beyond Budgeting: How Managers Can Break Free
from the Annual Performance Trap, Harvard Business School Press

HGG00 Holland, S., Gaston, K., Gomes, J. 2000. “Critical Success Factors for Cross-Func-
tional Teamwork in New Product Development,” International Journal of Manage-
ment Reviews, Volume 2, Issue 3, 2000

Highsmith02 Highsmith, J. 2002. Agile Software Development Ecosystems. Addison-Wesley

Highsmith04 Highsmith, J. 2004. Agile Project Management: Creating Innovative Products,
Addison-Wesley

Hino06 Hino, S., 2006. Inside the Mind of Toyota: Management Principles for Enduring
Growth, Productivity Press

Hirenabe07 Hirenabe, K., 2008. “Visualizing Agile Projects using Kanban Boards,” InfoQ Arti-
cles, at http://www.infoq.com/articles/agile-kanban-boards

Hirenabe08 Hirenabe, K., 2008. “Kanban Applied to Software Development: from Agile to
Lean,” InfoQ Articles, at http://www.infoq.com/articles/hiranabe-lean-agile-kanban

HKL93 Henke, J., Krachenberg, R., Lyons, T., 1993. “Cross-Functional Teams: Good Con-
cept, Poor Implementation!” Journal of Product Innovation Management, Volume
10

HLC85 Hayes, R., Lorenz, C., Clark, K., 1985. The Uneasy Alliance: Managing the Produc-
tivity-Technology Dilemma, Harvard Business School Press

HO80 Hackman, R., Oldman, G., 1980. Work Redesign, Prentice Hall

Hock99 Hock, D., 1999. The Birth of the Chaordic Age, Berrett-Koehler Publishers

HS08 Hopp, W., Spearman, M., 2008. Factory Physics, McGraw-Hill

Imai86 Imai, M., 1986. Kaizen: The Key To Japan’s Competitive Success, McGraw-Hill

https://less.works For Gene Gendel only, id:gene-gendel

http://www.gembapantarei.com/2008/08/toyotas_top_engineer_on_how_to_develop_thinking_pe.html
http://www.gembapantarei.com/2008/08/toyotas_top_engineer_on_how_to_develop_thinking_pe.html
http://www.infoq.com/articles/agile-kanban-boards
http://www.infoq.com/articles/hiranabe-lean-agile-kanban

337

Ishikawa85 Ishikawa, K., 1985. What Is Total Quality Control? The Japanese Way, Prentice
Hall

Ishikawa86 Ishikawa, K., 1986. Guide to Quality Control, Asian Productivity Organization

JAH00 Jeffries, R., Anderson, A., Hendrickson, C., 2000. Extreme Programming Installed,
Addison-Wesley

Jensen96 Jensen, R., 1996. “Management Impact on Software Cost and Schedule,”
CrossTalk The Journal of Defense Software Engineering, July 1996

Johnson02 Johnson, J., 2002. “Keynote speech,” Extreme Programming 2002 Conference

Jones01 Jones, C., 2001. Software Assessments, Benchmarks, and Best Practices, Addison-
Wesley

Jones08 Jones, C., 2008. Applied Software Measurement, McGraw-Hill

KAL00 Karlsson, E., Andersson, L., Leion, P., 2000. “Daily Build and Feature Develop-
ment in Large Distributed Projects,” Proceedings of the 2000 International Confer-
ence on Software Engineering

KA01 Karlsson, E., Andersson, L., 2001. “XP and Large Distributed Software Projects,”
Extreme Programming Examined, Addison-Wesley

Kahn05 Kahn, K., 2005. The PDMA Handbook of New Product Development, John Wiley

Kato06 Kato, I., 2006. Summary Notes from Art Smalley Interview with Mr. Isao Kato, at
http://artoflean.com/documents/pdfs/Mr_Kato_Interview_on_TWI_and_TPS.pdf

Katz82 Katz, R., 1982. “The Effects of Group Longevity on Project Communication and
Performance,” Administrative Science Quarterly, Volume 27, Mar 1982

Katzenbach98 Katzenback, J., 1998. Teams At the Top, Harvard Business School Press

Keith08 Keith, C., 2008, “Agile Game Development,” Agile 2008 Conference Talk

Kerth01 Kerth, N., 2001. Project Retrospectives: A Handbook for Team Reviews, Dorset
House

KLTFB07 Kaner, S., Lind, L., Toldi, C., Fisk, S., Berger, D., 2007. Facilitator’s Guide to Par-
ticipatory Decision-Making, Jossey-Bass

Kohn93 Kohn, A., 1993. Punished by Rewards, Houghton Mifflin

Krebs08 Krebs, J., 2008. Agile Portfolio Management, Microsoft Press

KS93 Katzenbach, J., Smith, D., 1993. The Wisdom of Teams, Harper Collins

KS01 Katzenback, J., Smith, D., 2001. The Discipline of Teams, John Wiley & Sons

Lacey06 Lacey, M., 2006. “Adventures in Promiscuous Pairing: Seeking Beginner’s Mind,”
Proceedings of Agile 2006 Conference

Larman03 Larman, C., 2003. Agile and Iterative Development: A Manager's Guide, Addison-
Wesley

https://less.works For Gene Gendel only, id:gene-gendel

http://artoflean.com/documents/pdfs/Mr_Kato_Interview_on_TWI_and_TPS.pdf

338

Laukkanen06 Laukkanen, P., 2006. Data-Driven and Keyword-Driven Test Automation Frame-
works. Helsinki University of Technology, Master’s Thesis, at http://code.goo-
gle.com/p/robotframework/

LB03 Larman, C., Basili, V., 2003. “Iterative and Incremental Development: A Brief His-
tory,” IEEE Computer, June 2003

Leffingwell07 Leffingwell, D. 2007. Scaling Software Agility, Addison-Wesley

Lencioni02 Lencioni, P., 2002. The Five Dysfunctions of a Team: A Leadership Fable, Jossey-
Bass

Levitt60 Levitt, T., 1960. “Marketing Myopia,” Harvard Business Review, July– Aug 1960

LH08 Liker, J., Hoseus, M., 2008. Toyota Culture: The Heart and Soul of the Toyota Way,
McGraw-Hill

Liker04 Liker, J., 2004. The Toyota Way, McGraw-Hill

LM06a Liker, J., Meier, D., 2006. The Toyota Way Fieldbook, McGraw-Hill

LM06b Liker, J., Morgan J., 2006. The Toyota Product Development System, Productivity
Press

LM07 Liker, J., Meier, D., 2007. Toyota Talent, McGraw Hill

Lopp07 Lopp, M., 2007, Managing Humans, Apress

Malone05 Malone, T., 2005. The Future of Work, Harvard Business School Press,

Mason05 Mason, M., 2005. Pragmatic Version Control with Subversion, The Pragmatic Pro-
grammers

McCarthy95 McCarthy, J., 1995. Dynamics of Software Development, Microsoft Press

McGrath96 McGrath, M., 1996. Setting the PACE in Product Development, Butterworth-Hei-
nemann

McGrath04 McGrath, M., 2004. Next Generation Product Development: How to Increase Pro-
ductivity, Cut Costs, and Reduce Cycle Times, McGraw-Hill

MCM95 Mohrman, S., Cohen, S., Mohrman, A., 1995. Designing Team-Based Organiza-
tions, Jossey-Bass

Meyer93 Meyer, C., 1993. Fast Cycle Time: How to Align Purpose, Strategy, and Structure
for Speed, Free Press

MJ05 Moløkken-Østvold, K., and Jørgensen, M., 2005. “A Comparison of Software
Project Overruns—Flexible versus Sequential Development Models”. IEEE Trans-
actions on Software Engineering. Volume 31, Number 9, Sept

MM02 McCarthy, J., McCarthy, M., 2002. Software For Your Head: Core Protocols for Cre-
ating and Maintaining Shared Vision, Addison-Wesley

MS95 Manz, C., Sims, H., 1995. Business Without Bosses, Wiley

https://less.works For Gene Gendel only, id:gene-gendel

http://code.google.com/p/robotframework/
http://code.google.com/p/robotframework/

339

Mugge04 Mugge, P., 2004. Integrated Product Development: IBM’s model for managing
innovation, presentation at Program Manager Forum, at http://www.pmi-port-
land.org/DocumentLibrary/events/meetings/meeting_pdfs/mugge.pdf

NT86 Nonaka, I., Takeuchi, H., 1986. “The New New Product Development Game,” Har-
vard Business Review, Jan 1986, also in [CW95]

NT95 Nonaka, I., Takeuchi, H., 1995. The Knowledge-Creating Company, Oxford Univer-
sity Press

NTI84 Nonaka, I., Takeuchi, H., Imai, H., 1984. “Managing the New Product Develop-
ment Process: How Japanese Companies Learn and Unlearn,” Harvard Business
School 75th Anniversary Colloquium, also in [HLC85]

Ohno07 Ohno, T., 2007, Workplace Management, Gemba Press

Ohno88 Ohno, T., 1988. The Toyota Production System: Beyond Large-scale Production,
Productivity Press

OK99 Olsson, K., Karlsson E., 1999. Daily Build. Rapid Development and Con-
trol.,Swedish Engineering Industries

OO00 Olson, G., Olson, J., 2000. “Distance Matters,” Human-Computer Interaction, Vol-
ume 15, September 2000

OST08 Osono, E., Shimizu, N., Takeuchi, H., 2008. Extreme Toyota: Radical Contradic-
tions That Drive Success at the World's Best Manufacturer, Wiley

O’Toole77 O’Toole, J., 1977. Work, Learning, and the American Future, Jossey-Bass

Owen97 Owen, H., 1997. Open Space Technology: A User’s Guide, Berrett-Koehler Publish-
ers

Parker02 Parker G. M., 2002. Cross- Functional Teams: Working with Allies, Enemies, and
Other Strangers, Jossey-Bass

Parkinson57 Parkinson, C., 1957. Parkinson’s Law, Buccaneer Books

Pfeffer98 Pheffer, J., 1998. “Six Dangerous Myths about Pay,” Harvard Business Review,
May-June 1998

Pfeffer07 Pheffer, J., 2007. Testimony to Congress about Evidence-Based Practices, at http://
www.evidence-basedmanagement.com/

PMBOK04 Project Management Institute, 2004. A Guide to the Project Management Body of
Knowledge, Project Management Institute

PMI06 Project Management Institute, 2006. The Standard for Portfolio Management,
Project Management Institute

Poppendieck03 Poppendieck, M., Poppendieck, T., 2003. Lean Software Development: An Agile
Toolkit for Software Development Managers, Addison-Wesley

Poppendieck04 Poppendieck, M., 2004. “Unjust Deserts,” Better Software Magazine, Jul–Aug 2004

Poppendieck06 Poppendieck, M., Poppendieck, T., 2006. Implementing Lean Software Develop-
ment: From Concept to Cash, Addison-Wesley

https://less.works For Gene Gendel only, id:gene-gendel

http://www.pmi-portland.org/DocumentLibrary/events/meetings/meeting_pdfs/mugge.pdf
http://www.pmi-portland.org/DocumentLibrary/events/meetings/meeting_pdfs/mugge.pdf
http://www.evidence-basedmanagement.com/
http://www.evidence-basedmanagement.com/

340

Prechelt00 Prechelt, L., 2000. draft. “An empirical study of working speed differences between
software engineers for various kinds of task,” submission to IEEE Transactions on
Software Engineering, 2000

PS06a Pfeffer, J., Sutton, R., 2006. “A Matter of Fact,” People Management, Sep 2006

PS06b Pfeffer, J., Sutton, R., 2006. “Act on Fact, Not Faith,” Stanford Social Innovation
Review, Spring 2006

PS06c Pfeffer, J., Sutton, R., 2006. Hard Facts, Dangerous Half-Truths And Total Non-
sense, Harvard Business School Press

Raymond Raymond, E. The Jargon File. www.catb.org/jargon

Reeves92 Reeves, J., 1992. “What is Software Design?” C++ Journal, Fall 1992

Reinertsen83 Reinertsen, D., 1983. “Whodunit? The search for new-product killers,” Electronic
Business, Volume 9, Number 8

Reinertsen97 Reinertsen, D., 1997. Managing the Design Factory, Free Press

Robot08 Robot Framework, at http://code.google.com/p/robotframework/

Royce70 Royce, W., 1970. “Managing the Development of Large Software Systems,” Pro-
ceedings of IEEE Westcon

RS99 Rother, M., Shook, J., 1999. Learning to See: Value Stream Mapping to Add Value
and Eliminate Muda, Lean Enterprise Institute

SB01 Schwaber, K., Beedle, M., 2001. Agile Software Development with Scrum, Addison-
Wesley

SB08 Sliger, M., Broderick, S., 2008. The Project Manager’s Bridge To Agility, Addison-
Wesley

Schwaber04 Schwaber, K., 2004. Agile Project Management with Scrum, Microsoft Press

Schwaber05 Schwaber, K., 2005. Certified ScrumMaster Course, version 6.3

Schwaber07 Schwaber, K., 2007. “Scrum Release 2.0?” Scrum Alliance Articles, at http://
www.scrumalliance.org/articles/12-scrum-release-

Semler95 Semler, R., 1995. Maverick, Grand Central Publishing

Semler03 Semler, R., 2003. The Seven-Day Weekend, Penguin Books

Senge94 Senge, P., 1994. The Fifth Discipline, Doubleday Business

Sherman93 Sherman, S., 1993. “A Brave New Darwinian Workplace,” Fortune Magazine, Jan
1993

SJS03 Streibel, B., Joiner, B., Scholtes, P., 2003. The Team Handbook, Joiner/Oriel Inc

SKRRS94 Senge, P., Kleiner, A., Roberts, C., Ross, R., Smith, B., 1994. The Fifth Discipline
Fieldbook, Doubleday Business

Smeets07 Smeets, M., 2007. Personal communications and mail to Dutch Agile User Group

https://less.works For Gene Gendel only, id:gene-gendel

www.catb.org/jargon
http://www.scrumalliance.org/articles/12-scrum-release
http://www.scrumalliance.org/articles/12-scrum-release
http://code.google.com/p/robotframework/

341

Smith05 Smith, P., 2005. “Accelerated Product Development: Techniques and Traps,” in
[Kahn05]

Smith07 Smith, P., 2007. Flexible Product Development: Building Agility for Changing
Markets, Jossey-Bass

Spolsky04 Spolsky, J., 2004. Joel on Software, Apress

Spolsky07 Spolsky, J., 2007. Smart and Gets Things Done, Apress

Spolsky08 Spolsky, J., 2008. More Joel on Software, Apress

SR98 Smith, P., Reinertsen, D., 1998. Developing Products in Half the Time: New Rules,
New Tools, Wiley

Stacey07 Stacey, R., 2007. Strategic Management and Organisational Dynamics, Prentice
Hall

Steinbock02 Steinbock, D., 2002. The Nokia Revolution, AMACOM

Sterman00 Sterman, J., 2000. Business Dynamics, McGraw-Hill

Sutherland07 Sutherland, J., 2007. Mail to ScrumTrainer list

Sutherland08 Sutherland, J., 2008. Mail to ScrumTrainer list

Taylor11 Taylor, F. 1911., The Principle of Scientific Management, Harper and Brothers
Publishers

TCKO00 Teasley, S., Covi, L., Krishnan, M., Olson, J., 2000. “How does Radical Collocation
Help a Team Succeed?” Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work

TN07 Tengshe, A., Noble, S., “Establishing the Agile PMO: Managing Variability Across
Projects and Portfolios,” Proceedings of Agile 2007 Conference

Toyota01 Toyota, 2001. Toyota Way 2001, Toyota Motor Company

Toyota08 Toyota, 2008. http://www.toyota.co.jp/en/vision/message/ Accessed on 21 Sep 2008

VersionOne08 VersionOne, 2008. (3rd annual) The State of Agile Development, VersionOne, Inc.

Vise06 Vise, D., 2006. The Google Story, Delta

Vodde07 Vodde, B., 2007. “Plan of Action: A Technique for Creating Retrospective Actions
Tied to Long-term Goals,” Scrum Alliance Articles, at http://www.scrumalli-
ance.org/articles/61-plan-of-action

Ward06 Ward, A., 2006. Lean Product and Process Development, Lean Enterprise Institute

WBW91 Wellins, R., Byham, W., Wilson, J., 1991. Empowered Teams, Jossey-Bass

Weinberg75 Weinberg, G., 1975. An Introduction to General Systems Thinking, Dorset House

Weinberg92 Weinberg, G., 1992. Quality Software Management: Systems Thinking, Dorset
House

https://less.works For Gene Gendel only, id:gene-gendel

http://www.toyota.co.jp/en/vision/message/
http://www.scrumalliance.org/articles/61-plan-of-action
http://www.scrumalliance.org/articles/61-plan-of-action

342

Wenger98 Wenger, E., 1998. Communities of Practice: Learning, Meaning and Identity, Cam-
bridge University Press

WJR90 Womack, J., Jones, D. T., Roos, D., 1990. The Machine That Changed the World,
Harper Perennial

WJ96 Womack, J., Jones, D. T., 1996. Lean Thinking, Free Press

WS00 Wenger, E., Snyder, W., 2000. “Communities of Practice: The Organizational Fron-
tier,” Harvard Business Review, Jan 2000

WMS02 Wenger, E., McDermott, R., Snyder, W., 2002. Cultivating Communities of Prac-
tice, Harvard Business School Press

https://less.works For Gene Gendel only, id:gene-gendel

343

15
Numerics
14 Points for Management (Deming) 35
14 Toyota Way principles 65

A
adaptive process 126
agile

be agile 139
management principles 144
misconceptions 132, 139
practices 139
principles 143
values 141

and false dichotomies 131
agile modelling 184
Ancona, Deborah 202
architecture 135

code police 183
PowerPoint architects 184

Area Backlog 217, 298
Area Product Owner 220, 298
Argyris, Chris 36

B
batch delay 112
batch size 100, 112
batches

big 105
beginner’s mind (at work) 179
Belshee, Arlo 179
beyond budgeting 261

leadership principles 265
process principles 266

boundary management 203
branching 210
budgeting 261

C
cadence 78
career paths 278
cargo cult process adoption 44
causal loop diagrams 13, 16
causation fallacy 9

centralized departments 230, 247
Clark, Kim 198
coaching 248, 282, 283
collective interviewing 281
commitment 231
committer role 183
common-cause variation 117
communities of practice 187, 252

functional learning 253
component guardians 183
component teams 155

definition 155
disadvantages 157

artificial work 166
code duplication 167
delays value 171
easier work 163
limits learning 160
many developers 168
planning and coordination 170
poor design 172
sequential life cycle 158

platforms 173
concurrent code access 180
continuous improvement 50, 112
continuous integration 181, 298
continuous product development 238, 323
contracts 136
Conway’s Law 156
Cooper, Robert 258
coordination 301
CoP coordinator 253
cross-functional teams 196
cycle time 94, 112

D
Daily Scrum 296, 316
Decider protocol 207
definition of done 298
Deming, Edwards 35
design 135
design workshop 184
development areas 224
diagram of effect 13

INDEX

https://less.works For Gene Gendel only, id:gene-gendel

344

diagramming 14
documentation 136
double-loop learning 36

E
Eckstein, Jutta 152
economic models 95
education 282
empirical process 126
Ericsson 152
estimate

value 312
estimates 134, 135
evolutionary design 182
Extreme Programming

see XP 134

F
facilitation 248
fake ScrumMaster 250
false dichotomies 125
feature manager 171
feature team vs feature project 176
feature teams 118, 149, 174

challenges 175
code stability 185
defects 187
definition 153
organizational structure 187
reuse 186
shared design responsibility 182
skills 176, 186
transition 188

gradual 190
reorganize 188

feature-driven development (FDD) 153
feedback loops 23
Five Whys 30, 57
fixed-time contracts 136
flat organizations 241
Flexible Company 206
flow 67
functional units 231, 243

G
gemba 52
genchi genbutsu 52
generalizing specialist 153
global optimization 34
Go See 52

H
hacking 135
Hamel, Gary 230
Herzberg, Frederick 269
hiring

hands-on evaluation 281
only the best 281
pair programming 282
team does the 281
the best 280
trial iteration 282

Honda 279
honestly potentially shippable 245
human resources

engage 267
evidence 267

I
IBM 198
incentives

de-emphasize 270
linked to performance 268
productivity measurements 271
team based 272

infrastructure team 186
initial Product Backlog Refinement 322
Ishikawa diagrams 30
Ishikawa, Kaoru 241
items (in Product Backlog) 311

J
jidoka 71
job descriptions 278

general 278
job rotation 279

start with 280

https://less.works For Gene Gendel only, id:gene-gendel

345

job titles 276
external 277
funny 277
generic 277
only one 277

joint retrospective 297

K
kaizen 53

point 85
system 86

kanban 72
Kaplan, Robert 262
Kato, Isao 162
Katz, Ralph 199

L
lake and rocks metaphor 113
large-scale Scrum 289

artifacts 295
definition 289
over seven teams 298
overview 290
roles 292
up to seven teams 291

Laukkanen, Pekka 161
lead time 59
leadership 194
lean product development 73
Lean Six Sigma 42
lean thinking 39

14 Toyota Way principles 65
cadence 78
continuous improvement 50
entrepreneurial chief engineer 81
flow 67
lean product development 73
manager-teachers 48
non-value-adding actions 60
respect for people 50
stop and fix 70
two types of waste 61
value and waste 58
waste 42

three sources 62
yokoten 54

learning debt 163
limiting peoples’ perspective 276
local optimization 32
long-lived teams 199

M
matrix organization 250
MBO 231
McCarthy, Jim 151
measurement dysfunction 19
mental models 25
method weight 126
misconceptions 139
misconceptions of agile 132
modeling 14, 135
most qualified implementer 179
multi-skilled workers 204
multitasking 99, 165

N
Nokia 279
Nonaka, Ikujiro 195
non-value-adding actions 60

O
Ohno, Taiichi 47
OpenSpace 253
optimistic locking 180
organization 229

people 275
processes 255
rewards 267
strategy 233
structure 241
task 234

organizational impediments 230
organizational structure 244
overburden 62

P
pair programming 134

https://less.works For Gene Gendel only, id:gene-gendel

346

parallel releases 209
partial allocation 204
perfection challenge 64
performance appraisals 231, 273

discuss with team 275
forms 275
ScrumMaster 275

Pfeffer, Jeffrey 269
phase-based resource allocation 209
PMO 249
point kaizen 85
portfolio management 255

queues 97
potential skill 186
potentially shippable product increment 295
pre-Sprint Planning 300
Product Backlog 115, 295, 311

items 311
one for multiple products 256
one per product 217

Product Backlog Refinement 118, 297, 318, 322
product management 293

queues 97
product manager 293
Product Owner 292, 309

one per product 217
Product Owner Team 220

organizational unit 248
product vs project 236
project management office 249
projects 212, 323
projects in product development 238
projects to existing teams 239
promiscuous pairing 179
pull planning 70
pull systems 68
pure waste 61
push planning 70
push systems 68

Q
queue management 96, 115
queueing theory 93
queues

big batches 105
problems 97
Product Backlog 115
removing 98
visual management 71, 110
WIP 97

quick fix 20, 26

R
refactoring 182
Release Backlog 312, 320
Release Burndown Chart 320
release plan 135
release planning 322
Release Sprint 322
requirement areas 177, 217

definition 217
discovering 219
moving teams between 223
organizing around 244
size of 220
tools 225
transition 224

requirement management tools 226
requirements analysis 136
resource pool 165
resource utilization 99, 119
retrospectives 56
Robot Framework 161
rolling wave planning 239
root cause analysis 29

S
Schwaber, Ken 289
Scrum 126, 305

example adoption challenges 324
Feature Teams 149, 294
five values 141
primer 305
Product Backlog 311
Product Owner 309
queue management 115
reducing variability 117
Release Backlog 312

https://less.works For Gene Gendel only, id:gene-gendel

347

roles 309
ScrumMaster 310
Sprint Backlog 314
Sprint Retrospective 56
summary 305
Team 149, 294, 309

Scrum 2.0 289
Scrum Feature Teams 149, 294
Scrum teams as organizational unit 243
ScrumMaster 294, 310
secret developer toolbox 27
self-organizing teams 194

creation of 251
creation of based on skill 252

Semco 277
service and support organizational unit 246
set-based concurrent engineering 82
shared resources 247
silver bullet 232
Smith, Preston 194
special-cause variation 117
Spolsky, Joel 280
Sprint Backlog 295, 314, 317
Sprint Burndown Chart 317
Sprint Planning 296

before starting 300
when one team 313

Sprint Planning Part One
when one team 313

Sprint Planning Part Two 313
Sprint Retrospective 56, 297

when one team 320
Sprint Review 297

when one team 319
stage-gate 256, 258

next generation 260
traditional 260
waterfall 260

star model 232
stop and fix 70
strict locking 180
Sutherland, Jeff 230
system dynamics 10, 13, 35
system kaizen 86
System of Profound Knowledge (Deming) 35

systems thinking 9, 13

T
Takeuchi, Hirotaka 195
team room 80
teams 193

conflict 208
conflict and culture in Asia 208
cross-functional 196
decisions 207
dedicated members 204
definition 193
dependencies 202
effects on organization 208
goals 195, 273
long-lived 199
own the process 200
self-managing 194
self-organizing 194
single-function 155
working on multiple products 257

temporarily necessary waste 61
test-driven development 181
Theory of Constraints 121
timeboxing 78, 118
tools and infrastructure 247
Toyota Way 40
trial iteration 282

U
undone organizational unit 245

V
value 58
value stream mapping 59
variability 62, 115

Scrum 117
variation

common cause 117
special cause 117

visual management 71, 80, 110

https://less.works For Gene Gendel only, id:gene-gendel

348

W
W. L. Gore 277
waste 58

three sources 62
two types 61

Weinberg-Brooks’ Law 9
Wheelwright, Steven 198
WIP 97
WIP queues 97
work redesign 234
working agreements 202

X
XP 134
X-teams 202

Y
yokoten 54, 254

https://less.works For Gene Gendel only, id:gene-gendel

This page intentionally left blank

https://less.works For Gene Gendel only, id:gene-gendel

https://less.works For Gene Gendel only, id:gene-gendel

www.InformIT.com/learn

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

https://less.works For Gene Gendel only, id:gene-gendel

www.informit.com/safaritrial

Your purchase of Scaling Lean & Agile Development includes access to a free online
edition for 45 days through the Safari Books Online subscription service. Nearly every
Addison-Wesley Professional book is available online through Safari Books Online,
along with more than 5,000 other technical books and videos from publishers such as
Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, Que, and Sams.

SAFARI BOOKS ONLINE allows you to search for a specifi c answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at

www.informit.com/safarifree

STEP 1: Enter the coupon code: NNMFZCB.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

https://less.works For Gene Gendel only, id:gene-gendel

www.informit.com/safarifree

	Contents
	1 Introduction
	Thinking Tools
	2 Systems Thinking
	3 Lean Thinking
	4 Queueing Theory
	5 False Dichotomies
	6 Be Agile

	Organizational Tools
	7 Feature Teams
	8 Teams
	9 Requirement Areas
	10 Organization
	11 Large-Scale Scrum

	Miscellany
	12 Scrum Primer

	Recommended Readings
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

